JPS6138264B2 - - Google Patents

Info

Publication number
JPS6138264B2
JPS6138264B2 JP3638381A JP3638381A JPS6138264B2 JP S6138264 B2 JPS6138264 B2 JP S6138264B2 JP 3638381 A JP3638381 A JP 3638381A JP 3638381 A JP3638381 A JP 3638381A JP S6138264 B2 JPS6138264 B2 JP S6138264B2
Authority
JP
Japan
Prior art keywords
layer
melting point
point metal
polycrystalline silicon
high melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3638381A
Other languages
Japanese (ja)
Other versions
JPS57170814A (en
Inventor
Minoru Inoe
Yasuhisa Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3638381A priority Critical patent/JPS57170814A/en
Publication of JPS57170814A publication Critical patent/JPS57170814A/en
Publication of JPS6138264B2 publication Critical patent/JPS6138264B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は高融点金属、即ちモリブデン(Mo)、
タングステン(W)、タンタル(Ta)、チタニウ
ム(Ti)、ニオブ(Nb)等のシリサイド層形成方
法の各改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a high melting point metal, namely molybdenum (Mo),
This invention relates to improvements in methods for forming silicide layers of tungsten (W), tantalum (Ta), titanium (Ti), niobium (Nb), etc.

LSI、VLSI等高集積度を有する半導体集積回路
装置(IC)に於ては、微小寸法の素子が極めて
高密度に多数形成されるので、配線は極めて狭い
幅に形成せねばならず、又配線長も長くなる。従
つて従来の半導体ICのように、多結晶シリコン
層を配線として用いる構造では、多結晶シリコン
層が30〜60〔Ω/□〕程度の高いシート抵抗を有
するために配線抵抗が増大し、半導体ICの動作
速度が低下するという問題がある。
In semiconductor integrated circuit devices (ICs) with a high degree of integration such as LSI and VLSI, a large number of microscopic elements are formed at an extremely high density, so wiring must be formed with an extremely narrow width. The length also gets longer. Therefore, in a structure in which a polycrystalline silicon layer is used as wiring as in a conventional semiconductor IC, the wiring resistance increases because the polycrystalline silicon layer has a high sheet resistance of about 30 to 60 [Ω/□], and the semiconductor There is a problem that the operating speed of the IC decreases.

そこで最近は、多結晶シリコンに対して1/10〜
1/20程度の低いシート抵抗が得られるMo、W、
Ta、Ti、Nb等の高融点金属や、これら高融点金
属のシリサイドが配線材料として用いられはじ
め、中でも耐酸化性、耐薬品性に優れているモリ
ブデン・シリサイド(MoSi2)、タングステン・
シリサイド〔WSi2)、タンタル・シリサイド
(TaSi2)、チタニウム・シリサイド(TiSi2)ニオ
ブ・シリサイド(NbSi2)等の高融点金属シリサ
イドが多く用いられるようになつてきた。
Therefore, recently, polycrystalline silicon is 1/10~
Mo, W, which can obtain a sheet resistance as low as 1/20
High-melting point metals such as Ta, Ti, and Nb, as well as silicides of these high-melting point metals, have begun to be used as wiring materials. Among them, molybdenum silicide (MoSi 2 ), which has excellent oxidation resistance and chemical resistance, and tungsten
High melting point metal silicides such as silicide (WSi 2 ), tantalum silicide (TaSi 2 ), titanium silicide (TiSi 2 ), and niobium silicide (NbSi 2 ) have come into widespread use.

これらの高融点金属シリサイド層の形成方法と
しては、(1)高融点金属シリサイドからなるターゲ
ツトを用いてスパツタリングにより形成する方
法、(2)高融点金属ターゲツト及びシリコン・ター
ゲツトを用いる同時スパツタ、或るいは高融点金
属ソース及びシリコン・ソースを用いる同時蒸着
により形成する方法、(3)多結晶シリコン層上に高
融点金属層を被着して後、アロイングを行つて形
成する方法等があるが、(1)の方法に於ては高純度
のターゲツトが得られないためにシリサイド層の
純度が上らないという欠点があり、又(2)の方法に
於ては高融点金属及びシリコンのスパツタ或いは
蒸着量の制御が困難なために低抵抗のシリサイド
層が得にくいという欠点があつた。
Methods for forming these high melting point metal silicide layers include (1) sputtering using a target made of high melting point metal silicide, (2) simultaneous sputtering using a high melting point metal target and a silicon target, or There are two methods: (3) forming a high melting point metal layer on a polycrystalline silicon layer and then performing alloying. The method (1) has the disadvantage that the purity of the silicide layer cannot be improved because a high-purity target cannot be obtained, and the method (2) has the disadvantage of not increasing the purity of the silicide layer. The drawback was that it was difficult to obtain a low-resistance silicide layer because it was difficult to control the amount of evaporation.

