JPS6358773B2 - - Google Patents

Info

Publication number
JPS6358773B2
JPS6358773B2 JP57219857A JP21985782A JPS6358773B2 JP S6358773 B2 JPS6358773 B2 JP S6358773B2 JP 57219857 A JP57219857 A JP 57219857A JP 21985782 A JP21985782 A JP 21985782A JP S6358773 B2 JPS6358773 B2 JP S6358773B2
Authority
JP
Japan
Prior art keywords
acrylate
urethane
meth
parts
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57219857A
Other languages
Japanese (ja)
Other versions
JPS59111950A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP57219857A priority Critical patent/JPS59111950A/en
Publication of JPS59111950A publication Critical patent/JPS59111950A/en
Publication of JPS6358773B2 publication Critical patent/JPS6358773B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Paints Or Removers (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

【発明の詳細な説明】 この発明は光伝送用の光学ガラスフアイバを被
覆するための材料に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to materials for coating optical glass fibers for light transmission.

光伝送に用いられる光学ガラスフアイバ(以
下、光フアイバという)は、脆く、傷がつきやす
い上に可とう性に乏しいので、このような傷が原
因となつてわずかな外力によつても容易に破壊す
る。したがつて、従来より、光フアイバはガラス
母材から紡糸した直後にその表面に樹脂被覆が施
されている。このような樹脂被覆材料としては、
エポキシ樹脂、ウレタン樹脂、シリコーン樹脂な
どが用いられているが、光フアイバとの密着性に
劣り、吸湿した場合、光フアイバの強度を劣化さ
せる欠点がある。
Optical glass fibers (hereinafter referred to as optical fibers) used for optical transmission are fragile, easily damaged, and have poor flexibility. Destroy. Therefore, conventionally, optical fibers have been coated with a resin on their surfaces immediately after being spun from a glass base material. Such resin coating materials include:
Epoxy resins, urethane resins, silicone resins, and the like are used, but they have the drawback of poor adhesion to optical fibers, and when they absorb moisture, they deteriorate the strength of the optical fibers.

この発明は、上記の問題点を解決するためにな
されたものであつて、つぎの一般式; (式中、R1はアルキレン基、R2はアルキル基
である) で表わされる両末端水酸基を有するシロキサン誘
導体にジイソシアネートを反応させ、この反応物
中に含まれるイソシアネート基に対してさらに水
酸基を有するアクリレートまたはメタクリレート
を反応させて得られる分子内にシロキサン結合を
有する数平均分子量が900〜1100のウレタンアク
リレートまたはウレタンメタクリレートを構成成
分として含むことを特徴とする光フアイバ用被覆
材料に関するものである。
This invention was made to solve the above problems, and has the following general formula: (In the formula, R 1 is an alkylene group and R 2 is an alkyl group.) A siloxane derivative having a hydroxyl group at both ends represented by the formula is reacted with a diisocyanate, and a siloxane derivative having an additional hydroxyl group is added to the isocyanate group contained in this reaction product. The present invention relates to a coating material for an optical fiber, which contains as a constituent a urethane acrylate or urethane methacrylate having a siloxane bond in the molecule and having a number average molecular weight of 900 to 1100, which is obtained by reacting an acrylate or methacrylate.

なお、以下、(メタ)アクリレートとあるはア
クリレートまたはメタクリレートを意味する。し
たがつて、この(メタ)アクリレートなる用語を
含む化合物、たとえばウレタン(メタ)アクリレ
ートはウレタンアクリレートまたはウレタンメタ
クリレートを、ポリエステル(メタ)アクリレー
トはポリエステルアクリレートまたはポリエステ
ルメタクリレートを、それぞれ意味し、他の化合
物についても上記同様である。
In addition, hereinafter, (meth)acrylate means acrylate or methacrylate. Therefore, compounds containing this term (meth)acrylate, for example urethane (meth)acrylate means urethane acrylate or urethane methacrylate, polyester (meth)acrylate means polyester acrylate or polyester methacrylate, and for other compounds The same applies to the above.

