JPS6366932A - Selective growth method of high melting-point metal - Google Patents
Selective growth method of high melting-point metalInfo
- Publication number
- JPS6366932A JPS6366932A JP20946386A JP20946386A JPS6366932A JP S6366932 A JPS6366932 A JP S6366932A JP 20946386 A JP20946386 A JP 20946386A JP 20946386 A JP20946386 A JP 20946386A JP S6366932 A JPS6366932 A JP S6366932A
- Authority
- JP
- Japan
- Prior art keywords
- contact hole
- film
- insulating film
- high melting
- point metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 10
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 9
- 239000002184 metal Substances 0.000 title claims abstract description 9
- 239000000758 substrate Substances 0.000 claims abstract description 12
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 6
- 239000011574 phosphorus Substances 0.000 claims abstract description 6
- 239000004065 semiconductor Substances 0.000 claims abstract description 6
- 239000005368 silicate glass Substances 0.000 claims abstract description 6
- 230000000737 periodic effect Effects 0.000 claims abstract description 3
- 238000002844 melting Methods 0.000 claims description 6
- 239000011521 glass Substances 0.000 claims description 4
- 230000008018 melting Effects 0.000 claims description 4
- 150000002739 metals Chemical class 0.000 claims description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 abstract description 19
- 229910052721 tungsten Inorganic materials 0.000 abstract description 19
- 239000010937 tungsten Substances 0.000 abstract description 19
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 11
- 229910052710 silicon Inorganic materials 0.000 abstract description 11
- 239000010703 silicon Substances 0.000 abstract description 11
- 229910021478 group 5 element Inorganic materials 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 7
- 229910052787 antimony Inorganic materials 0.000 description 5
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 5
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 238000001947 vapour-phase growth Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- WQJQOUPTWCFRMM-UHFFFAOYSA-N tungsten disilicide Chemical compound [Si]#[W]#[Si] WQJQOUPTWCFRMM-UHFFFAOYSA-N 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- YXTPWUNVHCYOSP-UHFFFAOYSA-N bis($l^{2}-silanylidene)molybdenum Chemical compound [Si]=[Mo]=[Si] YXTPWUNVHCYOSP-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 229910021344 molybdenum silicide Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- ZQZCOBSUOFHDEE-UHFFFAOYSA-N tetrapropyl silicate Chemical compound CCCO[Si](OCCC)(OCCC)OCCC ZQZCOBSUOFHDEE-UHFFFAOYSA-N 0.000 description 1
- JGOJQVLHSPGMOC-UHFFFAOYSA-N triethyl stiborite Chemical compound [Sb+3].CC[O-].CC[O-].CC[O-] JGOJQVLHSPGMOC-UHFFFAOYSA-N 0.000 description 1
- NXHILIPIEUBEPD-UHFFFAOYSA-H tungsten hexafluoride Chemical compound F[W](F)(F)(F)(F)F NXHILIPIEUBEPD-UHFFFAOYSA-H 0.000 description 1
- 229910021342 tungsten silicide Inorganic materials 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Landscapes
- Electrodes Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔概要〕
化学気相成長(CVD)法によってアンチモン・シリケ
ートガラス(antimonial 5ilicate
glass。[Detailed Description of the Invention] [Summary] Antimony silicate glass (antimonial silicate glass) is produced by chemical vapor deposition (CVD).
glass.
5bsc) 、砒素シリケートガラス(arsenic
5ili−cate glass、 As5G)膜を
成長させ、この膜をマスクにして高融点金属の選択成長
を行う。5bsc), arsenic silicate glass (arsenic
5ili-cate glass, As5G) film is grown, and using this film as a mask, selective growth of the refractory metal is performed.
本発明は高融点金属の選択成長法に関し、さらに詳しく
言えば、5bSG、 As5G膜にコンタクトホールを
開け、そのコンタクトホール内に前記膜をマスクにして
タングステン(W)の如き高融点金属を選択成長する方
法に関するものである。The present invention relates to a method for selectively growing a high melting point metal, and more specifically, a contact hole is formed in a 5bSG or As5G film, and a high melting point metal such as tungsten (W) is selectively grown in the contact hole using the film as a mask. It's about how to do it.
