JPS6298747A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6298747A
JPS6298747A JP23891485A JP23891485A JPS6298747A JP S6298747 A JPS6298747 A JP S6298747A JP 23891485 A JP23891485 A JP 23891485A JP 23891485 A JP23891485 A JP 23891485A JP S6298747 A JPS6298747 A JP S6298747A
Authority
JP
Japan
Prior art keywords
layer
contact hole
epitaxial growth
semiconductor
poly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23891485A
Other languages
Japanese (ja)
Inventor
Yuji Furumura
雄二 古村
Fumitake Mieno
文健 三重野
Masahiko Toki
雅彦 土岐
Tsutomu Nakazawa
中沢 努
Kikuo Ito
伊藤 喜久雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP23891485A priority Critical patent/JPS6298747A/en
Publication of JPS6298747A publication Critical patent/JPS6298747A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To obtain the formation of a stable contact hole having no step difference and a long-lived device wherein a solid-phase epitaxial growth is never generated by burying the contact hole by a selective and epitaxial growth method. CONSTITUTION:A process; wherein an SiO2 insulating layer 2 is applied on an Si semiconductor base 1, a contact hole 3 is opened in the insulating layer 2, the contact hole 3 is buried by a selective and epitaxial growth method to grow a semiconductor layer (Si epitaxial layer) 4 and a polycrystalline semiconductor (poly Si) layer 5 and an Al (Si) conductive layer 6 are applied on the semiconductor layer 4; is included. That is, the poly Si layer 5 is inserted between the Si epitaxially grown layer 4 buried and the Al layer 6 and a solid- phase epitaxial layer is prevented from growing between the grown layer 4 and the Al layer 6. Accordingly, the poly Si layer 5 works as a solid-phase epitaxial growth obstructing layer.

Description

【発明の詳細な説明】 〔(既要〕 半導体基板、あるいは半導体基板上に被着された半導体
層等の半導体下地の上に被着された絶縁層に形成された
コンタクト孔にエピタキシャル半導体層を埋め込み、そ
の上に導電層を被着して基板の平坦化をはかる方法にお
いて、エピタキシャル半導体層と導電層間に固相エピタ
キシャル層が成長してコンタクト抵抗を増加させるのを
防止するため、該層間に多結晶半導体層、あるいは不純
物導入層を挟む方法を提起する。
[Detailed Description of the Invention] [(Already required)] An epitaxial semiconductor layer is formed in a contact hole formed in a semiconductor substrate or an insulating layer deposited on a semiconductor base such as a semiconductor layer deposited on a semiconductor substrate. In the method of flattening the substrate by embedding and depositing a conductive layer thereon, in order to prevent a solid-phase epitaxial layer from growing between the epitaxial semiconductor layer and the conductive layer and increasing contact resistance, a layer is formed between the layers. A method of sandwiching a polycrystalline semiconductor layer or an impurity-introduced layer will be proposed.

〔産業上の利用分野〕[Industrial application field]

本発明はコンタクト孔内に半導体単結晶を埋込む基板平
坦化工程を含む半導体装置の製造方法に関する。
The present invention relates to a method of manufacturing a semiconductor device including a substrate planarization step of burying a semiconductor single crystal in a contact hole.

半導体装置の製造方法においては、半導体下地の上に被
着された絶縁層にコンタクト孔を開口して、コンタクト
孔を覆って導電層を被着して半導体下地と導電層間の電
気的接続を行う工程が必ず含まれる。
In a method for manufacturing a semiconductor device, a contact hole is opened in an insulating layer deposited on a semiconductor base, and a conductive layer is deposited to cover the contact hole to establish an electrical connection between the semiconductor base and the conductive layer. A process is always included.

