JPS6362269A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6362269A
JPS6362269A JP20710886A JP20710886A JPS6362269A JP S6362269 A JPS6362269 A JP S6362269A JP 20710886 A JP20710886 A JP 20710886A JP 20710886 A JP20710886 A JP 20710886A JP S6362269 A JPS6362269 A JP S6362269A
Authority
JP
Japan
Prior art keywords
region
polycrystalline silicon
conductivity type
emitter
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20710886A
Other languages
Japanese (ja)
Inventor
Akio Otsuka
章夫 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP20710886A priority Critical patent/JPS6362269A/en
Publication of JPS6362269A publication Critical patent/JPS6362269A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To prevent the mounting area of a semiconductor device from increasing thereby to reduce the number of components to be mounted by forming a P-N junction diode in a polycrystalline silicon, and connecting an emitter or collector region to a polycrystalline silicon diode by electrode wirings. CONSTITUTION:A collector region 2 of a first conductivity type semiconductor layer is formed on a first conductivity type (N-type) semiconductor substrate 1, a second conductivity type (P-type) base region 3 is diffused in the region 2, and a first conductivity type emitter region 4 is formed in the region 3. A first conductivity type polycrystalline silicon 6 formed through an insulating film 5 on the region 4 is formed in contact with the second conductivity type polycrystalline silicon 7, the region 4 and the silicon 7 of reverse conductivity type to the region 4 are connected by a leading electrode layer 8, an emitter electrode 9 is connected from the silicon 6, and a base electrode 10 is led from the region 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置特にディスクリート型バイポーラ
トランジスタに外部能動素子を内蔵しトランジスタの高
複合化を計る構造に係るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a structure in which an external active element is built into a semiconductor device, particularly a discrete bipolar transistor, thereby increasing the complexity of the transistor.

〔従来の技術〕[Conventional technology]

一般ニ、テジタルチェーニングシステム(1)T8)の
マトリックス回路にトランジスタを用いる場合など、ト
ランジスタのスイッチング誤動作を防ぐために第2図t
a) 、 (b)の様にトランジスタのコレクタ又はエ
ミッタにシリーズにダイオードを接続している。これは
、第2図1c)に示すコレクタ・エミッタ間電圧−コレ
クタ電流特性図の領域Bに示すように逆方向にコレクタ
あるいはエミッタ電流が流れることを防ぐ為であり(逆
hFKの防止)、従来はプリント基板上などでトランジ
スタに外付けで接続されていた。
In general, when using transistors in the matrix circuit of a digital chaining system (1) T8), in order to prevent transistor switching malfunctions,
As shown in a) and (b), a diode is connected in series to the collector or emitter of the transistor. This is to prevent the collector or emitter current from flowing in the opposite direction (prevention of reverse hFK), as shown in region B of the collector-emitter voltage-collector current characteristic diagram shown in Figure 2 (1c). was connected externally to the transistor on a printed circuit board.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した様にプリント基板上で外付けとしてダイオード
を接続する場合、プリント板の回路構成が複雑となるう
えさらに装置の小型化を考慮した場合部品点数の削減の
さまたげとなる。
As described above, when a diode is connected externally on a printed circuit board, the circuit configuration of the printed circuit board becomes complicated, and furthermore, when miniaturization of the device is taken into consideration, it becomes difficult to reduce the number of parts.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、トランジスタ素子を形成している半導
体基体上に絶縁膜を介して多結晶シリコン膜が形成され
ており、この多結晶シリコン内にP−N接合ダイオード
を形成し、電極配線によりエミッタ領域又はコレクタ領
域と多結晶シリコンダイオードとを接続することでトラ
ンジスタのチップ内にエミッタ又はコレクタに直列にダ
イオードを形成した半導体装置を得る。
According to the present invention, a polycrystalline silicon film is formed on a semiconductor substrate forming a transistor element via an insulating film, a P-N junction diode is formed in this polycrystalline silicon, and an electrode wiring is formed. By connecting the emitter region or collector region and the polycrystalline silicon diode, a semiconductor device in which a diode is formed in series with the emitter or collector within the transistor chip is obtained.

このように、従来はダイオードをトランジスタに外付け
していたのに対し本発明によれば、トランジスタのチッ
プ内にダイオードを内蔵しているので、実装面積を増大
させることがなく、又、実装部品点数を減らすことがで
きる。
In this way, whereas in the past the diode was attached externally to the transistor, according to the present invention, the diode is built into the transistor chip, so there is no increase in the mounting area, and points can be reduced.

