JPS6373514A - Laminated ceramic capacitor and manufacture of the same - Google Patents

Laminated ceramic capacitor and manufacture of the same

Info

Publication number
JPS6373514A
JPS6373514A JP21837886A JP21837886A JPS6373514A JP S6373514 A JPS6373514 A JP S6373514A JP 21837886 A JP21837886 A JP 21837886A JP 21837886 A JP21837886 A JP 21837886A JP S6373514 A JPS6373514 A JP S6373514A
Authority
JP
Japan
Prior art keywords
internal electrode
capacitor
internal
thickness
internal electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21837886A
Other languages
Japanese (ja)
Inventor
吉長 雅治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP21837886A priority Critical patent/JPS6373514A/en
Publication of JPS6373514A publication Critical patent/JPS6373514A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、小型で6つ、静電容量の゛大きな積層セラミ
ックコンデンサ及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a small multilayer ceramic capacitor with a large capacitance and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

従来、積層セラミックコンデンサ(以後コンデンサと略
称)は、まず微細に粉砕したセラミック粉末と有機バイ
ンダとを混練した後、ドクターブレード法によって未焼
成のセラミック生シート(以後生シートと略称)t−作
製し、この生シートを所望の形状に切断し、その表面に
スクリーン印刷等の手段により内部電極を被着形成する
Conventionally, multilayer ceramic capacitors (hereinafter abbreviated as capacitors) are manufactured by first kneading finely ground ceramic powder and an organic binder, and then producing an unfired ceramic green sheet (hereinafter abbreviated as green sheet) using a doctor blade method. This raw sheet is cut into a desired shape, and internal electrodes are formed on the surface thereof by means such as screen printing.

次に内部電極を片面に印刷した生シートの複数枚の上下
を内部電極を印刷しない生シートの複数枚からなる保護
層で挾むように積み重ねた後、熱圧着して積層体を形成
し、この積層体を切断して化チップ個片とする。この生
テッグ個片を焼成し両端に端子電極を焼きつけてコンデ
ンサを作製する。
Next, multiple raw sheets with internal electrodes printed on one side are stacked so that the upper and lower sides are sandwiched between protective layers consisting of multiple raw sheets without internal electrodes printed on them, and then thermocompression bonded to form a laminate. Cut the body into individual chips. A capacitor is produced by firing each piece of raw Tegg and burning terminal electrodes at both ends.

第5図は上述のように作製した従来のコンデンサの模式
的な断面1で、−万の内部電極1とこれに対向する他方
の内部t&1がセラミック層3を介して積層されている
FIG. 5 is a schematic cross-section 1 of a conventional capacitor manufactured as described above, in which one internal electrode 1 and the other internal electrode t&1 opposing thereto are laminated with a ceramic layer 3 interposed therebetween.

上述したコンデンサの容量は内部電極1の一方のものと
他方のものとの重な多面積及び内部電極10重なシ層数
に比例する。
The capacitance of the capacitor described above is proportional to the number of overlapping areas of one internal electrode 1 and the other internal electrode 1 and the number of overlapping layers of the internal electrode 10.