デバイスが高集積化、微細化されてコンタクト孔の幅が
深さく絶縁層の厚さ)に対して小さくなると、この工程
においてコンタクト孔の段差により、導電層の段差被覆
が困難になり導電層に断線を生ずる等デバイスの信頼性
上の問題を起こし、また段差上に被着された導電層の凹
凸はつぎの成膜を困難にし、あるいはつぎのりソゲラフ
イエ程の斗青度を落とすことになる。
As devices become more highly integrated and miniaturized, and the width of the contact hole becomes smaller relative to the depth and thickness of the insulating layer, it becomes difficult to cover the step with the conductive layer due to the step of the contact hole during this process. This may cause device reliability problems such as wire breakage, and the unevenness of the conductive layer deposited on the step may make it difficult to form the next film or reduce the degree of doping of the next film.

そのため、コンタクト孔を導電物質で埋め込んで平坦化
した後導電層を被着する、いわゆる基板の平坦化工程が
行われている。
Therefore, a so-called substrate planarization process is performed in which the contact hole is filled with a conductive material and planarized, and then a conductive layer is deposited.

半導体下地に、例えば珪素(Si)を用いた場合は埋込
物質は化学気相成長(CVD)法による多結晶珪素(ポ
リSi) 、選択エピタキシャル成長法による単結晶S
i等がある。これらはいずれもドープして高導電度にす
る。
For example, when silicon (Si) is used as the semiconductor base, the filling material is polycrystalline silicon (poly-Si) produced by chemical vapor deposition (CVD), or single crystal S produced by selective epitaxial growth.
There are i etc. All of these are doped to make them highly conductive.

ポリSiの埋込はCVD法により簡単に行え、しかもコ
ンタクトを阻害する固相エピタキシャル層が、つぎにこ
の上に被着する導電層との界面に発生しない。しかし結
晶粒が大きくなりすぎると、つぎの成膜に支障をきたす
ことになるという欠点がある。
The poly-Si embedding can be easily performed by the CVD method, and a solid-phase epitaxial layer that inhibits contact is not generated at the interface with the conductive layer that is then deposited thereon. However, if the crystal grains become too large, there is a drawback that the subsequent film formation will be hindered.

準結晶Siの埋込は、絶縁層の二酸化珪素(SiOz)
層上には成長しないで、露出した下地のSi上にのみ単
結晶Siが選択的に成長する、いわゆる選択エピタキシ
ャル成長法により行い、この場合は窩ドープにより高導
電率が得られ、成長層表面も平坦、平滑で綺麗に埋め込
まれつぎの成膜を容易にするが、導電層との界面に固相
エピタキシャル層が生じコンタクトを阻害するという欠
点がある。
The quasi-crystalline Si is buried in silicon dioxide (SiOz) in the insulating layer.
This is done using the so-called selective epitaxial growth method in which single crystal Si is selectively grown only on the exposed underlying Si without growing on the layer. In this case, high conductivity is obtained by doping the holes, and the surface of the growing layer is Although it is flat, smooth, and cleanly buried and facilitates subsequent film formation, it has the disadvantage that a solid phase epitaxial layer is formed at the interface with the conductive layer, which impedes contact.

〔従来の技術〕[Conventional technology]

第3図は従来例による選択エピタキシャル成長によりコ
ンタクト孔の埋込を行ったコンタクト形成方法を説明す
る断面図である。
FIG. 3 is a cross-sectional view illustrating a conventional contact forming method in which a contact hole is filled by selective epitaxial growth.

図において、1は半導体基板でSi基板、IAはSi基
板内に形成されたn゛層、2は絶縁層でSiO□層、3
は5in2層2に開口されたコンタクト孔、4はSiエ
ピタキシャル成長層、6は導電層でSi含有アルミニウ
ム(A1)層、8は同相エピタキシャル層である。
In the figure, 1 is a semiconductor substrate, which is a Si substrate, IA is an n layer formed in the Si substrate, 2 is an insulating layer, which is a SiO□ layer, and 3 is an insulating layer.
4 is a contact hole opened in the 5in2 layer 2, 4 is a Si epitaxial growth layer, 6 is a conductive layer and is a Si-containing aluminum (A1) layer, and 8 is an in-phase epitaxial layer.