〔実施例〕〔Example〕

−次に本発明について図面を用いてより詳細に説明する
- Next, the present invention will be explained in more detail using the drawings.

第1図は本発明の一実施例によるバイポーラトランジス
タの断面図である。第1導電型(N型)の半導体基体1
上に第1導電型(N型)の半導体層であるコレクタ領域
2を有し、このコレクタ領域2内に第2導電型(P型)
のベース領域3が拡散形成され、さらKこのベース領域
3内に第1導電型(N型)のエミッタ領域4が形成され
ている。
FIG. 1 is a cross-sectional view of a bipolar transistor according to an embodiment of the present invention. First conductivity type (N type) semiconductor substrate 1
There is a collector region 2 which is a first conductivity type (N type) semiconductor layer on top, and a second conductivity type (P type) semiconductor layer is provided in the collector region 2.
A base region 3 is formed by diffusion, and an emitter region 4 of a first conductivity type (N type) is formed within this base region 3.

エミッタ領域4上には絶縁膜5を介して形成された第1
導電型(N型)の多結晶シリコン6と第2導電型(P型
)の多結晶シリコン7とが接して形成され、エミッタ領
域4とこのエミッタ領域4とは反対導電型である第2導
電型(P型)の多結晶シリコン7とが引き出し電極層8
で接続され、第14’t1m(N型)の多結晶シリコン
6からエミッタ電極9が取り出され、ベース領域3から
ベース電極10が取シ出されている。
A first layer is formed on the emitter region 4 with an insulating film 5 interposed therebetween.
Polycrystalline silicon 6 of a conductivity type (N type) and polycrystalline silicon 7 of a second conductivity type (P type) are formed in contact with each other, and an emitter region 4 and a second conductivity type opposite to the emitter region 4 are formed. type (P type) polycrystalline silicon 7 and an extraction electrode layer 8
The emitter electrode 9 is taken out from the 14th t1m (N type) polycrystalline silicon 6, and the base electrode 10 is taken out from the base region 3.

第3図ta) 、 (b) 、 (C)に、本実施例に
よるトランジスタのエミッタ部およびダイオード部の製
造工程の詳しい断面図を示す。同図1a)はN型のシリ
コンエピタキシャル層であるコレクタ領域2にベース領
域3とエミッタ領域4を通常の不純物拡散によシ形成し
た後、絶縁膜5を介してノンドープの多結晶シリコン膜
を形成し、この多結晶シリコン膜にボロンをイオン注入
してP型の多結晶シリコン膜7とし、その後気相成長5
in2膜13で多結晶シリコン7を部分的に被覆し、5
i02[13′ltマスクとしてリンを拡散してN型の
多結晶シリコン6を作シ、これらP型とN型の多結晶シ
リコン6と7でP−N接合ダイオードを形成したもので
ある。
FIGS. 3(a), 3(b) and 3(c) show detailed cross-sectional views of the manufacturing process of the emitter part and diode part of the transistor according to this embodiment. In FIG. 1a), a base region 3 and an emitter region 4 are formed in a collector region 2, which is an N-type silicon epitaxial layer, by normal impurity diffusion, and then a non-doped polycrystalline silicon film is formed via an insulating film 5. Then, boron ions are implanted into this polycrystalline silicon film to form a P-type polycrystalline silicon film 7, and then vapor phase growth 5 is performed.
Polycrystalline silicon 7 is partially covered with in2 film 13, and 5
i02[13'lt As a mask, phosphorus is diffused to form N-type polycrystalline silicon 6, and these P-type and N-type polycrystalline silicones 6 and 7 form a PN junction diode.

次に同図(b)に示す様に、多結晶シリコン6と7のP
−N接合部の近辺を残し他の部分をエツチング除去した
後、全面を気相成長”joz膜14で被覆し、次にP型
多結晶シリコン6上とN型多結晶シリコン7上の5i0
2膜14にコンタクト部を設けたものである。最後に同
図(C1に示す様KAlの引き出し′ 電極8とエミッ
タ電極9とを形成する。
Next, as shown in the same figure (b), P of polycrystalline silicon 6 and 7 is
After etching away the other parts, leaving only the vicinity of the -N junction, the entire surface is covered with a vapor-phase grown "JOZ film 14," and then 5i0 is deposited on the P-type polycrystalline silicon 6 and the N-type polycrystalline silicon 7.
A contact portion is provided on two films 14. Finally, as shown in the same figure (C1), a KAl extraction electrode 8 and an emitter electrode 9 are formed.