近年のコンデンサに対する小製化、大容量化の要求に対
応する方法の一つに、誘電体の厚さを薄くシ、かつこれ
によって同一体積内での内部電極の重なシ層数を増やす
方法がある。この方法によれば、例えば誘電体の厚さを
1/2にすることによって、同一体積で約40倍近い容
量を得ることができる。
One way to respond to the recent demands for smaller capacitors and larger capacitance is to reduce the thickness of the dielectric and thereby increase the number of overlapping layers of internal electrodes within the same volume. There is. According to this method, for example, by reducing the thickness of the dielectric to 1/2, it is possible to obtain approximately 40 times the capacity with the same volume.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のコンデンサでは、コンデンサの中央部の
対向する内部電極の重なっている部分に対し、コンデン
サの両端は対向する内部電極の重なシがなく一方の内部
電極の厚さ分だけ薄くなっている。特にセラミック層を
薄くして小型大容量にしたコンデンサでは、内部電極を
被着形成した生シートの枚数が多いため中央部は対向し
た内部電極が重なっている中央部分と、一方の内部電極
だけの両端部分とでは大きな厚さの違いが生じてしまう
。よってコンデンサの両端は、薄くなり、中央部が厚く
もシ上がシ、コンデンサ全体が弓状に曲がシ、コンデン
サ内部でストレスを生じ、コンデンサをプリント基板上
に実装するときの熱及び半田などによる機械的ストレス
によって信頼性を劣化させるという欠点があった。
In the conventional capacitor described above, in contrast to the overlapping part of the opposing internal electrodes at the center of the capacitor, the opposing internal electrodes do not overlap at both ends of the capacitor and are thinned by the thickness of one internal electrode. There is. In particular, in capacitors that have thinner ceramic layers to make them smaller and larger in capacity, there are a large number of raw sheets on which internal electrodes are adhered, so the central part is divided into two areas: one where the opposing internal electrodes overlap, and the other where only one internal electrode overlaps. There will be a large difference in thickness between both ends. Therefore, both ends of the capacitor are thinner, the center part is thicker and the upper part is bent, and the entire capacitor is bent into an arched shape, which causes stress inside the capacitor and heat and solder when mounting the capacitor on a printed circuit board. The disadvantage was that reliability deteriorated due to mechanical stress caused by

本発明の目的は、前述の欠点を除去したコンデンサ及び
その製造方法を提供することにある。
SUMMARY OF THE INVENTION The object of the present invention is to provide a capacitor and a method for manufacturing the same which eliminates the above-mentioned drawbacks.

上述した従来のコンデンサに対し、本発明は内部電極の
厚みバランスの調整によってコンデンサの内部ストレス
の発生を防止し、これによって特に熱ストレスに対する
信頼性を向上させるという独創的内容を有する。
In contrast to the conventional capacitors described above, the present invention has the original content of preventing the occurrence of internal stress in the capacitor by adjusting the thickness balance of the internal electrodes, thereby improving reliability particularly against thermal stress.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、一方の内部電極の一部と他方の内部電極の一
部とがセラミック層を介して互いに重なる積層セラミッ
クコンデンサにおいて、互いに重ならない部分の前記一
方および他方の内部電極の厚さそれぞれを互い重なる部
分の前記一方および他方の内部電極の厚さの2倍に形成
したことt%黴とする。
The present invention provides a multilayer ceramic capacitor in which a part of one internal electrode and a part of the other internal electrode overlap each other with a ceramic layer interposed therebetween, in which the thicknesses of the one internal electrode and the other internal electrode in the parts that do not overlap with each other are It is assumed that the thickness is twice the thickness of the one and the other internal electrodes in the mutually overlapping portion.

本発明の積層上2ミックコンデンサの製造方法は、化2
ミック生シートの片面に第1の内部電極をスクリーン印
刷により被着形成する第1の工程と、この′slの工程
の後に前記第1の内部′電極の一部に第20内部電極を
スクリーン印刷により被着形成する第20工程と、この
第20工程の溝に互いに接するものに被着形成された前
記第1の内部電極の前記第20内部電極が被着形成され
ていない部分が重なるように複数の前記セラミック生シ
ートを積層する第3の工程とを含んで構成される。
The method for manufacturing the multilayer two-layer capacitor of the present invention is as follows:
A first step of forming a first internal electrode by screen printing on one side of the raw mix sheet, and after this 'sl' process, a 20th internal electrode is screen printed on a part of the first internal electrode. a 20th step in which the 20th internal electrode is not adhered to, and a portion of the first internal electrode formed in contact with the groove in the 20th step overlaps with the 20th internal electrode. and a third step of laminating a plurality of the raw ceramic sheets.