そのため従来は一般に(3)に記した多結晶シリコ
ン層上に高融点金属層を被着して後、両層のアロ
イング層を行つてシリサイド層を形成する方法が
用いられるが、この方法に於ても、アロイングを
行う際の熱処理に於て、高融点金属が雰囲気に対
して極めて活性であるために、多結晶シリコンと
高融点金属の反応が均一に行われにくく、良質な
高融点金属シリサイド層を形成するにはまだ不充
分であるという問題があつた。
Conventionally, therefore, the method described in (3) is generally used in which a high melting point metal layer is deposited on the polycrystalline silicon layer and then an alloying layer is formed on both layers to form a silicide layer. However, during the heat treatment during alloying, the reaction between polycrystalline silicon and the high melting point metal is difficult to occur uniformly because the high melting point metal is extremely active against the atmosphere. There was a problem that it was still insufficient to form a layer.

本発明は上記問題点に鑑み、多結晶シリコンと
高融点金属をアロイングする高融点金属シリサイ
ド層の形成方法に於て、アロイングが均一に且つ
安定して行われ、被処理基体面の全域にわたつて
低抵抗を有する良質なシリサイド層が得られる方
法を提供する。
In view of the above problems, the present invention provides a method for forming a high melting point metal silicide layer by alloying polycrystalline silicon and a high melting point metal, in which alloying is performed uniformly and stably, and the alloying is performed over the entire surface of the substrate to be processed. The present invention provides a method for obtaining a high-quality silicide layer with low resistance.

即ち本発明は高融点金属シリサイド層の形成方
法に於て、被処理基板上にノンドープ或るいはり
んドープの第1の多結晶シリコン層を形成し、該
第1の多結晶シリコン層上に高融点金属層を形成
し、該高融点金属層上に第2の多結晶シリコン層
を形成し、熱処理を行つて前記高融点金属層と第
1及び第2の多結晶シリコン層を合金化する工程
を有することを特徴とする。
That is, the present invention provides a method for forming a high melting point metal silicide layer, in which a non-doped or phosphorus-doped first polycrystalline silicon layer is formed on a substrate to be processed, and a high melting point metal silicide layer is formed on the first polycrystalline silicon layer. forming a melting point metal layer, forming a second polycrystalline silicon layer on the high melting point metal layer, and performing heat treatment to alloy the high melting point metal layer with the first and second polycrystalline silicon layers; It is characterized by having the following.

以下本発明を一実施例について第1図乃至第5
図に示す工程断面図を用いて詳細に説明する。
The present invention will be described below with reference to FIGS. 1 to 5 regarding one embodiment.
The process will be explained in detail using the process cross-sectional diagrams shown in the figures.