この発明の被覆材料はこれを光フアイバの表面
に塗布したのち、光照射または加熱することによ
つて容易に硬化させるることができ、これによつ
て光フアイバ表面に良好に密着すると共に、高湿
度の雰囲気にさらされたときでも上記密着性が大
きく損なわれることはない。このため、被覆後の
光フアイバは常態下はもちろんのこと高湿条件下
においても大きな強度を示し、従来の被覆材料を
用いたものに較べて光伝送特性が大巾に改善され
たものとなる。
The coating material of the present invention can be easily cured by applying light or heating after being applied to the surface of the optical fiber. Even when exposed to a humid atmosphere, the adhesion is not significantly impaired. For this reason, the optical fiber after coating exhibits great strength not only under normal conditions but also under high humidity conditions, and its optical transmission characteristics are greatly improved compared to those using conventional coating materials. .

この発明において用いられる分子内にシロキサ
ン結合を有するウレタン(メタ)アクリレート
は、つぎの一般式; (式中、R1はアルキレン基、R2はアルキル基
である) で表わされる両末端水酸基を有するシロキサン誘
導体、たとえばビス(2―ヒドロキシエチル)テ
トラメチルジシロキサンを出発原料とし、このも
のとジイソシアネートとを反応させたのち、この
反応物中に含まれるイソシアネート基に対して、
さらに水酸基を有する(メタ)アクリレートを反
応させることによつて得ることができ、その数平
均分子量が900〜1100の範囲にあるものが用いら
れる。
The urethane (meth)acrylate having a siloxane bond in the molecule used in this invention has the following general formula; (In the formula, R 1 is an alkylene group and R 2 is an alkyl group.) A siloxane derivative having a hydroxyl group at both terminals, such as bis(2-hydroxyethyl)tetramethyldisiloxane, represented by the following is used as a starting material, and this and a diisocyanate are used as starting materials. After reacting with, the isocyanate group contained in this reaction product,
Furthermore, it can be obtained by reacting a (meth)acrylate having a hydroxyl group, and those having a number average molecular weight in the range of 900 to 1100 are used.

ジイソシアネートとしては、トリレンジイソシ
アネート、ジフエニルメタンジイソシアネート、
p―フエニレンジイソシアネート、ヘキサメチレ
ンジイソシアネート、キシリレンジイソシアネー
ト、イソホロンジイソシアネートなどがある。
Examples of diisocyanates include tolylene diisocyanate, diphenylmethane diisocyanate,
Examples include p-phenylene diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, and isophorone diisocyanate.

また、水酸基を有する(メタ)アクリレートと
しては、2―ヒドロキシエチルアクリレート(メ
タクリレート)、2―ヒドロキシプロピルアクリ
レート(メタクリレート)、ペンタエリスリトー
ルアクリレート(メタクリレート)などが挙げら
れる。
Examples of (meth)acrylates having a hydroxyl group include 2-hydroxyethyl acrylate (methacrylate), 2-hydroxypropyl acrylate (methacrylate), and pentaerythritol acrylate (methacrylate).

このようにして合成される分子内にシロキサン
結合を有するウレタン(メタ)アクリレートは単
独でも用いられるが、一般には他の(メタ)アク
リレート類が70重量%以下の割合で併用される。
例えば一価ないし多価アルコールの(メタ)アク
リレート、ポリエステル(メタ)アクリレート、
エポキシ(メタ)アクリレート、ウレタン(メ
タ)アクリレートなどである。
The urethane (meth)acrylate having a siloxane bond in the molecule synthesized in this manner can be used alone, but other (meth)acrylates are generally used in combination at a ratio of 70% by weight or less.
For example, (meth)acrylate of monohydric or polyhydric alcohol, polyester (meth)acrylate,
These include epoxy (meth)acrylate, urethane (meth)acrylate, etc.