半導体装置の製造工程において、シリコン基板上に絶縁
膜を形成し、この絶縁膜にコンタクトホールを窓開けし
、コンタクトホールに電極を形成することが行われる。In the manufacturing process of a semiconductor device, an insulating film is formed on a silicon substrate, a contact hole is opened in the insulating film, and an electrode is formed in the contact hole.
第2図を参照すると、同図(alに示される如く、シリ
コン基板21上に絶縁膜として燐・シリケート・ガラス
(PSG ’) 111122を形成し、PSG膜22
にコンタクトホール23を窓開けし、全面にスパッタま
たは蒸着によってアルミニウム(Al)膜24を形成す
る。 A2に代えてモリブデン(Mo)、モリブデンシ
リサイド(MoSix ) +タングステン(W)、タ
ングステンシリサイド(讐5ix)を成長してもよい。Referring to FIG. 2, as shown in FIG.
A contact hole 23 is opened in the area, and an aluminum (Al) film 24 is formed on the entire surface by sputtering or vapor deposition. Instead of A2, molybdenum (Mo), molybdenum silicide (MoSix) + tungsten (W), or tungsten silicide (5ix) may be grown.
次いでAβ膜24上にレジストを塗布し、それを第2図
(b)に示される如くバターニングしてレジストマスク
25を作る。Next, a resist is applied onto the Aβ film 24 and patterned to form a resist mask 25 as shown in FIG. 2(b).
次に、レジストマスク25をマスクに燐酸を用いるウェ
ットエツチングまたはドライエツチングによってAlを
エツチングし、レジストマスクを剥離して第2図(C)
に示されるAA電極24aを作る。Next, the Al is etched by wet etching or dry etching using phosphoric acid using the resist mask 25 as a mask, and the resist mask is peeled off as shown in FIG. 2(C).
An AA electrode 24a shown in is made.
前記したプロセスは、八βの蒸着、レジスト塗布とバタ
ーニング、エツチング、レジスト剥離というように工程
数が多い問題がある。かかる問題を解決すべく、例えば
WFe + H2を用いる気相成長法でコンタクトホー
ル23内にタングステン(W)を選択的に成長する技術
が開発された。それによると、PSG膜上にはタングス
テンを成長させることなしに、コンタクトホール23内
のみに0.5〜0.6μm程度のタングステンを選択的
に成長することができる。The above-mentioned process has a problem in that it requires a large number of steps, such as vapor deposition of 8β, resist coating and buttering, etching, and resist peeling. In order to solve this problem, a technique has been developed in which tungsten (W) is selectively grown in the contact hole 23 by a vapor phase growth method using, for example, WFe + H2. According to this, tungsten with a thickness of about 0.5 to 0.6 μm can be selectively grown only in the contact hole 23 without growing tungsten on the PSG film.
例えばタングステンの選択成長には第3図に示す装置を
用い、同図において、31はチャンバ、32はヒーター
、33はサセプタ、34はサセプタ33上に載置された
ウェハ(半導体基板)、35はガス供給部、36はガス
導入管、37は真空排気管、38はバルブを示す。For example, for selective growth of tungsten, an apparatus shown in FIG. 3 is used, in which 31 is a chamber, 32 is a heater, 33 is a susceptor, 34 is a wafer (semiconductor substrate) placed on the susceptor 33, and 35 is a In the gas supply section, 36 is a gas introduction pipe, 37 is a vacuum exhaust pipe, and 38 is a valve.
タングステンの成長条件は、六弗化タングステン<HF
6)を10〜500C/ffl1nの流量、H2を20
0〜1000cc/ minの流量でガス導入管36か
ら供給し、ヒーター32により発生する反応温度は30
0〜400℃、また真空排気管37に連結された排気系
によって作られる反応圧力は0.1〜Q、5 Torr
に設定する。The growth conditions for tungsten are: tungsten hexafluoride<HF
6) at a flow rate of 10 to 500C/ffl1n, H2 at 20
The gas is supplied from the gas introduction pipe 36 at a flow rate of 0 to 1000 cc/min, and the reaction temperature generated by the heater 32 is 30 cc/min.
0 to 400°C, and the reaction pressure created by the exhaust system connected to the vacuum exhaust pipe 37 is 0.1 to Q, 5 Torr.
Set to .