このような構造においては、前記のようにSiエピタキ
シャル成長層4の上に、コンタクト孔の周囲よりコンタ
クト孔を絞るようにp゛型の固相エピタキシャル層8が
成長して、コンタクト抵抗の増加をきたす。
In such a structure, as described above, the p-type solid phase epitaxial layer 8 grows on the Si epitaxial growth layer 4 so as to narrow the contact hole from the periphery of the contact hole, causing an increase in contact resistance. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

選択エピタキシャル成長によりコンタクト孔の埋込を行
ったコンタクト形成方法においては、固相エピタキシャ
ル層が成長してコンタクトを阻害する。
In a contact formation method in which a contact hole is filled by selective epitaxial growth, a solid phase epitaxial layer grows and obstructs the contact.

〔問題点を)1¥決するための手段〕 上記問題点の解決は、半導体下地(1)上に絶縁層(2
)を被着し、該絶縁層(2)にコンタクト孔(3)を開
口し、選択エピタキシャル成長法により該コンタクト孔
(3)内を埋め込んで半導体層(4)を成長し、該半導
体層(4)上に多結晶半導体層(5)と導電層(6)と
を被着する工程を含む半導体装置の製造方法、および半
4体下地(1)上に絶縁層(2)を被着し、該絶縁層(
2)にコンタクト孔(3)を開口し、選択エピタキシャ
ル成長法により該コンタクト孔(3)内を埋め込んで半
導体層(4)を成長し、該半導体層(4)表面近傍に不
純物を導入して不純物導入層(7)を形成し、該不純物
導入N(7)の上に導電層(6)を被着する工程を含む
半導体装置の製造方法により達成される。
[Means for resolving the problem)] The solution to the above problem is to add an insulating layer (2) on the semiconductor base (1).
), a contact hole (3) is opened in the insulating layer (2), and a semiconductor layer (4) is grown by filling the inside of the contact hole (3) by selective epitaxial growth. ) A method for manufacturing a semiconductor device comprising the steps of depositing a polycrystalline semiconductor layer (5) and a conductive layer (6) on the substrate, and depositing an insulating layer (2) on the semi-quad base (1), The insulating layer (
A contact hole (3) is opened in 2), a semiconductor layer (4) is grown by filling the inside of the contact hole (3) by selective epitaxial growth, and an impurity is introduced near the surface of the semiconductor layer (4). This is achieved by a method for manufacturing a semiconductor device including the steps of forming an introduced layer (7) and depositing a conductive layer (6) on the impurity introduced layer (7).

〔作用〕[Effect]

本発明は埋め込んだSiエピタキシャル成長層とへ1層
間にポリSi層を挿入、あるいはSiエビタギシャル成
長層表面に不純物4人層を形成して、S1工ピタキシヤ
ル成長層とA1層間に固相エピタキシャル層が成長する
のを阻止するものである。従ってポリSi層、あるいは
不純物導入層は同相エピタキシャル成長の阻止層として
はたらく。
In the present invention, a solid phase epitaxial layer is grown between the S1 epitaxial growth layer and the A1 layer by inserting a poly-Si layer between the buried Si epitaxial growth layer and the first layer, or by forming a four-layer impurity layer on the surface of the Si epitaxial growth layer. This is to prevent them from doing so. Therefore, the poly-Si layer or the impurity-introduced layer acts as a blocking layer for in-phase epitaxial growth.

この理由についてはまだ定説はないが、定性的には以下
のよう°に考えられる。
There is no established theory as to the reason for this, but qualitatively it can be considered as follows.

同相エピタキシャル成長のキノカケには核が必要で、ポ
リSi、あるいは不純物導入層にはこのような核が無数
に分布しているが、単結晶のSiエピタキシャル成長層
にはこのような核は、例えば汚染を受けた場所等その数
は極めて少なく、そこに集中して、あるポテンシアルを
越えて成長を始めるようである。
Nuclei are required for in-phase epitaxial growth, and countless such nuclei are distributed in the poly-Si or impurity-introduced layer, but in the single-crystal Si epitaxial growth layer, such nuclei are not present due to contamination, for example. The number of places where it has been received is extremely small, and it seems that it is concentrated in those places and begins to grow beyond a certain potential.

