JPS6362920B2 - - Google Patents

Info

Publication number
JPS6362920B2
JPS6362920B2 JP56106753A JP10675381A JPS6362920B2 JP S6362920 B2 JPS6362920 B2 JP S6362920B2 JP 56106753 A JP56106753 A JP 56106753A JP 10675381 A JP10675381 A JP 10675381A JP S6362920 B2 JPS6362920 B2 JP S6362920B2
Authority
JP
Japan
Prior art keywords
printed wiring
insulating film
circuit
hole
flexible insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56106753A
Other languages
Japanese (ja)
Other versions
JPS589399A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10675381A priority Critical patent/JPS589399A/en
Publication of JPS589399A publication Critical patent/JPS589399A/en
Publication of JPS6362920B2 publication Critical patent/JPS6362920B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Description

【発明の詳細な説明】 本発明は金属芯印刷配線板の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a metal core printed wiring board.

従来、印刷配線回路用基板としてセラミツク等
の絶縁性基板が使用されてきたが、最近放熱特性
を改良する目的で、金属芯の基板を用いる金属芯
印刷配線板が使用されるようになつてきた。第1
図はこのような金属芯印刷配線板の従来の製造方
法を示す断面図である。まず芯となるべき金属基
板10を準備し(第1図A)、その表面に絶縁被
膜11を形成し(同図B)、引続きこの絶縁被膜
上に印刷配線回路12を形成する(同図C)。
Conventionally, insulating substrates such as ceramics have been used as substrates for printed wiring circuits, but recently, metal-core printed wiring boards using metal-core substrates have come to be used for the purpose of improving heat dissipation characteristics. . 1st
The figure is a sectional view showing a conventional manufacturing method of such a metal core printed wiring board. First, a metal substrate 10 to be a core is prepared (FIG. 1A), an insulating coating 11 is formed on its surface (FIG. 1B), and a printed wiring circuit 12 is subsequently formed on this insulating coating (FIG. 1C). ).

従来の製造方法は上述のようなものであるた
め、両面回路を形成することが極めて困難で、こ
のためせつかく放熱特性が向上してもそれに見合
つた実装の高密度化が図れないという欠点があ
る。すなわち第1図示の従来例において両面回路
を形成しようとすれば、大きな厚みの金属基板1
0に高精度でスルーホールを形成し、かつこのス
ルーホール内に表面側と裏面側の印刷配線回路相
互間を接続するための配線を設ける必要がある
が、これにはスルーホール部における配線と金属
芯との絶縁が不可欠であるため工程が複雑になる
だけでなくスルーホール部で絶縁不良を起し易い
という問題がある。また上述の従来例では、回路
形成工程が剛性の大きな搬送しにくい金属板上で
行われるため、連続長尺体による製造工程を採用
しにくく製造コストを低減できないという欠点も
ある。さらに、上述の従来例では回路形成工程が
金属芯上で行われるため、金属芯の種類や絶縁構
造によつてはエツチング方法の選択範囲が制限さ
れるという欠点もある。
Because the conventional manufacturing method is as described above, it is extremely difficult to form double-sided circuits, and therefore, even if heat dissipation characteristics are improved, the packaging density cannot be increased accordingly. be. In other words, if a double-sided circuit is to be formed in the conventional example shown in FIG.
It is necessary to form a through hole with high precision in the hole 0 and provide wiring within this through hole to connect the printed wiring circuits on the front side and the back side. Insulation from the metal core is essential, which not only complicates the process but also tends to cause insulation failure at the through-hole portion. Further, in the above-mentioned conventional example, since the circuit forming process is performed on a rigid metal plate that is difficult to transport, it is difficult to employ a manufacturing process using a continuous elongated body, and the manufacturing cost cannot be reduced. Furthermore, in the conventional example described above, since the circuit forming process is performed on the metal core, there is also a drawback that the selection range of the etching method is limited depending on the type of the metal core and the insulation structure.

本発明は上述の従来欠点に鑑みてなされたもの
であり、その目的は金属芯印刷配線板、特に両面
回路用の配線板を安価に製造する方法を提供する
ことにある。
The present invention has been made in view of the above-mentioned conventional drawbacks, and its object is to provide a method for manufacturing metal-core printed wiring boards, particularly wiring boards for double-sided circuits, at low cost.

上述した本発明の目的は、まず可撓性絶縁フイ
ルムの両面に印刷配線回線を形成し、次にこれを
金属基板上に貼着する本発明の製造方法によつて
達成される。
The above-mentioned objects of the present invention are achieved by the manufacturing method of the present invention, in which printed wiring lines are first formed on both sides of a flexible insulating film, and then these are bonded onto a metal substrate.