PSG膜22は一般に1μm程度の膜厚に形成され、コ
ンタクトホール23の深さは1μmとなる。前記したタ
ングステンの選択成長においては0.6μmが限度でコ
ンタクトホールを完全に埋めるまでタングステンを成長
することが難しい。The PSG film 22 is generally formed to have a thickness of about 1 μm, and the depth of the contact hole 23 is 1 μm. In the selective growth of tungsten described above, the limit is 0.6 μm, and it is difficult to grow tungsten until the contact hole is completely filled.
PSGにおいては、燐(P)の実質的濃度(wt%)が
高いほどタングステンの選択的成長における選択性が高
まり、8wt%、 10wt%の燐を含むPSGで選択
性はかなり高まるがそれでも0.6μmの厚さにタング
ステンを成長することが限度である。さらには、燐の濃
度をIht%以上に増やすことにも問題がある。In PSG, the higher the effective concentration (wt%) of phosphorus (P), the higher the selectivity in the selective growth of tungsten, and the selectivity increases considerably with PSG containing 8 wt% and 10 wt% of phosphorus, but still 0. The limit is to grow tungsten to a thickness of 6 μm. Furthermore, there is also a problem in increasing the phosphorus concentration to more than Iht%.
本発明はこのような点に鑑みて創作されたもので、タン
グステン、モリブデン、チタンの如き高融点金属の選択
成長において成長の選択性を高めうる方法を堤供するこ
とを目的とする。The present invention was created in view of these points, and an object of the present invention is to provide a method that can increase the selectivity of growth in the selective growth of high-melting point metals such as tungsten, molybdenum, and titanium.
第1図は本発明実施例の断面図で、図中、11はシリコ
ン基板、12は5bsc膜、13はコンタクトホール、
14はタングステン層である。FIG. 1 is a cross-sectional view of an embodiment of the present invention, in which 11 is a silicon substrate, 12 is a 5BSC film, 13 is a contact hole,
14 is a tungsten layer.
本発明においては、コンタクトホールが形成される絶縁
膜にアンチモンガラス(SbSG)またはAs5Gを用
いて選択性を向上する。In the present invention, the selectivity is improved by using antimony glass (SbSG) or As5G for the insulating film in which the contact hole is formed.
PSG、 5bSG、八sSGなどにおいては、51所
の不苓屯物が選択性を高める原因であるが、本発明者は
実験によって5bSG、 As5Gで作った膜が選択性
に優れていることを確かめた。In PSG, 5bSG, 8sSG, etc., the selectivity is increased by 51 non-reactive substances, but the inventors have confirmed through experiments that membranes made with 5bSG and As5G have excellent selectivity. Ta.
以下、図面を参照して本発明の実施例を詳細に説明する
。Embodiments of the present invention will be described in detail below with reference to the drawings.
再び第1図を参照すると、先ずシリコン基板11上に絶
縁膜としてSbSG11m12を形成する。5bSGを
成長するには第4図に示す装置を用い同図において、4
1は成長用炉、42はヒーター、43はウェハバスケッ
ト、44はウェハ(半導体基板)、45はN2の供給を
受けるアンチモンソース、46は02の供給を受けるシ
リコンソース、47はガス導入管、48はガス抜き、4
9はピラニ真空計、50は液体窒素の入ったトラップ、
51はロータリポンプである。装置は有機系液体ソース
を用いる減圧気相成長装置である。Referring again to FIG. 1, first, SbSG 11m12 is formed on a silicon substrate 11 as an insulating film. To grow 5bSG, use the apparatus shown in Figure 4.
1 is a growth furnace, 42 is a heater, 43 is a wafer basket, 44 is a wafer (semiconductor substrate), 45 is an antimony source supplied with N2, 46 is a silicon source supplied with 02, 47 is a gas introduction pipe, 48 is degassed, 4
9 is a Pirani vacuum gauge, 50 is a trap containing liquid nitrogen,
51 is a rotary pump. The apparatus is a reduced pressure vapor phase growth apparatus using an organic liquid source.