本発明の方法により、例えばMIS ICに於ける
モリブテン・シリサイド(MoSi2)からなるゲー
ト線を形成するに際しては、第1図に示すように
例えば第1の導電型を有する半導体基板1面に
LOCOS法等を用いてフイールド酸化膜2を形成
し、イオン注入等の方法によりフイールド酸化膜
2の下部にチヤネル・カツト領域3を形成した被
処理半導体基板の、前記フイールド酸化膜2とチ
ヤネル・カツト領域3により分離された半導体基
板1面に、熱酸化等の方法により200〜500〔Å〕
程度のゲート酸化膜4を形成する。次いで第2図
に示すように該被処理基板上に、シリコン・ター
ゲツトを用い10-3〔Torr〕程度の圧力を有する
アルゴン(Ar)中で行われる通常の直流又は高
周波スパツタリング方法等を用いて、例えば3000
〔Å〕程度の厚さの第1の多結晶Si層5を被着
し、次いでモリブデン・ターゲツトを用い前記同
様のスパツタ・リング方法により前記第1の多結
晶Si層5上に例えば1000〜1500〔Å〕程度の厚さ
のモリブデン(Mo)層6を被着せしめ、次いで
再びシリコン・ターゲツトを用いるスパツタ処理
により、前記Mo層6上に例えば500〔Å〕程度の
薄い第2の多結晶Si層7を被着形成する。次いで
フオト・レジスト・パターンをマスクにし、四弗
化炭素(CF4)、二弗化二塩化炭素(CF2Cl2)、四
塩化炭素(CCl4)等をエツチング・ガスとして用
いる反応性スパツタ・エツチング法により、前記
第2の多結晶Si層7、Mo層6及び第1の多結晶
Si層5の選択エツチングを行つて、第3図に示す
ように第1の多結晶Si層5、Mo層6、第2の多
結晶Si層7が順次積層された構造の積層ゲート配
線8を形成し、次いで該被処理基板を窒素
(N2)或るいは真空中に於て900〜1000〔℃〕に所
望の時間加熱し、前記第1、第2の多結晶Si層
5,7とMo層6をアロイング(合金化)せしめ
て、第4図に示すようにMoSi2ゲート配線9を形
成する。なお該アロイング反応が行われる段階に
於て、高温で非常に活性なMo層6の表面は、第
2の多結晶Si層7に覆われているために、処理雰
囲気中に含まれる微量の酸素(O2)と該Mo層6
が反応することが防止され、従つてMo層6と第
1、第2の多結晶Si層5,7とのアロング反応が
基板面全域にわたつて均一に行われる。又酸化雰
囲気での熱処理が加わつた場合に、MoSi2層の酸
化分解を生ぜしめないためには、MoSi2組成を形
成するのに必要な量より多量にSiが存在すること
が好ましく、従つて本実施例に於ては前記第1の
多結晶Si層5は500〔Å〕程度厚めに形成してあ
り、そのため第5図のようにアロイング反応が終
了しMoSi2ゲート配線9が完成した時点で、該配
線の下端に500〔Å〕弱程度の薄い第1の多結晶
Si層11が残留する。
When forming a gate line made of molybdenum silicide (MoSi 2 ) in, for example, an MIS IC by the method of the present invention, as shown in FIG.
A field oxide film 2 and a channel cut are formed on a semiconductor substrate to be processed in which a field oxide film 2 is formed using a LOCOS method or the like, and a channel cut region 3 is formed under the field oxide film 2 by a method such as ion implantation. A layer of 200 to 500 Å is applied to one surface of the semiconductor substrate separated by region 3 by a method such as thermal oxidation.
A gate oxide film 4 of about 100 mL is formed. Next, as shown in FIG. 2, the substrate to be processed is sputtered using a conventional direct current or high frequency sputtering method using a silicon target in argon (Ar) having a pressure of about 10 -3 Torr. , for example 3000
A first polycrystalline Si layer 5 having a thickness of about [Å] is deposited, and then a molybdenum target of about 1,000 to 1,500 Å is deposited on the first polycrystalline Si layer 5 by the same sputtering method as described above using a molybdenum target. A molybdenum (Mo) layer 6 with a thickness of about [Å] is deposited, and then a second polycrystalline Si layer with a thickness of, for example, about 500 [Å] is deposited on the Mo layer 6 by sputtering again using a silicon target. Layer 7 is deposited. Next, using the photoresist pattern as a mask, a reactive sputtering process is performed using carbon tetrafluoride (CF 4 ), carbon difluoride dichloride (CF 2 Cl 2 ), carbon tetrachloride (CCl 4 ), etc. as an etching gas. The second polycrystalline Si layer 7, the Mo layer 6 and the first polycrystalline layer are etched by etching.
By selectively etching the Si layer 5, a laminated gate wiring 8 having a structure in which a first polycrystalline Si layer 5, a Mo layer 6, and a second polycrystalline Si layer 7 are sequentially laminated as shown in FIG. 3 is formed. Then, the substrate to be processed is heated to 900 to 1000 [°C] for a desired time in nitrogen (N 2 ) or vacuum to form the first and second polycrystalline Si layers 5 and 7. The Mo layer 6 is alloyed to form a MoSi 2 gate wiring 9 as shown in FIG. In addition, at the stage where the alloying reaction is carried out, the surface of the Mo layer 6, which is highly active at high temperatures, is covered with the second polycrystalline Si layer 7, so that a trace amount of oxygen contained in the processing atmosphere is absorbed. (O 2 ) and the Mo layer 6
Therefore, the along reaction between the Mo layer 6 and the first and second polycrystalline Si layers 5 and 7 is uniformly carried out over the entire substrate surface. Furthermore, in order to prevent oxidative decomposition of the MoSi 2 layer when heat treatment is applied in an oxidizing atmosphere, it is preferable that Si be present in an amount larger than that required to form the MoSi 2 composition. In this embodiment, the first polycrystalline Si layer 5 is formed to be about 500 Å thick, so that when the alloying reaction is completed and the MoSi 2 gate wiring 9 is completed as shown in FIG. Then, a thin first polycrystalline film with a thickness of just under 500 Å is placed at the bottom end of the wiring.
The Si layer 11 remains.