これらの例をとくに挙げるまでもないが、念の
ために一価ないし多価アルコールのアクリレート
の具体例を挙げれば、たとえばシクロヘキシルア
クリレート、ベンジルアクリレート、カルビトー
ルアクリレート、2―エチルヘキシルアクリレー
ト、エチレングリコールジアクリレート、ジエチ
レングリコールジアクリレート、トリエチレング
リコールジアクリレート、ネオペンチルグリコー
ルジアクリレート、1.6―ヘキサンジオールジア
クリレート、ポリエチレングリコールジアクリレ
ート、ポリプロピレングリコールジデアクリレー
ト、トリメチロールプロパントリアクリレート、
ペンタエリスリトールトリアクリレートなどがあ
る。
There is no need to mention these examples, but just to be safe, specific examples of acrylates of monohydric or polyhydric alcohols include cyclohexyl acrylate, benzyl acrylate, carbitol acrylate, 2-ethylhexyl acrylate, and ethylene glycol diacrylate. , diethylene glycol diacrylate, triethylene glycol diacrylate, neopentyl glycol diacrylate, 1.6-hexanediol diacrylate, polyethylene glycol diacrylate, polypropylene glycol dideacrylate, trimethylolpropane triacrylate,
Examples include pentaerythritol triacrylate.

この発明の光フアイバ用被覆材料には、以上の
成分のほか、必要に応じてアクリル脂、ポリアミ
ド樹脂、ポリエーテル、ポリウレタン、ポリアミ
ドイミド、シリコーン樹脂、フエノール樹脂など
の各種の変性用樹脂や、硬化促進剤、有機ケイ素
化合物、界面活性剤などの各種添加剤を配合して
もよい。
In addition to the above-mentioned components, the optical fiber coating material of the present invention may optionally contain various modifying resins such as acrylic resin, polyamide resin, polyether, polyurethane, polyamideimide, silicone resin, and phenolic resin, as well as curing resins. Various additives such as accelerators, organosilicon compounds, and surfactants may be added.

光照射する場合には光重合開始剤が用いられ
る。これらの例としては、ベンゾインアルキルエ
ーテル、ベンゾフエノン、アセトフエノン、チオ
キサントンなどが挙げられる。使用量は分子内に
シロキサン結合を有するウレタン(メタ)アクリ
レートおよびその他の(メタ)アクリレート類
100重量部に対し0.1〜10重量部、好ましくは1〜
5重量部である。加熱硬化させる場合は、ベンゾ
イルパーオキサイド、ジ―t―ブチルパーオキサ
イド、ジクミルパーオキサイドなどの有機過酸化
物が上記ウレタン(メタ)アクリレートおよびそ
の他の(メタ)アクリレート類100重量部に対し
0.1〜10重量部、好ましくは1〜3重量部である。
In the case of light irradiation, a photopolymerization initiator is used. Examples of these include benzoin alkyl ethers, benzophenones, acetophenones, thioxanthone, and the like. The amount used is urethane (meth)acrylate and other (meth)acrylates that have siloxane bonds in the molecule.
0.1 to 10 parts by weight per 100 parts by weight, preferably 1 to 10 parts by weight
It is 5 parts by weight. When curing by heating, an organic peroxide such as benzoyl peroxide, di-t-butyl peroxide, dicumyl peroxide, etc. is added to 100 parts by weight of the above urethane (meth)acrylate and other (meth)acrylates.
The amount is 0.1 to 10 parts by weight, preferably 1 to 3 parts by weight.

この発明の光フアイバ用被覆材料を用いて実際
に光フアイバを被覆するには、従来公知の方法に
準じて行なえばよく、一般には紡糸工程に引き続
く工程で光フアイバの表面にこの発明の被覆材料
を塗布したのち、熱ないし紫外線などの光を照射
して重合硬化させればよい。
In order to actually coat an optical fiber with the optical fiber coating material of the present invention, it may be carried out according to a conventionally known method, and generally, the coating material of the present invention is coated on the surface of the optical fiber in a process subsequent to the spinning process. After coating, it may be polymerized and cured by irradiating it with heat or light such as ultraviolet rays.