〔実施例〕〔Example〕

以下、本発明の実施例1に第1図へ第4図により詳述す
る。
Embodiment 1 of the present invention will be described in detail below with reference to FIGS. 1 and 4.

第1図は本発明の一実施例のコンデンサの模式的な断面
図でおる。
FIG. 1 is a schematic sectional view of a capacitor according to an embodiment of the present invention.

一方の内部電極工とこれに対向する他方の内部電極1が
セラミック層3を介して積層されている。
One internal electrode structure and the other internal electrode 1 facing it are laminated with a ceramic layer 3 in between.

対向する内部電極1が重ならないコンデンサの両端部分
では、内部電極1上に内部電極2が被着形成される。内
部電極2の厚さは内部電極1と同じにしであるので、内
部電極1,2の厚さの合計は内部電極1の厚さの2倍に
なり、コンデンサの中央部分と両端部分での内部電極1
.2の厚さの合計は等しくな夛、コンデンサ全体の厚さ
も中央部分と両端部で均一となる。
At both ends of the capacitor where the opposing internal electrodes 1 do not overlap, the internal electrodes 2 are formed on the internal electrodes 1 . Since the thickness of internal electrode 2 is the same as that of internal electrode 1, the total thickness of internal electrodes 1 and 2 is twice the thickness of internal electrode 1, and the internal thickness at the center and both ends of the capacitor is Electrode 1
.. Since the sum of the thicknesses of the two capacitors is equal, the thickness of the entire capacitor is also uniform at the center and both ends.

第2図は第1図に示す実施例の内部電極1t−印刷する
のに用いるスクリーン4の平面図でsb、第5図に示す
従来のコンデンサの内部電極1(i:印刷するのに用い
るものと同一のものである。スクリーン4に配設された
透孔114.llbは内部電極1に対応し、長形の透孔
11aは積層体を生チツプ個片に切断する際に2等分さ
れて2つの生チツプ個片内に分離される内部電極1を印
刷するためのものである。短形の透孔11bは1つの生
チツプ内の内部電極1全印刷するためのものであシ、ス
クリーン4に配設された透孔の行列の中の端の行に設け
られる。
FIG. 2 is a plan view of the screen 4 used for printing the internal electrode 1t of the embodiment shown in FIG. 1, sb, and the internal electrode 1 of the conventional capacitor shown in FIG. The through hole 114.llb provided in the screen 4 corresponds to the internal electrode 1, and the elongated through hole 11a is divided into two equal parts when cutting the laminate into individual green chips. The rectangular through holes 11b are for printing the internal electrodes 1 that are separated into two pieces of raw chips. They are provided in the end rows of the matrix of through holes arranged in the screen 4.

第3図は第1図に示す本発明の一実施例の内部電極2を
印刷するのに用いるスクリーン5の平面図である。スク
リーン4に配設された透孔12aは積層体を生チツプ個
片に切断する際に2等分されて2つの生チツプ個片内に
分離される内部電極2を印刷するためのものである。透
孔12bは1つの生チツプ内の内部電極2を印刷するた
めのものでアシ、スクリーン4に配設された透孔の行列
の中の端の行に設けられる。
FIG. 3 is a plan view of the screen 5 used for printing the internal electrodes 2 of the embodiment of the present invention shown in FIG. The through holes 12a provided in the screen 4 are for printing internal electrodes 2 that are divided into two equal parts and separated into two raw chip pieces when the laminate is cut into raw chip pieces. . The through holes 12b are for printing the internal electrodes 2 in one raw chip, and are provided in the end rows of the matrix of through holes arranged in the reed screen 4.

第4図(→〜(Φはそれぞれ透孔11JL、12L。Fig. 4 (→~(Φ is the through hole 11JL and 12L, respectively.

際の切断線に対応する線で、透孔11JL、12&。The through holes 11JL, 12& are lines corresponding to the actual cutting lines.

11bおよび12bの大きさおよび位置関係を寸 ・法
La、ja、Lb、jbで示す。
The sizes and positional relationships of 11b and 12b are indicated by dimensions La, ja, Lb, and jb.