〔実施例〕〔Example〕

第1図は第1の発明による選択エピタキシャル成長によ
りコンタクト孔の埋込を行ったコンタクト形成方法を説
明する断面図である。
FIG. 1 is a sectional view illustrating a contact forming method in which a contact hole is filled by selective epitaxial growth according to the first invention.

図において、1は半導体下地でSi基板、IAはSi基
板内に形成されたn″層、2は絶縁層で厚さ1μmのS
iO□層、3は5iOJi2に開口されたコンタクト孔
、4は半導体層でSiエピタキシャル成長層、5は多結
晶半導体層で高濃度にドープされた厚さ2000人のポ
リSi層、6は導電層で厚さ1μmのSi含有41層で
ある。
In the figure, 1 is a semiconductor base and is a Si substrate, IA is an n'' layer formed in the Si substrate, and 2 is an insulating layer with a thickness of 1 μm.
iO□ layer, 3 is a contact hole opened in 5iOJi2, 4 is a semiconductor layer and is a Si epitaxial growth layer, 5 is a polycrystalline semiconductor layer and is a highly doped poly-Si layer with a thickness of 2000 nm, and 6 is a conductive layer. There are 41 Si-containing layers with a thickness of 1 μm.

Siエピタキシャル成長層4の成長条件は、反応ガスと
して三塩化シラン(SiHC1+)と水素(H2)を用
い、これを100Paに減圧して950°Cで熱分解し
て行う。
The growth conditions for the Si epitaxial growth layer 4 are such that silane trichloride (SiHC1+) and hydrogen (H2) are used as reaction gases, the pressure is reduced to 100 Pa, and thermal decomposition is performed at 950°C.

ポリSi層50CVD条件は、反応ガスとしてモノシラ
ン(Sil14)を用い、これを100Paに減圧して
620°Cで熱分解して行う。
The poly-Si layer 50 CVD conditions are performed by using monosilane (Sil14) as a reaction gas, reducing the pressure to 100 Pa, and thermally decomposing it at 620°C.

この際、ポリ5iJW5には目的に応じてW (P)、
硼素(B)、チタン(Ti)、タングステン(匈)、炭
素(C)等をドープする。
At this time, poly5iJW5 has W (P),
Dope with boron (B), titanium (Ti), tungsten, carbon (C), etc.

このような構造においては、固相エピタキシャル成長の
加速条件(400℃、240時間)をあたえても、Si
エピタキシャル成長層4とSi含有41層6間にはp゛
型の固相エピタキシャル層が成長しない。
In such a structure, even if accelerated conditions for solid-phase epitaxial growth (400°C, 240 hours) are applied, Si
A p' type solid phase epitaxial layer does not grow between the epitaxial growth layer 4 and the Si-containing 41 layer 6.

第2図は第2の発明による選択エピタキシャル成長によ
りコンタクト孔の埋込を行ったコンタクト形成方法を説
明する断面図である。
FIG. 2 is a cross-sectional view illustrating a contact forming method in which a contact hole is filled by selective epitaxial growth according to the second invention.

図において、1は半導体下地でSi基板、IAはSi基
板内に形成されたn″層、2は絶縁層で厚さ1μmの5
iOzlE!、3はSin、層2に開口されたコンタク
ト孔、4は半導体層でSiエピタキシャル成長層、7は
Siエピタキシャル成長層4の表面近傍にTiを高濃度
にドープした不純物導入層、6は導電層で厚さ1μmの
Si含有A1層である。
In the figure, 1 is a semiconductor base and is a Si substrate, IA is an n'' layer formed in the Si substrate, and 2 is an insulating layer with a thickness of 1 μm.
iOzlE! , 3 is a contact hole opened in the Si layer 2, 4 is a semiconductor layer and is a Si epitaxial growth layer, 7 is an impurity-introduced layer doped with Ti at a high concentration near the surface of the Si epitaxial growth layer 4, and 6 is a conductive layer with a thickness This is a Si-containing A1 layer with a thickness of 1 μm.