なお、多結晶シリコン6.7の膜厚は5.00OA。Note that the film thickness of polycrystalline silicon 6.7 is 5.00 OA.

ボロンのイオン注入ドーズ量は50KeVで1.0X1
014cm ” 、 リンの不純物拡散は900℃の温
度で10分間行うことによシ耐圧5V以上の多結晶シリ
コンのP−Nダイオードを得た。
Boron ion implantation dose is 1.0X1 at 50KeV
By diffusing phosphorus impurities at a temperature of 900° C. for 10 minutes, a polycrystalline silicon PN diode with a breakdown voltage of 5 V or more was obtained.

第4図(a)は本発明の他の実施例の断面図であり、そ
の等価回路図を同図1blに示した。第1図の一実施例
との違いはベースの直列抵抗15を多結晶シリコンで形
成し追加したところにある。ベース電圧駆動の場合はト
ランジスタのベース電極に直列に抵抗15を付加する必
要がある。この直列抵抗15をダイオード形成時にコレ
クタ領域2上に同時に形成した多結晶シリコンを用いて
同時にチップ内に構成したものである。なお、コレクタ
領域2の表面の高は度領域17はコレクタ領域2と同導
電型のもので表面反転によるリーク電流を防止するため
のものである。
FIG. 4(a) is a sectional view of another embodiment of the present invention, and its equivalent circuit diagram is shown in FIG. 1bl. The difference from the embodiment shown in FIG. 1 is that the base series resistor 15 is formed of polycrystalline silicon and is added. In the case of base voltage drive, it is necessary to add a resistor 15 in series with the base electrode of the transistor. This series resistor 15 is simultaneously constructed in the chip using polycrystalline silicon, which is formed on the collector region 2 at the same time as the diode is formed. Note that the high-height region 17 on the surface of the collector region 2 is of the same conductivity type as the collector region 2, and is for preventing leakage current due to surface inversion.

〔発明の効果〕〔Effect of the invention〕

以上、説明したように本発明は従来トランジスタの外部
に接続していた逆hrz防止用のダイオードをトランジ
スタのチップ内に一体として形成したため、ダイオード
特性が安定しさらに使用する回路構成の上で組立工数及
び部品点数及び設計工数の削減を計る事ができるもので
ある。さらに本発明のトランジスタではエミッタ領域上
にダイオードとしての多結晶シリコンを配置しているの
で、このダイオードを付加したことによシチップ面積の
増大を防ぐことができること、さらにエミッタ内周にダ
イオード面積を大きくとれる為に、ダイオードを構成し
ている多結晶シリコンの抵抗酸部を極力小さくおさえる
ことができ、ダイオードを付加することによるトランジ
スタの特性悪化を防ぐことができさらに熱的に安定した
ダイオードを供給できる。
As explained above, in the present invention, the diode for preventing reverse hrz, which was conventionally connected to the outside of the transistor, is integrally formed within the transistor chip, so the diode characteristics are stabilized, and the number of assembly steps is reduced based on the circuit configuration used. Moreover, it is possible to reduce the number of parts and design man-hours. Furthermore, in the transistor of the present invention, polycrystalline silicon is placed as a diode on the emitter region, so adding this diode can prevent an increase in the chip area. Therefore, the resistive acid part of the polycrystalline silicon that makes up the diode can be kept as small as possible, preventing deterioration of transistor characteristics due to the addition of a diode, and providing a thermally stable diode. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例によるトランジスタ断面図、
第2図(a) 、 (b)はダイオードを付加したトラ
ンジスタの各等価回路図、第2図(C)はトランジスタ
のコレクタ・エミッタ電圧とコレクタ電流との関係を示
す特性図、第3図18) f ib) 、 Ic)は本
発明の一実施例によるトランジスタの主要部の製造工程
を示す断面図、第4図ta)は本発明の他の実施例によ
るトランジスタの断面図、同図(blはその等価回路図
である。 1;半導体基体、2:コレクタ領域、3;ベース領域、
4:エミッタ領域、5;絶縁膜、6;N型多結晶シリコ
ン、7;P型多結晶シリコン、8;引き出し電極、9;
エミッタ電極、10;ベース電極、11;トランジスタ
、12;ダイオード、13 ; S i 02.14;
81σh 15:ベース直列抵抗、16;引き出し電極
、17;高濃度領域。 代理人 弁理士  内 原   晋  ・。 f13   匹d 6λジ 男3 Q (b) 的3グ(e 躬42(呻
FIG. 1 is a cross-sectional view of a transistor according to an embodiment of the present invention;
Figures 2 (a) and (b) are equivalent circuit diagrams of transistors with diodes added, Figure 2 (C) is a characteristic diagram showing the relationship between the collector-emitter voltage and collector current of the transistor, and Figure 3. ) f ib), Ic) are cross-sectional views showing the manufacturing process of the main parts of a transistor according to one embodiment of the present invention, FIG. 4 ta) is a cross-sectional view of a transistor according to another embodiment of the present invention, and FIG. is an equivalent circuit diagram thereof. 1: semiconductor substrate, 2: collector region, 3: base region,
4: emitter region, 5; insulating film, 6; N-type polycrystalline silicon, 7; P-type polycrystalline silicon, 8; extraction electrode, 9;
Emitter electrode, 10; Base electrode, 11; Transistor, 12; Diode, 13; S i 02.14;
81σh 15: Base series resistance, 16: Extracting electrode, 17: High concentration region. Agent: Susumu Uchihara, patent attorney. f13 person d 6λji man 3 Q (b) target 3g (e 萬42 (moan)