透孔11&の縦方向及び横方向(ここに縦、横は第2図
〜第4図における縦、横をいう。以下同様)の長さをそ
れぞれ2xLaおよびLbとし、縦方向および横方向の
透孔11J1.llb間の距離をそれぞれ2×ノ&およ
び2xjbとする。透孔11bの縦方向および横方向の
長さをそれぞれLa十壺!aおよびLbとする。
The lengths of the through hole 11 & in the vertical and horizontal directions (vertical and horizontal here refer to the vertical and horizontal in FIGS. 2 to 4; the same applies hereinafter) are 2xLa and Lb, respectively, and the transparent hole in the vertical and horizontal directions is Hole 11J1. Let the distance between llb be 2×ノ& and 2×jb, respectively. The lengths of the through hole 11b in the vertical and horizontal directions are each La ten jars! a and Lb.

透孔12Jlの縦方向および横方向の長さはそれぞれ2
XjmおよびLb、透孔12bの縦方向および横方向の
長さはそれぞれ、l &十’zl &およびLbである
The length of the through hole 12Jl in the vertical and horizontal directions is 2, respectively.
Xjm and Lb, and the lengths of the through hole 12b in the vertical and horizontal directions are l &1'zl& and Lb, respectively.

透孔12jLの配設する位置は透孔12aの横方向の線
対称軸が透孔11為の横方向の線対称軸に一致するよう
に設ける。
The through hole 12jL is arranged so that the horizontal axis of symmetry of the through hole 12a coincides with the horizontal axis of symmetry for the through hole 11.

透孔12bの配設する位置は透孔11bの上辺に透孔1
2bの上辺が一致するように設ける。また透孔121間
、12b間の横方向の距離を2×!bとする。
The through hole 12b is located at the upper side of the through hole 11b.
2b so that the upper sides thereof coincide with each other. Also, the horizontal distance between the through holes 121 and 12b is 2×! b.

詳細に述べる。Explain in detail.

まず、微細に粉砕したセラミック粉末と有機パイングと
を′&練した後、ドクターブレード法によって厚さ15
μの生シートを作製し、次にこの生シートを所望の形状
に切断する。次にその表面に第2図に示すステンレス製
のスクリーン4を用い、スククーン印刑して、内部電極
lt−被着形成し乾燥した後、第3図に示すスクリーン
5を用いて内部電極2を先に形成した内部電極1上に被
着形成し乾燥する。
First, after kneading finely ground ceramic powder and organic pineapple, the doctor blade method was used to form a powder with a thickness of 15 cm.
A raw sheet of μ is prepared, and then this raw sheet is cut into a desired shape. Next, using a stainless steel screen 4 shown in FIG. 2, a screen stamp is applied to the surface to form the internal electrode lt-adhesion, and after drying, the internal electrode 2 is formed using a screen 5 shown in FIG. 3. It is deposited on the previously formed internal electrode 1 and dried.

スクリーン5による印刷においては、透孔11aの中心
と透孔128の中心の対応位置が一致し、透孔11bの
上辺と透孔12bの上辺の対応位置が一致するようにし
て行う。
Printing using the screen 5 is performed so that the corresponding positions of the centers of the through holes 11a and the centers of the through holes 128 coincide, and the corresponding positions of the upper sides of the through holes 11b and the upper sides of the through holes 12b coincide with each other.