このような構造においても、Siエピタキシャル成長N
4とSi含有41層6間にp゛型の固相エピタキシャル
層が成長しない。
Even in such a structure, Si epitaxial growth N
A p-type solid-phase epitaxial layer does not grow between the Si-containing 41 layer 4 and the Si-containing 41 layer 6.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明による選択エピタキシ
ャル成長によりコンタクト孔の埋込を行ったコンタクト
形成方法においては、固相エピタキシャル層が成長しな
いので、コンタクト抵抗は増加しない。
As described in detail above, in the contact forming method according to the present invention in which the contact hole is filled by selective epitaxial growth, the solid phase epitaxial layer does not grow, so the contact resistance does not increase.

従って段差のない安定なコンタクトの形成と、同相エピ
タキシャル成長のない長寿命デバイスが得られる。
Therefore, stable contact formation without steps and a long-life device without in-phase epitaxial growth can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1の発明による選択エピタキシャル成長によ
りコンタクト孔の埋込を行ったコンタクト形成方法を説
明する断面図、 第2図は第2の発明による選択エピタキシャル成長によ
りコンタクI・孔の埋込を行ったコンタクト形成方法を
説明する断面図、 第3図は従来例による選択エピタキシャル成長によりコ
ンタクト孔の埋込を行ったコンタクト形成方法を説明す
る断面図である。 図において、 1は半導体下地でSi基板、 IAはSi基板内に形成されたn″層、2はt′!!縁
層でSiO□層、 3はSiO□層2に開口されたコンタクト孔、4は半導
体層でSiエピタキシャル成長層、5は多結晶半導体層
でポリSi層、 6は導電層でSi含有41層、 7は不純物導入層  ゛
FIG. 1 is a cross-sectional view illustrating a contact forming method in which a contact hole is filled by selective epitaxial growth according to the first invention, and FIG. FIG. 3 is a cross-sectional view illustrating a contact forming method in which a contact hole is filled by selective epitaxial growth according to a conventional example. In the figure, 1 is a semiconductor base which is a Si substrate, IA is an n'' layer formed in the Si substrate, 2 is a t'!! edge layer which is a SiO□ layer, 3 is a contact hole opened in the SiO□ layer 2, 4 is a semiconductor layer, which is a Si epitaxial growth layer, 5 is a polycrystalline semiconductor layer, which is a poly-Si layer, 6 is a conductive layer, which is a 41 layer containing Si, and 7 is an impurity-introduced layer.

Claims (2)

【特許請求の範囲】[Claims] (1)半導体下地(1)に絶縁層(2)を被着し、該絶
縁層(2)にコンタクト孔(3)を開口し、選択エピタ
キシャル成長法により該コンタクト孔(3)内を埋め込
んで半導体層(4)を成長し、該半導体層(4)上に多
結晶半導体層(5)と導電層(6)とを被着する工程を
含むことを特徴とする半導体装置の製造方法。
(1) An insulating layer (2) is deposited on a semiconductor base (1), a contact hole (3) is opened in the insulating layer (2), and the inside of the contact hole (3) is filled by a selective epitaxial growth method. A method for manufacturing a semiconductor device, comprising the steps of growing a layer (4) and depositing a polycrystalline semiconductor layer (5) and a conductive layer (6) on the semiconductor layer (4).
(2)半導体下地(1)上に絶縁層(2)を被着し、該
絶縁層(2)にコンタクト孔(3)を開口し、選択エピ
タキシャル成長法により該コンタクト孔(3)内を埋め
込んで半導体層(4)を成長し、該半導体層(4)表面
近傍に不純物を導入して不純物導入層(7)を形成し、
該不純物導入層(7)の上に導電層(6)を被着する工
程を含むことを特徴とする半導体装置の製造方法。
(2) An insulating layer (2) is deposited on the semiconductor base (1), a contact hole (3) is opened in the insulating layer (2), and the inside of the contact hole (3) is filled by selective epitaxial growth. growing a semiconductor layer (4) and introducing impurities near the surface of the semiconductor layer (4) to form an impurity-introduced layer (7);
A method for manufacturing a semiconductor device, comprising the step of depositing a conductive layer (6) on the impurity-introduced layer (7).
JP23891485A 1985-10-25 1985-10-25 Manufacture of semiconductor device Pending JPS6298747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23891485A JPS6298747A (en) 1985-10-25 1985-10-25 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23891485A JPS6298747A (en) 1985-10-25 1985-10-25 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6298747A true JPS6298747A (en) 1987-05-08