Claims (1)

【特許請求の範囲】[Claims] エミッタ、ベース、コレクタ各領域が形成されている半
導体基体上に絶縁膜を介して多結晶シリコンが形成され
、該多結晶シリコン内部にP−N接合ダイオードを設け
ることによりトランジスタのコレクタ又はエミッタに直
列にダイオードを接続していることを特徴とする半導体
装置。
Polycrystalline silicon is formed on the semiconductor substrate in which the emitter, base, and collector regions are formed via an insulating film, and a P-N junction diode is provided inside the polycrystalline silicon to connect it in series to the collector or emitter of the transistor. A semiconductor device characterized in that a diode is connected to the diodes.
JP20710886A 1986-09-02 1986-09-02 Semiconductor device Pending JPS6362269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20710886A JPS6362269A (en) 1986-09-02 1986-09-02 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20710886A JPS6362269A (en) 1986-09-02 1986-09-02 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6362269A true JPS6362269A (en) 1988-03-18

Family

ID=16534331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20710886A Pending JPS6362269A (en) 1986-09-02 1986-09-02 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6362269A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996764A (en) * 1982-11-01 1984-06-04 モトロ−ラ・インコ−ポレ−テツド Polysilicon diode mounting memory cell
JPS61134079A (en) * 1984-11-30 1986-06-21 アドバンスト・マイクロ・デイバイシズ・インコーポレーテツド Improved lateral polysilicon diode and making thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996764A (en) * 1982-11-01 1984-06-04 モトロ−ラ・インコ−ポレ−テツド Polysilicon diode mounting memory cell
JPS61134079A (en) * 1984-11-30 1986-06-21 アドバンスト・マイクロ・デイバイシズ・インコーポレーテツド Improved lateral polysilicon diode and making thereof

Similar Documents

Publication Publication Date Title
US6664607B2 (en) Diode having breakdown voltage adjustable to arbitrary value without increase of parasitic capacitance and process for fabrication thereof
US5159427A (en) Semiconductor substrate structure for use in power ic device
JP3083831B2 (en) Semiconductor device and manufacturing method thereof
JPS6362269A (en) Semiconductor device
JPS6060753A (en) Semiconductor device
US4892839A (en) Method of manufacturing a semiconductor device with polysilicon resistors and field plate
JPS60123062A (en) Manufacture of semiconductor integrated circuit
JPS62104068A (en) Semiconductor integrated circuit device
JP2005026392A (en) Semiconductor device and its fabricating process
JPS5882562A (en) Semiconductor device
JPS59186359A (en) Semiconductor device
JPH06252349A (en) Semiconductor device and manufacture of semiconductor device
JPH09283534A (en) Manufacture of semiconductor device
JPS6174366A (en) Manufacture of semiconductor device
JPS6022358A (en) Semiconductor integrated circuit device
JPH02296374A (en) Diode
JPS5922363A (en) Darlington connected transistor
JPS5835363B2 (en) Manufacturing method for semiconductor devices
JPH01184944A (en) Semiconductor integrated circuit
JPH01133346A (en) Manufacture of semiconductor integrated circuit
JPS62112379A (en) Semiconductor device
JPS6110275A (en) Semiconductor device
JPS6058652A (en) Semiconductor integrated circuit device
JPH08153800A (en) Semiconductor integrated circuit device
JPS6020555A (en) Semiconductor device