次いで第5図に示すように、通常のMSI ICの
製造法に従つてMoSi2ゲート配線をマスクとして
イオン注入等の方法により第2導電型を有するソ
ース・ドレイン領域10a,10bを形成し、次
いで図示しないが該基板上に絶縁膜、上層配線等
の形成がなされて、MIS ICが提供される。
Next, as shown in FIG. 5, source/drain regions 10a and 10b having the second conductivity type are formed by a method such as ion implantation using the MoSi 2 gate wiring as a mask according to the usual MSI IC manufacturing method. Although not shown, an insulating film, upper layer wiring, etc. are formed on the substrate to provide a MIS IC.

上記実施例に於ては、第1の多結晶Si層をノン
ドープのSi層により形成したが、該第1の多結晶
Si層をフオスフイン(PH3)を含んだAr中に於け
るスパツタリング法によつてりんドープのN+
多結晶Si層として形成せしめれば、アロイングが
より均一に行われ、且つMoSi2配線の下層に介在
する多結晶Si層に電導性が附与されるので、配線
の浮遊容量が減少し、半導体ICの性能を向上せ
しめるうえで更に有利である。
In the above embodiment, the first polycrystalline Si layer was formed of a non-doped Si layer;
If the Si layer is formed as a phosphorus-doped N + type polycrystalline Si layer by sputtering in Ar containing phosphine (PH 3 ), alloying will be more uniform, and the MoSi 2 wiring will be more uniform. Since electrical conductivity is imparted to the underlying polycrystalline Si layer, the stray capacitance of wiring is reduced, which is further advantageous in improving the performance of semiconductor ICs.

なお上記実施例のように、第1の多結晶Si層、
Mo層、第2の多結晶Si層を総てスパツタリング
法で形成する場合には、同一スパツタリング装置
を用いて連続形成が可能である。
Note that as in the above embodiment, the first polycrystalline Si layer,
When the Mo layer and the second polycrystalline Si layer are all formed by sputtering, continuous formation is possible using the same sputtering device.

以上の実施例においては、第1、第2の多結晶
Si層及び高融点金属即ちMo層をスパツタリング
法により形成したが、これらの層が蒸着法は勿論
のこと、化学気相成長法によつても形成し得るこ
とは公知の事実である。
In the above embodiment, the first and second polycrystals
Although the Si layer and the refractory metal, ie, Mo layer, were formed by sputtering, it is a well-known fact that these layers can be formed not only by vapor deposition but also by chemical vapor deposition.

化学気相成長法による多結晶Si層及びMo層の
形成条件の一例を示すと下記の通りである。
An example of conditions for forming a polycrystalline Si layer and a Mo layer by chemical vapor deposition is as follows.

〔りんドープのn+型多結晶Si層〕[Phosphorus-doped n + type polycrystalline Si layer]