シリコンソースとしては、シリコン・ノルマルプロピレ
ート(Si (n −0CyH7) u ) 40〜6
0%と02100〜200cc 、またはプロピルシリ
ケートを用い、アンチモンソースとしては、トリエトキ
シアンチモニイ (Sb (CJIO) 3 ) 1
0〜30%とN210〜20ccを用いる。ヒーター4
2の発生する反応温度は700〜800℃、ロークリポ
ンプ51の系の作る反応圧力は0.4〜1.OTorr
に設定した。As a silicon source, silicon normal propylate (Si(n-0CyH7)u) 40-6
0% and 02100~200cc or propyl silicate, and as the antimony source, triethoxyantimony (Sb (CJIO) 3 ) 1
Use 0-30% and N210-20cc. Heater 4
The reaction temperature at which No. 2 occurs is 700 to 800°C, and the reaction pressure created by the Lochry pump 51 system is 0.4 to 1. OTorr
It was set to
シリコン基板11上に5bsc膜が所定の膜厚に成長し
たところで、5bSG膜12にコンタクトホール13を
窓開けする。一実施例においては、深さ直径共に1.0
μmのコンタクトホールを形成した。When the 5bsc film has grown to a predetermined thickness on the silicon substrate 11, a contact hole 13 is opened in the 5bSG film 12. In one embodiment, both depth and diameter are 1.0.
A contact hole of μm was formed.
次にシリコン基板11を第3図に示す装置のチャンバ3
1内に配置する。本発明者の実験によると、コンタクト
ホール内に、0.6〜0.8μ欝の厚さにタングステン
層14を成長することができた。Next, the silicon substrate 11 is placed in the chamber 3 of the apparatus shown in FIG.
Place it within 1. According to experiments conducted by the inventor, the tungsten layer 14 could be grown within the contact hole to a thickness of 0.6 to 0.8 μm.
以上述べてきたように本発明によれば、5bSG膜をマ
スクに用いることによってタングステンを従来例よりも
より選択性良く成長することが可能となった。なお、上
記において本発明方法はタングステンの成長を例に説明
したが、本発明の通用範囲はその場合に限定されるもの
でなく、高融点金属ハロゲン化物、例えば1icI!4
、 F’loσ5を用いるチタン(Ti) 、モリブ
デン(Mo)などの成長の場合にも及ぶものであり、マ
スクとなる膜も5bscに限定されるものでなく、As
5Gの如き元素周期表第V族の元素を用いる場合も含ま
れるものである。As described above, according to the present invention, by using the 5bSG film as a mask, it has become possible to grow tungsten with better selectivity than in the conventional example. Although the method of the present invention has been explained above using the growth of tungsten as an example, the scope of the present invention is not limited to that case, and is not limited to the growth of high melting point metal halides, such as 1icI! 4
This also applies to the growth of titanium (Ti), molybdenum (Mo), etc. using F'loσ5, and the film used as a mask is not limited to 5bsc, but may also be
This also includes the case where an element of Group V of the periodic table of elements such as 5G is used.
第1図は本発明実施例断面図、
第2図(al 、 (b) 、 (C1は従来例断面図
、第3図はタングステン選択成長装置断面図、第4図は
減圧気相成長装置断面図である。
第1図と第4図において、
11はシリコン基板、
12は5bsc膜、
13はコンタクトホール、
14はタングステン層、
41は成長用炉、
42はヒーター、
43はウェハバスケット、
44はウェハ、
45はアンチモンソース、
46はシリコンソース、
47はガス導入管、
48はガス抜き、
−49はビラニ真空計、
50はトラップ、
51はロータリポンプである。
代理人 弁理士 久木元 彰
復代理人 弁理士 大 菅 義 2
杢を明爵−1町町阻
第1 図
縦東伊11間国
t$2閃
第3図Fig. 1 is a sectional view of an embodiment of the present invention, Fig. 2 (al, (b), (C1 is a sectional view of a conventional example, Fig. 3 is a sectional view of a tungsten selective growth device, and Fig. 4 is a sectional view of a reduced pressure vapor phase growth device). 1 and 4, 11 is a silicon substrate, 12 is a 5BSC film, 13 is a contact hole, 14 is a tungsten layer, 41 is a growth furnace, 42 is a heater, 43 is a wafer basket, and 44 is a wafer basket. wafer, 45 is an antimony source, 46 is a silicon source, 47 is a gas introduction pipe, 48 is a gas vent, -49 is a Virani vacuum gauge, 50 is a trap, and 51 is a rotary pump. Agent: Patent attorney Akifuku Kukimoto Person Patent Attorney Yoshi Osuga 2 Mokou wo Myoshu - 1 Town Town Block 1 Figure Vertical East Italy 11 countries t $ 2 Sen Figure 3
Claims (1)
タクトホール(13)に高融点金属を選択的に成長する
方法において、 前記絶縁膜(12)は元素周期表第V族のりんを除く元
素を含むシリケートガラスによって作られたものである
ことを特徴とする高融点金属選択成長法。[Claims] In a method of selectively growing a high-melting point metal in a contact hole (13) formed in an insulating film (12) on a semiconductor substrate (11), the insulating film (12) is made of a metal of the periodic table of elements. 1. A selective growth method for high melting point metals, characterized in that the glass is made of silicate glass containing elements of group V except phosphorus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61209463A JP2534848B2 (en) | 1986-09-08 | 1986-09-08 | Selective growth method for refractory metals |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61209463A JP2534848B2 (en) | 1986-09-08 | 1986-09-08 | Selective growth method for refractory metals |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6366932A true JPS6366932A (en) | 1988-03-25 |