内部電極1,2t−片面に印刷した生シートを複数枚(
例えば40枚)積み重ね(スクリーン4゜5で印刷され
た内部電極り、2のパターンの向きが第1の向きのもの
と、この第1の向きから180゜回転させた第20向き
のものを交互に重ねる。)、この積み重ねた内部電極1
,2を印刷の複数の生シートを、さらに内部電極を印刷
しない生シートからなる保獲層で挾んで積層体を形成す
る。この積層体を切断して形成した生チツプ個片を、焼
成し、両端に端子電極を焼きつけて本発明の積層セラミ
ックコンデンサを得る。
Internal electrodes 1, 2t - multiple raw sheets printed on one side (
For example, 40 sheets) are stacked (internal electrodes printed on a screen 4°5, with the second pattern facing the first direction and the second pattern facing the 20th direction rotated 180° from the first direction). ), this stacked internal electrode 1
A laminate is formed by sandwiching a plurality of green sheets printed with . The raw chip pieces formed by cutting this laminate are fired, and terminal electrodes are baked on both ends to obtain the multilayer ceramic capacitor of the present invention.

上述のように内部電極1.2を設けた本発明に厚さ1n
n(t)の95Xのアルミナ基板に、銀3%入シはんだ
を用いて、270℃、300℃でそれぞれ3秒で′こ工
付けを行い、次光に示す温度125°、印加電圧25V
、  1000時間の加速試験と温度65℃、印加電圧
25■、湿K 90 X500時間の加速試験を行フ九
。結果もあわせて次表に示す。
As described above, the present invention provided with the internal electrode 1.2 has a thickness of 1n.
This process was performed on an n(t) 95X alumina substrate using 3% silver solder at 270°C and 300°C for 3 seconds each, and at a temperature of 125° and an applied voltage of 25V as shown in the following photo.
An accelerated test of 1000 hours and a temperature of 65°C, an applied voltage of 25 cm, and a humidity of K 90 x 500 hours was conducted. The results are also shown in the table below.

以下余白、苧2 1+□r中 〔発明の効果〕 以上説明したように、本発明は、セラミックの厚みを薄
くして、小型にかつ静電容量を大きくしても、熱ストレ
スに対し信頼性の高い積層セラミックコンデンサ得るこ
とができる効果がある。
Margins below, ramie 2 1 + □r [Effects of the Invention] As explained above, the present invention provides reliability against thermal stress even if the thickness of the ceramic is reduced, the size is made smaller, and the capacitance is increased. It has the effect that high multilayer ceramic capacitors can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の断面図、第2図は第1図に
示す内部電極を印刷するためのスクリーンの平面図、第
3図は第1図に示す内部電極2t−印刷するためのスク
リーンの平面図、第4図(姉。 (→はそれぞれ第2図に示す透孔11a、flbの部分
拡大図、第4図(b) l (ψはそれぞれ第3図に示
す透孔12a、12bの部分拡大図、第5図は従来のコ
ンデンサの断面図である。 1.2・・・・・・内部電極、3・・・・・・セラミッ
ク層、4゜5・・・・・・スクリーン、11&、llb
、12a。 12b・・・・・・透孔。 第3図 (勾            (b) (C)(乱) 第4図 第5図
FIG. 1 is a sectional view of an embodiment of the present invention, FIG. 2 is a plan view of a screen for printing the internal electrodes shown in FIG. Figure 4 (older sister) (→ is a partial enlarged view of the through holes 11a and flb shown in Figure 2, respectively, Figure 4 (b) l (ψ is the through hole shown in Figure 3, respectively) 12a and 12b are partially enlarged views, and FIG. 5 is a sectional view of a conventional capacitor. 1.2... Internal electrode, 3... Ceramic layer, 4° 5...・・Screen, 11 &, llb
, 12a. 12b...Through hole. Figure 3 (gradient (b) (C) (random) Figure 4 Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)一方の内部電極の一部と他方の内部電極の一部と
がセラミック層を介して互いに重なる積層セラミックコ
ンデンサにおいて、互いに重ならない部分の前記一方お
よび他方の内部電極の厚さそれぞれを互いに重なる部分
の前記一方および他方の内部電極の厚さの2倍に形成し
たことを特徴とする積層セラミックコンデンサ。
(1) In a multilayer ceramic capacitor in which a part of one internal electrode and a part of the other internal electrode overlap each other via a ceramic layer, the thicknesses of the one internal electrode and the other internal electrode in the parts that do not overlap with each other are A multilayer ceramic capacitor characterized in that the thickness is twice as thick as that of the one and the other internal electrodes in the overlapping portion.
(2)セラミック生シートの片面に第1の内部電極をス
クリーン印刷により被着形成する第1の工程と、この第
1の工程の後 に前記第1の内部電極の一部に第2の内部電極をスクリ
ーン印刷により被着形成する第2の工程と、この第2の
工程の後に互いに接するものに被着形成された前記第1
の内部電極の前記第20内部電極が被着形成されていな
い部分が重なるように複数の前記セラミック生シートを
積層する第3の工程とを含むことを特徴とする積層セラ
ミックコンデンサの製造方法。
(2) A first step of forming a first internal electrode on one side of the green ceramic sheet by screen printing, and after this first step, a second internal electrode is formed on a part of the first internal electrode. a second step of adhering and forming by screen printing, and after this second step, the first
a third step of laminating a plurality of the raw ceramic sheets so that the portions of the internal electrodes on which the 20th internal electrode is not adhered overlap.
JP21837886A 1986-09-16 1986-09-16 Laminated ceramic capacitor and manufacture of the same Pending JPS6373514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21837886A JPS6373514A (en) 1986-09-16 1986-09-16 Laminated ceramic capacitor and manufacture of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21837886A JPS6373514A (en) 1986-09-16 1986-09-16 Laminated ceramic capacitor and manufacture of the same