反応ガス及び流量 モノシラン(SiH4) 40〔SCCM〕 フオスフイン(PH3) 5〜6〔SCCM〕 圧 力 0.2〜0.3〔Torr〕 成長温度 625〔℃〕 〔Mo層〕 反応ガス及び流量 6弗化タングステン(MoF6) 100〔SCCM〕 水 素 2〔SLM〕 圧 力 0.3〜0.5〔Torr〕 成長温度 300〜350〔℃〕 〔ノンドープの多結晶Si層〕 反応ガス及び流量 モノシラン(SiH4) 40〔SCCM〕 圧 力 0.2〜0.3〔Torr〕 成長温度 625〔℃〕 なお本発明の実施にあたつて、これら気相成長
層の厚さ及びその厚さ比率は、前記実施例と同様
でよく、またアロイ条件も、全く同様でよい。
Reactive gas and flow rate Monosilane (SiH 4 ) 40 [SCCM] Phosphine (PH 3 ) 5 to 6 [SCCM] Pressure 0.2 to 0.3 [Torr] Growth temperature 625 [℃] [Mo layer] Reaction gas and flow rate 6 Tungsten fluoride (MoF 6 ) 100 [SCCM] Hydrogen 2 [SLM] Pressure 0.3 to 0.5 [Torr] Growth temperature 300 to 350 [℃] [Non-doped polycrystalline Si layer] Reactant gas and flow rate Monosilane (SiH 4 ) 40 [SCCM] ] Pressure: 0.2 to 0.3 [Torr] Growth temperature: 625 [°C] In carrying out the present invention, the thicknesses and thickness ratios of these vapor-phase grown layers may be the same as in the above embodiments, and alloy The conditions may be exactly the same.

以上の実施例においては本発明の方法をMoSi2
層形成の例について述べたが、本発明の高融点金
属シリサイド層形成方法は、タングステンシリサ
イド(WSi2)タンタルシリサイド(TaSi2)、チタ
ニウムシリサイド(TiSi2)、ニオブシリサイド
(NbSi2)等前記MoSi2以外の高融点金属シリサイ
ド層の形状にも適用されることは勿論である。
In the above examples, the method of the present invention was applied to MoSi 2
Although an example of layer formation has been described, the high melting point metal silicide layer forming method of the present invention can be applied to the above-mentioned MoSi such as tungsten silicide (WSi 2 ), tantalum silicide (TaSi 2 ), titanium silicide (TiSi 2 ), niobium silicide (NbSi 2 ), etc. Of course, the present invention can also be applied to shapes of high melting point metal silicide layers other than 2 .

また上記実施例においては、本発明の方法を
MISICの高融点金属シリサイド配線の形成に適用
する場合について説明したが、本発明の方法は上
記ゲート配線に限らずMISIC、バイポーラICに
おいて絶縁膜上に配設される各種の高融点金属シ
リサイド配線の形成にも適用し得る。
In addition, in the above examples, the method of the present invention is
Although the case where it is applied to the formation of high melting point metal silicide wiring in MISIC has been described, the method of the present invention is applicable not only to the above-mentioned gate wiring but also to various high melting point metal silicide wiring arranged on an insulating film in MISIC and bipolar IC. It can also be applied to formation.

以上説明したように本発明によれば低抵抗を有
する高融点金属シリサイド配線を、作業性良くし
かも安定した状態で、被処理基板面全域にわたつ
て均一に形成することとができる。従つて本発明
はLSI、VLSI等の高集積度半導体ICの性能及び
製造歩留まりの向上に対して極めて有効である。
As described above, according to the present invention, a high melting point metal silicide wiring having low resistance can be formed uniformly over the entire surface of a substrate to be processed with good workability and in a stable state. Therefore, the present invention is extremely effective in improving the performance and manufacturing yield of highly integrated semiconductor ICs such as LSI and VLSI.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第5図は本発明の一実施例に於ける
工程断面図である。 図に於いて、1は半導体基板、2はフイールド
酸化膜、3はチヤネル・カツト領域、4はゲート
酸化膜、5は第1の多結晶シリコン層、6はモリ
ブデン層、7は薄い第2の多結晶シリコン層、8
は積層ゲート配線、9はモリブデン・シリサイ
ド・ゲート配線、11は薄い第1の多結晶シリコ
ン層を示す。
1 to 5 are process cross-sectional views in one embodiment of the present invention. In the figure, 1 is a semiconductor substrate, 2 is a field oxide film, 3 is a channel cut region, 4 is a gate oxide film, 5 is a first polycrystalline silicon layer, 6 is a molybdenum layer, and 7 is a thin second layer. polycrystalline silicon layer, 8
9 indicates a stacked gate wiring, 9 a molybdenum silicide gate wiring, and 11 a thin first polycrystalline silicon layer.