Family

ID=17037146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23891485A Pending JPS6298747A (en) 1985-10-25 1985-10-25 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6298747A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02268425A (en) * 1989-04-10 1990-11-02 Toshiba Corp Manufacture of semiconductor device
JPH05251385A (en) * 1991-12-17 1993-09-28 Internatl Business Mach Corp <Ibm> Local part mutual connection for improved semiconductor
KR100407683B1 (en) * 2000-06-27 2003-12-01 주식회사 하이닉스반도체 Method of forming a contact plug in a semiconductor device
JP2013247332A (en) * 2012-05-29 2013-12-09 Tokyo Electron Ltd Method for forming silicon film and silicon film forming device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS584924A (en) * 1981-07-01 1983-01-12 Hitachi Ltd Forming method for semiconductor device electrode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS584924A (en) * 1981-07-01 1983-01-12 Hitachi Ltd Forming method for semiconductor device electrode

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02268425A (en) * 1989-04-10 1990-11-02 Toshiba Corp Manufacture of semiconductor device
JPH05251385A (en) * 1991-12-17 1993-09-28 Internatl Business Mach Corp <Ibm> Local part mutual connection for improved semiconductor
KR100407683B1 (en) * 2000-06-27 2003-12-01 주식회사 하이닉스반도체 Method of forming a contact plug in a semiconductor device
JP2013247332A (en) * 2012-05-29 2013-12-09 Tokyo Electron Ltd Method for forming silicon film and silicon film forming device
US9318328B2 (en) 2012-05-29 2016-04-19 Tokyo Electron Limited Method and apparatus for forming silicon film

Similar Documents

Publication Publication Date Title
US4966860A (en) Process for producing a SiC semiconductor device
KR20010023407A (en) Method for forming monocrystalline silicon layer, method for manufacturing semiconductor device, and semiconductor device
JP2685028B2 (en) Method for manufacturing semiconductor device
JP6702268B2 (en) Epitaxial wafer manufacturing method
JP2911694B2 (en) Semiconductor substrate and method of manufacturing the same
JPS6298747A (en) Manufacture of semiconductor device
JPH09306865A (en) Manufacturing semiconductor device
JPS6214422A (en) Manufacture of semiconductor device
JPH0620944A (en) Semiconductor device and manufacture thereof
JP2828127B2 (en) Selective polycrystalline silicon film growth method
WO2023279547A1 (en) Memory and manufacturing method therefor
JPS61222225A (en) Manufacture of semiconductor device
JPH0113210B2 (en)
JPS6344725A (en) Manufacture of semiconductor device
JP2003528443A5 (en)
JPS61131434A (en) Manufacture of semiconductor device
JP2707641B2 (en) Semiconductor device
JP3112796B2 (en) Chemical vapor deposition method
JPS60105227A (en) Manufacture of semiconductor device
JPH0458691B2 (en)
JPH0435019A (en) Thin film transistor
JPS63208272A (en) Manufacture of semiconductor element
JPH08162408A (en) Method manufacturing semiconductor device
JP2002217379A (en) Method of manufacturing semiconductor device
JPH065541A (en) Manufacture of semiconductor device