以下本発明の詳細を実施例によつて説明する。 The details of the present invention will be explained below with reference to Examples.

第2図は本発明の製造方法の一実施例を説明す
るための断面図である。
FIG. 2 is a sectional view for explaining one embodiment of the manufacturing method of the present invention.

まず第2図Aに示ように可撓性絶縁フイルム2
0を準備する。この可撓性絶縁フイルムとして
は、ポリエチレン、ポリブタジエン、エポキシ含
浸ガラスクロス、ポリイミド等を使用できる。特
にポリイミドは耐熱性の点で好適である。これら
可撓性絶縁フイルムの大きさや厚みは極めて広範
囲にわたつて選択できる。例えば25μm程度の薄
手の市販品も容易に入手できるが、このような薄
手のフイルムは熱抵抗を小さくする上で特に好適
である。また必要に応じてこれらフイルム相互を
貼着して積層構造とすることもできる。これらフ
イルムの厚さは、その上に形成すべき印刷配線回
路の電気的特性、所要耐圧、厚み方向への熱抵抗
の許容値によつても異るが、典型的には5μm乃至
60μmの範囲を選択する。
First, as shown in FIG. 2A, a flexible insulating film 2 is
Prepare 0. As this flexible insulating film, polyethylene, polybutadiene, epoxy-impregnated glass cloth, polyimide, etc. can be used. Polyimide is particularly suitable in terms of heat resistance. The size and thickness of these flexible insulating films can be selected from a very wide range. For example, thin commercial products of about 25 μm are easily available, but such thin films are particularly suitable for reducing thermal resistance. Further, if necessary, these films can be adhered to each other to form a laminated structure. The thickness of these films varies depending on the electrical characteristics of the printed wiring circuit to be formed on it, the required voltage resistance, and the allowable value of thermal resistance in the thickness direction, but is typically 5 μm or more.
Select a range of 60 μm.

次に第2図Bに示すように、プレス等の手法に
より可撓性絶縁フイルム20の所定箇所にスルー
ホール21を形成する。
Next, as shown in FIG. 2B, through holes 21 are formed at predetermined locations in the flexible insulating film 20 by a method such as pressing.

引続き第2図Cに示すように、可撓性絶縁フイ
ルム20の両面に印刷配線回路22、スルーホー
ル回路23を形成する。可撓性絶縁フイルム上に
印刷配線回路及びスルーホール回路を形成する方
法としては、従来のフレキシブルプリント回路
(FPC)を形成する方法と同様な方法を採用する
ことができる。例えば、ポリイミド等の可撓性絶
縁フイルムに銅箔を貼着したのち回路印刷を行
い、エツチング法により印刷配線回路を形成する
エツチド・フオイル法を採用することができる。
あるいはまた比較的最近開発されたアデイテイブ
法やセミアデイテイブ法を採用することも勿論可
能である。これらエツチング法、アデイテイブ
法、セミアデイテイブ法のいずれにおいても無電
解メツキ、PVDなどの導電処理を併用すること
もできる。回路形成用の材料は導電性材料であり
さえすればよいが、なかでも銀、銅、金、アルミ
ニウム、パラジウム、ニツケル、錫、鉛又はこれ
らの合金もしくは導電塗料を単独であるいは組合
せて用いることが好適である。このようにして印
刷配線回路22、スルーホール回路23を形成し
たのちはんだ付け等により所定箇所24の接続を
行い、印刷配線回路全体の電気的機能を完成させ
る。上記A乃至Cの工程は可撓性絶縁フイルムを
連続長尺体としたまま流れ作業によつて行うこと
が生産能力を高めるうえで好適である。
Subsequently, as shown in FIG. 2C, printed wiring circuits 22 and through-hole circuits 23 are formed on both sides of the flexible insulating film 20. As a method for forming a printed wiring circuit and a through-hole circuit on a flexible insulating film, a method similar to the method for forming a conventional flexible printed circuit (FPC) can be adopted. For example, an etched foil method can be used in which a copper foil is attached to a flexible insulating film such as polyimide, the circuit is printed, and a printed wiring circuit is formed by an etching method.
Alternatively, it is of course possible to employ an additive method or a semi-additive method that has been developed relatively recently. In any of these etching methods, additive methods, and semi-additive methods, conductive treatments such as electroless plating and PVD can also be used together. The material for forming the circuit only needs to be a conductive material, but among these, silver, copper, gold, aluminum, palladium, nickel, tin, lead, an alloy thereof, or a conductive paint can be used alone or in combination. suitable. After forming the printed wiring circuit 22 and the through-hole circuit 23 in this manner, connections are made at predetermined locations 24 by soldering or the like to complete the electrical function of the entire printed wiring circuit. In order to increase production capacity, it is preferable to carry out the above steps A to C by assembly line operations while the flexible insulating film is kept as a continuous long body.