Claims (1)

【特許請求の範囲】 1 被処理基体上に第1の多結晶シリコン層を形
成し、該第1の多結晶シリコン層上に高融点金属
層を形成し、該高融点金属層上に第2の多結晶シ
リコン層を形成し、熱処理を行つて前記高融点金
属層と第1及び第2の多結晶シリコン層を合金化
する工程を有することを特徴とする高融点金属シ
リサイド層の形成方法。 2 上記第1の多結晶シリコン層がりんドープの
多結晶シリコン層からなることを特徴とする特許
請求の範囲第1項記載の高融点金属シリサイド層
の形成方法。
[Claims] 1. A first polycrystalline silicon layer is formed on a substrate to be processed, a high melting point metal layer is formed on the first polycrystalline silicon layer, and a second polycrystalline silicon layer is formed on the high melting point metal layer. A method for forming a high melting point metal silicide layer, comprising the steps of: forming a polycrystalline silicon layer, and performing heat treatment to alloy the high melting point metal layer with first and second polycrystalline silicon layers. 2. The method of forming a refractory metal silicide layer according to claim 1, wherein the first polycrystalline silicon layer is a phosphorus-doped polycrystalline silicon layer.
JP3638381A 1981-03-13 1981-03-13 Formation of metallic silicide layer with high melting point Granted JPS57170814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3638381A JPS57170814A (en) 1981-03-13 1981-03-13 Formation of metallic silicide layer with high melting point

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3638381A JPS57170814A (en) 1981-03-13 1981-03-13 Formation of metallic silicide layer with high melting point

Publications (2)

Publication Number Publication Date
JPS57170814A JPS57170814A (en) 1982-10-21
JPS6138264B2 true JPS6138264B2 (en) 1986-08-28

Family

ID=12468316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3638381A Granted JPS57170814A (en) 1981-03-13 1981-03-13 Formation of metallic silicide layer with high melting point

Country Status (1)

Country Link
JP (1) JPS57170814A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5993871A (en) * 1982-11-16 1984-05-30 Matsushita Electronics Corp Formation of metallic silicide film having high melting point
JPH02224225A (en) * 1988-11-28 1990-09-06 Oki Electric Ind Co Ltd Manufacture of semiconductor device
JP2706182B2 (en) * 1991-03-19 1998-01-28 三洋電機株式会社 Manufacturing method of silicide film

Also Published As

Publication number Publication date
JPS57170814A (en) 1982-10-21

Similar Documents

Publication Publication Date Title
JP3963494B2 (en) Semiconductor device and method for forming the same
EP0159935B1 (en) Method for inhibiting dopant out-diffusion
JP3704427B2 (en) Method for forming copper metal wiring of semiconductor device
EP0377137B1 (en) Method for selective deposition of refractory metals on silicon substrates
US5733816A (en) Method for depositing a tungsten layer on silicon
TWI255007B (en) Method of fabricating a semiconductor device having reduced contact resistance
JPS62101049A (en) Formation of silicide
JPS58176975A (en) Method of producing integrated mos field effect transistor circuit
JPS61203636A (en) Formation of heatproof metal silicide layer
KR100539278B1 (en) Method for forming cobalt silicide layer and manufacturing semiconductor device having the same
KR100755121B1 (en) Method for forming electrode structure and method for fabricating semiconductor device
US4985371A (en) Process for making integrated-circuit device metallization
KR100485386B1 (en) Composition for depositing a metal layer, and Method for forming a metal layer using the same
JP2503187B2 (en) Method for manufacturing semiconductor device having double silicide layer wiring
EP0068843B1 (en) Method of producing a conductor in a desired pattern on a semiconductor substrate
JPS6138264B2 (en)
WO2000022659A1 (en) Method of forming cobalt-disilicide contacts using a cobalt-carbon alloy thin film
JPH1167688A (en) Silicide material, its thin-film and manufacture of silicide thin-film
JPS639661B2 (en)
JP3238437B2 (en) Semiconductor device and method of manufacturing the same
JPS61135156A (en) Semiconductor device and manufacture thereof
JPH07297206A (en) Compound semiconductor device and its manufacture
JP3416205B2 (en) Semiconductor device and manufacturing method thereof
JP2875258B2 (en) Semiconductor device and manufacturing method thereof
KR0179826B1 (en) Method of forming metal interconnector in semiconductor device