以上述べたとおり、この発明の光フアイバ用被
覆材料によれば、その膜特性および光フアイバに
対する密着性にすぐれ、常態下はもちろんのこと
高湿条件下でも大きな強度を示す光フアイバ被覆
体を得ることができる。
As described above, according to the coating material for optical fiber of the present invention, it is possible to obtain an optical fiber coating that has excellent film properties and adhesion to the optical fiber, and exhibits great strength not only under normal conditions but also under high humidity conditions. be able to.

以下、この発明の実施例を記載してより具体的
に説明する。なお、以下において部とあるのは重
量部を意味するものである。
Hereinafter, the present invention will be explained in more detail by describing examples. In addition, in the following, parts mean parts by weight.

実施例 1 温度計、撹拌機および還流冷却器を付けた100
c.c.の四つ口のフラスコに、ビス(2―ヒドロキシ
エチル)テトラメチルジシロキサン22.4gとトリ
レンジイソシアネート34.8gとを仕込み、50〜60
℃で3時間反応させたのち、2―ヒドロキシエチ
ルアクリレート23.2gを加え、さらに60℃で1時
間反応させることにより数平均分子量900の分子
内にシロキサン結合を有するウレタンアクリレー
トを得た。
Example 1 100 with thermometer, stirrer and reflux condenser
Charge 22.4 g of bis(2-hydroxyethyl)tetramethyldisiloxane and 34.8 g of tolylene diisocyanate into a four-neck CC flask, and add 50 to 60 g of tolylene diisocyanate.
After reacting at .degree. C. for 3 hours, 23.2 g of 2-hydroxyethyl acrylate was added and further reacting at 60.degree. C. for 1 hour to obtain urethane acrylate having a number average molecular weight of 900 and having a siloxane bond in the molecule.

この生成物50部、平均分子量400のポリエチレ
ングリコールジアクリレート50部、ベンゾインイ
ソブチルエーテル3部を溶解混合し、粘度(25
℃)450センチポイズの光フアイバ用被覆材料を
得た。
50 parts of this product, 50 parts of polyethylene glycol diacrylate with an average molecular weight of 400, and 3 parts of benzoin isobutyl ether were dissolved and mixed.
℃) 450 centipoise coating material for optical fiber was obtained.

実施例 2 実施例1で用いたのと同様の四つ口フラスコ
に、ビス(2―ヒドロキシエチル)テトラメチル
ジシロキサン22.4gとイソホロンジイソシアネー
ト44.6gとを仕込み、60〜70℃で2時間反応させ
たのち、2―ヒドロキシエチルアクリレート23.2
gを加え、さらに70℃で1時間反応させることに
より、分子内にシロキサン結合を有する数平均分
子量1000のウレタンアクリレートを得た。
Example 2 A four-necked flask similar to that used in Example 1 was charged with 22.4 g of bis(2-hydroxyethyl)tetramethyldisiloxane and 44.6 g of isophorone diisocyanate, and reacted at 60 to 70°C for 2 hours. Later, 2-hydroxyethyl acrylate 23.2
A urethane acrylate having a number average molecular weight of 1000 and having a siloxane bond in the molecule was obtained by further reacting at 70° C. for 1 hour.

この生成物10部、ウレタンアクリレート(平均
分子量1000のポリプロピレングリコールとイソホ
ロンジイソシアネートとから合成した数平均分子
量3300のオリゴマー)90部、ベンゾインイソブチ
ルエーテル3部を溶解混合し、粘度(50℃)6000
センチポイズの光フアイバ用被覆材料を得た。
10 parts of this product, 90 parts of urethane acrylate (an oligomer with a number average molecular weight of 3300 synthesized from polypropylene glycol with an average molecular weight of 1000 and isophorone diisocyanate), and 3 parts of benzoin isobutyl ether were dissolved and mixed, and the mixture had a viscosity (50°C) of 6000.
A centipoise coating material for optical fiber was obtained.