最後に、第2図Dに示すように回路が形成され
た可撓性絶縁フイルム20を絶縁性の接着剤40
により金属基板30上に貼着する。この時接着剤
40はスルーホール穴をふさぐ、スルーホールメ
ツキは印刷回路の中で機械的に一番弱いため、フ
レキシブル印刷配線板と金属板との熱膨張の差が
あるため、ヒートサイクル、熱衝撃等により破壊
され易い。このため一体となつて動くよう貼合せ
時にスルーホール穴へ樹脂を挿入するのが好まし
い。金属基板30の素材としては銅、アルミニウ
ム、鉄又はこれらを主成分とする合金が安価で入
手し易く、また加工性、放熱性の面で好適であ
る。なお可撓性絶縁フイルム20を貼着する前に
金属基板30の表面の全部又は一部にスクリーン
印刷、ロールコーテイング等の手法により予め絶
縁被膜を形成しておけば、回路と金属基板間の絶
縁性を一層高めることができる。あるいは又、金
属基板上に上述のような絶縁被膜を形成する代り
に、これと対向する側の印刷配線回路上の全部又
は一部にスクリーン印刷、ロールコーテイング等
の手法により絶縁被膜を形成することもできる。
金属基板30の素材としてアルミニウム又はその
合金を使用する場合には、上記絶縁被膜の全部又
は一部を陽極酸化膜によつて構成することができ
る。絶縁性接着剤40としてはエポキシ系の樹脂
など適宜な市販品を使用できる。
Finally, as shown in FIG.
It is attached onto the metal substrate 30 by using the following steps. At this time, the adhesive 40 closes the through-hole holes.Through-hole plating is mechanically the weakest in printed circuits, so there is a difference in thermal expansion between the flexible printed wiring board and the metal plate, so heat cycles and heat Easily destroyed by impact etc. For this reason, it is preferable to insert resin into the through-hole at the time of lamination so that the parts move together as one. As materials for the metal substrate 30, copper, aluminum, iron, or alloys containing these as main components are inexpensive and easily available, and are suitable in terms of workability and heat dissipation. Note that if an insulating film is previously formed on all or part of the surface of the metal substrate 30 by a method such as screen printing or roll coating before attaching the flexible insulating film 20, the insulation between the circuit and the metal substrate can be improved. You can further enhance your sexuality. Alternatively, instead of forming an insulating film as described above on the metal substrate, an insulating film may be formed on all or part of the printed wiring circuit on the opposite side by a method such as screen printing or roll coating. You can also do it.
When aluminum or an alloy thereof is used as the material for the metal substrate 30, all or part of the insulating film may be formed of an anodic oxide film. As the insulating adhesive 40, appropriate commercial products such as epoxy resin can be used.

以上両面回路を形成する実施例について説明し
たが、本発明によつて片面回路の配線板も製造で
きることは明らかである。
Although the embodiment in which a double-sided circuit is formed has been described above, it is clear that a wiring board with a single-sided circuit can also be manufactured by the present invention.

以上詳細に説明したように、本発明は可撓性絶
縁フイルム上に印刷配線回路を形成したのち、こ
の可撓性絶縁フイルムを金属基板上に貼着する構
成であるから、連続長尺体による製造工程を採用
し易く生産能力を高めることができる。また金属
基板上に貼着する前に印刷配線回路を完成する構
成であるから、金属基板の種類や絶縁構造に拘わ
りなくエツチング方法を広範囲にわたつて選択で
きる。さらに本発明の方法は両面回路の印刷配線
板を容易に製造できる利点がある。
As explained in detail above, the present invention has a structure in which a printed wiring circuit is formed on a flexible insulating film and then this flexible insulating film is attached to a metal substrate. Manufacturing processes can be easily adopted and production capacity can be increased. Furthermore, since the printed wiring circuit is completed before being attached to the metal substrate, a wide range of etching methods can be selected regardless of the type of metal substrate or the insulation structure. Furthermore, the method of the present invention has the advantage that printed wiring boards with double-sided circuits can be easily produced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の製造方法を説明するための断面
図、第2図は本発明の一実施例の工程説明用の断
面図である。 20…可撓性絶縁フイルム、21…スルーホー
ル、22…印刷配線回路、23…スルーホール回
路、30…金属基板、40…絶縁性続着剤。
FIG. 1 is a sectional view for explaining a conventional manufacturing method, and FIG. 2 is a sectional view for explaining a process of an embodiment of the present invention. 20...Flexible insulating film, 21...Through hole, 22...Printed wiring circuit, 23...Through hole circuit, 30...Metal substrate, 40...Insulating adhesive.