Publications (1)

Publication Number Publication Date
JPS6373514A true JPS6373514A (en) 1988-04-04

Family

ID=16718955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21837886A Pending JPS6373514A (en) 1986-09-16 1986-09-16 Laminated ceramic capacitor and manufacture of the same

Country Status (1)

Country Link
JP (1) JPS6373514A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02261524A (en) * 1989-02-27 1990-10-24 Air Prod And Chem Inc Polyimido permeable membrane and separation method for mixture gas component using said membrane
US8325462B2 (en) 2008-10-03 2012-12-04 Murata Manufacturing Co., Ltd. Laminated ceramic electronic component and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02261524A (en) * 1989-02-27 1990-10-24 Air Prod And Chem Inc Polyimido permeable membrane and separation method for mixture gas component using said membrane
US8325462B2 (en) 2008-10-03 2012-12-04 Murata Manufacturing Co., Ltd. Laminated ceramic electronic component and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JPH09129476A (en) Ceramic electronic part
JP2000340448A (en) Laminated ceramic capacitor
JPS6235257B2 (en)
JPH07122457A (en) Manufacture of multilayered ceramic electronic component
JP2742414B2 (en) Manufacturing method of multilayer ceramic electronic component
JP2000277382A (en) Multi-laminated ceramic capacitor and manufacturing method of the same
JP2857552B2 (en) Multilayer electronic component and method of manufacturing the same
JPS6373514A (en) Laminated ceramic capacitor and manufacture of the same
JPS6339958Y2 (en)
JPH0563007B2 (en)
JPH06251993A (en) Chip type electronic part assembly
JPH05347227A (en) Laminated thin film capacitor
JP2001044059A (en) Multilayer ceramic capacitor
JPH08181453A (en) Capacitor containing circuit board
JP2001267176A (en) Multilayer capacitor and manufacturing method therefor
JPH0750462A (en) Electronic circuit board
JPH1116778A (en) Capacitor array and its manufacture
JP2001319828A (en) Capacitor array
JPS62261114A (en) Laminated ceramic capacitor and manufacture of the same
JPH01262695A (en) Ceramic multilayer board having built-in capacitor
JPH084053B2 (en) Monolithic ceramic capacitors
JPH0727989B2 (en) Method for manufacturing ceramic package type semiconductor device
JP2551064B2 (en) Manufacturing method of ceramic multilayer substrate
JPS62252126A (en) Laminated ceramic capacitor and manufacture of the same
JPS58131727A (en) Method of producing laminated porcelain capacitor