実施例 3 実施例1で用いたのと同様の四つ口フラスコ
に、ビス(2―ヒドロキシエチル)テトラメチル
ジシロキサン22.4gとジフエニルメタンジイソシ
アネート50gとを仕込み、80〜90℃で2時間反応
させたのち、2―ヒドロキシプロピルアクリレー
ト26gを加え、さらに80℃で1時間反応させるこ
とにより、分子内にシロキサン結合を有する数平
均分子量1100のウレタンアクリレートを得た。
Example 3 A four-necked flask similar to that used in Example 1 was charged with 22.4 g of bis(2-hydroxyethyl)tetramethyldisiloxane and 50 g of diphenylmethane diisocyanate, and reacted at 80 to 90°C for 2 hours. After this, 26 g of 2-hydroxypropyl acrylate was added and the reaction was further carried out at 80°C for 1 hour to obtain urethane acrylate having a number average molecular weight of 1100 and having a siloxane bond in the molecule.

この生成物30部、ビスフエノールAジエチレン
グリコールジアクリレート70部、ベンゾインイソ
ブチルエーテル3部を溶解混合し、粘度(25℃)
1100センチポイズの光フアイバ用被覆材料を得
た。
30 parts of this product, 70 parts of bisphenol A diethylene glycol diacrylate, and 3 parts of benzoin isobutyl ether were dissolved and mixed.
A coating material for optical fiber of 1100 centipoise was obtained.

つぎに、上記実施例1〜3の各被覆材料の性能
を調べるために、以下のような試験を行なつた。
Next, in order to examine the performance of each coating material of Examples 1 to 3 above, the following tests were conducted.

<密着性試験> 石英ガラス板上に、各材料を0.1mm厚に塗布し
たのち、80W/cm×2燈の高圧水銀ランプを用い
てコンベアスピード50m/分で硬化させ、これを
水中に放置して硬化皮膜が剥がれるまでの時間を
測定した。その結果、実施例1〜3共7日間放置
したのちでも剥離現象は全く認められなかつた。
<Adhesion test> After applying each material to a thickness of 0.1 mm on a quartz glass plate, it was cured using a high-pressure mercury lamp of 80 W/cm x 2 lights at a conveyor speed of 50 m/min, and then left in water. The time required for the cured film to peel off was measured. As a result, no peeling phenomenon was observed in any of Examples 1 to 3 even after being left for 7 days.

<被覆試験> 50m/分の速度で紡糸した直径125μmの光フア
イバの表面に、紡糸工程に引き続く工程におい
て、実施例1〜3の各材料を塗布したのち、紫外
線(ランプ出力2KW2燈)を照射して硬化させ
た。被覆後の光フアイバの外径はいずれも300μm
で、破断強度はいずれも6Kgであつた。
<Coating test> In the process following the spinning process, each material of Examples 1 to 3 was applied to the surface of an optical fiber with a diameter of 125 μm spun at a speed of 50 m/min, and then UV rays (lamp output 2 KW 2 lights) were irradiated. and cured. The outer diameter of each optical fiber after coating is 300 μm.
The breaking strength was 6 kg in all cases.

つぎに、被覆後の光フアイバを60℃の水中に
100時間浸漬させたのち破断強度を調べたところ、
実施例1〜3共5〜6Kgと水中浸漬前とほとんど
変らなかつた。
Next, the coated optical fiber is placed in water at 60℃.
After immersing for 100 hours, the breaking strength was examined.
In Examples 1 to 3, the weight was 5 to 6 kg, which was almost the same as before immersion in water.

Claims (1)

【特許請求の範囲】 1 つぎの一般式; (式中、R1はアルキレン基、R2はアルキル基
である) で表わされる両末端水酸基を有するシロキサン誘
導体にジイソシアネートを反応させ、この反応物
中に含まれるイソシアネート基に対してさらに水
酸基を有するアクリレートまたはメタクリレート
を反応させて得られる分子内にシロキサン結合を
有する数平均分子量が900〜1100のウレタンアク
リレートまたはウレタンメタクリレートを含むこ
とを特徴とする光学ガラスフアイバ用被覆材料。
[Claims] 1. The following general formula; (In the formula, R 1 is an alkylene group and R 2 is an alkyl group.) A siloxane derivative having a hydroxyl group at both ends represented by the formula is reacted with a diisocyanate, and a siloxane derivative having an additional hydroxyl group is added to the isocyanate group contained in this reaction product. 1. A coating material for optical glass fiber, comprising urethane acrylate or urethane methacrylate having a siloxane bond in the molecule and having a number average molecular weight of 900 to 1100, obtained by reacting acrylate or methacrylate.
JP57219857A 1982-12-14 1982-12-14 Coating material for optical fiber glass Granted JPS59111950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57219857A JPS59111950A (en) 1982-12-14 1982-12-14 Coating material for optical fiber glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57219857A JPS59111950A (en) 1982-12-14 1982-12-14 Coating material for optical fiber glass

Publications (2)

Publication Number Publication Date
JPS59111950A JPS59111950A (en) 1984-06-28
JPS6358773B2 true JPS6358773B2 (en) 1988-11-16

Family

ID=16742140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57219857A Granted JPS59111950A (en) 1982-12-14 1982-12-14 Coating material for optical fiber glass

Country Status (1)

Country Link
JP (1) JPS59111950A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6121121A (en) * 1984-07-10 1986-01-29 Yokohama Rubber Co Ltd:The Photosetting resin composition
JPH079497B2 (en) * 1985-01-25 1995-02-01 古河電気工業株式会社 Optical fiber core
JPS63161416A (en) * 1986-12-24 1988-07-05 Mitsubishi Cable Ind Ltd Optical fiber cable

Also Published As

Publication number Publication date
JPS59111950A (en) 1984-06-28

Similar Documents

Publication Publication Date Title
US4849462A (en) Ultraviolet-curable coatings for optical glass fibers having improved adhesion
EP0554404B1 (en) Curable liquid resin composition
EP0860485B1 (en) Liquid curable resin composition
JPH10287717A (en) Liquid curable resin composition
WO2017094302A1 (en) Optical fiber tape, method for manufacturing optical fiber tape, and ultraviolet curable resin composition used to form connection portions of intermittently fixed optical fiber tape
JPH09278850A (en) Liquid curable resin composition
US4929051A (en) Optical glass fiber with a primary coating of organo-polysiloxanes containing acrylic acid ester groups
EP0149741B1 (en) Liquid radiation-curable coating compositions and optical glass fibers coated therewith
JPH0239462B2 (en)
EP0069363A1 (en) Use of a coating material for optical glass fibers
JPS6358773B2 (en)
US4969711A (en) Optical glass fiber with a primary coating of acrylic acid ester groups-containing organo-polysiloxanes
JP2711579B2 (en) Liquid curable resin composition
JPS6359978B2 (en)
EP0277813A2 (en) Photosetting resin composition
JPH0618844B2 (en) Liquid radiation curable resin composition
JPH0623225B2 (en) UV curable resin composition
JPS649257B2 (en)
JPH0780118B2 (en) Method for manufacturing hydrous contact lens
JPS6220144B2 (en)
JP2648603B2 (en) Photocurable resin composition
JPH0751454B2 (en) UV curable coating material for optical fiber
JP2001302946A (en) Photocurable, moistureproof insulating coating and process for preparing moisture-resistant, insulated electronic component
JPH0686499B2 (en) Photocurable organopolysiloxane composition
JPH01229022A (en) Reactive photopolymerization initiator, resin composition and coating agent