Claims (1)

【特許請求の範囲】[Claims] 1 可撓性絶縁フイルムの両面にスルーホールメ
ツキによつて導通された印刷配線回路を形成した
のち、該可撓性絶縁フイルムを金属基板上に貼着
してスルーホール穴を密封したことを特徴とする
金属芯印刷配線板の製造方法。
1. A printed wiring circuit is formed on both sides of a flexible insulating film by through-hole plating, and then the flexible insulating film is adhered to a metal substrate to seal the through-hole hole. A method for manufacturing a metal core printed wiring board.
JP10675381A 1981-07-08 1981-07-08 Method of producing metal core printed circuit board Granted JPS589399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10675381A JPS589399A (en) 1981-07-08 1981-07-08 Method of producing metal core printed circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10675381A JPS589399A (en) 1981-07-08 1981-07-08 Method of producing metal core printed circuit board

Publications (2)

Publication Number Publication Date
JPS589399A JPS589399A (en) 1983-01-19
JPS6362920B2 true JPS6362920B2 (en) 1988-12-05

Family

ID=14441665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10675381A Granted JPS589399A (en) 1981-07-08 1981-07-08 Method of producing metal core printed circuit board

Country Status (1)

Country Link
JP (1) JPS589399A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4845313A (en) * 1985-07-22 1989-07-04 Tokyo Communication Equipment Co., Ltd. Metallic core wiring substrate
JPS6222497A (en) * 1985-07-22 1987-01-30 東洋通信機株式会社 Metal core wiring board
JPS63229897A (en) * 1987-03-19 1988-09-26 古河電気工業株式会社 Manufacture of rigid type multilayer printed circuit board
US6175084B1 (en) 1995-04-12 2001-01-16 Denki Kagaku Kogyo Kabushiki Kaisha Metal-base multilayer circuit substrate having a heat conductive adhesive layer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5136569A (en) * 1974-09-21 1976-03-27 Mitsubishi Electric Corp Konseishusekikairo no seizohoho
JPS557356B2 (en) * 1973-12-17 1980-02-25

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910770Y2 (en) * 1978-06-28 1984-04-04 松下電器産業株式会社 printed wiring board

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS557356B2 (en) * 1973-12-17 1980-02-25
JPS5136569A (en) * 1974-09-21 1976-03-27 Mitsubishi Electric Corp Konseishusekikairo no seizohoho

Also Published As

Publication number Publication date
JPS589399A (en) 1983-01-19

Similar Documents

Publication Publication Date Title
US3953924A (en) Process for making a multilayer interconnect system
KR940006311A (en) Joining method of copper or copper alloy and manufacturing method of conductive paste and multilayer wiring board using same
JPS6362920B2 (en)
JPH04336486A (en) Printed-circuit board
JPS60216573A (en) Manufacture of flexible printed circuit board
JP2811995B2 (en) Method of manufacturing through-hole printed wiring board
JPS63137498A (en) Manufacture of through-hole printed board
JPS61226994A (en) Flexible metal base circuit board
JPH0653658A (en) Multilayer printed wiring board
JPS6265395A (en) Printed circuit board
JPH0415993A (en) Manufacture of multilayer printed wiring board
JP2001284794A (en) Method for manufacturing flexible printed wiring board
JPH05259600A (en) Wiring board and manufacture thereof
JPS60187093A (en) Metal printed board and method of producing same
JPH07226584A (en) Manufacture of multilayer wiring board wherein copper foil with insulation bonding material is used
JPS6317589A (en) Double-layer printed circuit board
JPS645478B2 (en)
JPS61123197A (en) Manufacture of printed wiring board
JPH03255691A (en) Printed wiring board
JPH0451079B2 (en)
JPS62190796A (en) Double-layer printed circuit board
JPH0144037B2 (en)
JPS6041290A (en) Method of producing multilayer wiring board
JPH04322490A (en) Multilayer metal-based substrate and manufacture thereof
JPS59232492A (en) Method of producing multilayer printed circuit board