JP2534848B2 JP2534848B2 (en) | 1996-09-18 |
Family
ID=16573286
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61209463A Expired - Fee Related JP2534848B2 (en) | 1986-09-08 | 1986-09-08 | Selective growth method for refractory metals |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2534848B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5180687A (en) * | 1989-09-26 | 1993-01-19 | Canon Kabushiki Kaisha | Deposited film formation method utilizing selective deposition by use of alkyl aluminum hydride |
US5316972A (en) * | 1989-09-26 | 1994-05-31 | Canon Kabushiki Kaisha | Process for forming deposited film by use of alkyl aluminum hydride and process for preparing semiconductor device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58222539A (en) * | 1982-06-21 | 1983-12-24 | Hitachi Ltd | Preparation of semiconductor integrated circuit |
JPS6177343A (en) * | 1984-09-21 | 1986-04-19 | Sony Corp | Manufacture of semiconductor device |
JPS61168256A (en) * | 1985-01-21 | 1986-07-29 | Sony Corp | Semiconductor device and manufacture thereof |
-
1986
- 1986-09-08 JP JP61209463A patent/JP2534848B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58222539A (en) * | 1982-06-21 | 1983-12-24 | Hitachi Ltd | Preparation of semiconductor integrated circuit |
JPS6177343A (en) * | 1984-09-21 | 1986-04-19 | Sony Corp | Manufacture of semiconductor device |
JPS61168256A (en) * | 1985-01-21 | 1986-07-29 | Sony Corp | Semiconductor device and manufacture thereof |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5180687A (en) * | 1989-09-26 | 1993-01-19 | Canon Kabushiki Kaisha | Deposited film formation method utilizing selective deposition by use of alkyl aluminum hydride |
US5316972A (en) * | 1989-09-26 | 1994-05-31 | Canon Kabushiki Kaisha | Process for forming deposited film by use of alkyl aluminum hydride and process for preparing semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JP2534848B2 (en) | 1996-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4180145B2 (en) | Semiconductor device formation method | |
JP2889430B2 (en) | Contact part forming method | |
JP2685028B2 (en) | Method for manufacturing semiconductor device | |
JPS6366932A (en) | Selective growth method of high melting-point metal | |
JPH08222568A (en) | Copper wiring manufacture, semiconductor device, and copper wiring manufacturing device | |
JP2627756B2 (en) | Method for manufacturing semiconductor device | |
JP2582596B2 (en) | Method for manufacturing semiconductor device | |
JPH03214734A (en) | Forming method of titanium nitride film | |
JPH0765179B2 (en) | Chemical vapor deposition method | |
JP3018408B2 (en) | Method for manufacturing semiconductor device | |
JP2538607B2 (en) | Vapor growth method | |
JP2733396B2 (en) | Method for manufacturing semiconductor device | |
JP2558133B2 (en) | Vapor growth method | |
JPH06275727A (en) | Depositing method for high melting point metal film | |
JPH10209280A (en) | Manufacture of semiconductor device | |
JP2694950B2 (en) | Method of forming high melting point metal film | |
JPH04120725A (en) | Method of forming interconnection | |
JPH10223556A (en) | Manufacturing method of semiconductor device | |
JPS63136567A (en) | Semiconductor device | |
JPS6298747A (en) | Manufacture of semiconductor device | |
JPH0685081A (en) | Semiconductor device and its manufacture | |
JPH05102082A (en) | Method for growing metallic thin film selectively | |
JPS6138264B2 (en) | ||
JP3006816B2 (en) | Method for manufacturing semiconductor device | |
JPH0414188B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |