JPS63161416A - Optical fiber cable - Google Patents

Optical fiber cable

Info

Publication number
JPS63161416A
JPS63161416A JP61310227A JP31022786A JPS63161416A JP S63161416 A JPS63161416 A JP S63161416A JP 61310227 A JP61310227 A JP 61310227A JP 31022786 A JP31022786 A JP 31022786A JP S63161416 A JPS63161416 A JP S63161416A
Authority
JP
Japan
Prior art keywords
optical fiber
coating layer
primary coating
relative humidity
fiber cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61310227A
Other languages
Japanese (ja)
Inventor
Hirokazu Kuzushita
葛下 弘和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP61310227A priority Critical patent/JPS63161416A/en
Publication of JPS63161416A publication Critical patent/JPS63161416A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To maintain the optical transmission characteristics over a long period by specifying drawing strength on the interface between a quartz glass-base optical fiber and a primary coating layer. CONSTITUTION:A primary coating layer 2 and a secondary coating layer 3 on an optical fiber 1 are made of an ultraviolet-curing org. high molecular resin. The primary coating layer 2 is required to have >=0.5kg/cm drawing strength on the interface between the coating layer 2 and the optical fiber 1 at 25 deg.C and 50% relative humidity and >=0.45kg/cm drawing strength at 25 deg.C and 90% relative humidity. The secondary coating layer 3 may be a known conventional resin for an optical fiber. The coating layers maintain superior adhesive strength to the quartz glass-base optical fiber even after use for a long period and the deterioration of the optical transmission characteristics with the lapse of time can be prevented.

Description

【発明の詳細な説明】 皮!上包机凰分! 本発明は、通信用の石英ガラス系光ファイバケーブルに
関し、特に紫外線硬化有機高分子樹脂の1次被覆層を有
する光ファイバケーブルに関する。
[Detailed Description of the Invention] Skin! Shang Bao Machine Fan! The present invention relates to a silica glass-based optical fiber cable for communications, and more particularly to an optical fiber cable having a primary coating layer of an ultraviolet-curable organic polymer resin.

l米重及土 石英ガラス系光ファイバの可撓性を改善する目的で有機
高分子からなる1次被覆層を光ファイバの直上に、さら
に光ファイバを外力から保護するために1次被覆層の上
に2次被覆層を介してジャケット層が設けられている。
In order to improve the flexibility of quartz glass-based optical fibers, a primary coating layer made of an organic polymer is placed directly above the optical fiber, and in order to protect the optical fiber from external forces, the primary coating layer is A jacket layer is provided thereon via a secondary coating layer.

従来、1次被覆層は熱可塑性有機高分子または熱硬化性
有機高分子にて形成されていたが、紫外線硬化性塗料の
使用が光ファイバケーブルの高能率生産上有利であるこ
とに着目して最近ではそれらの層を紫外線硬化性塗料を
用いて形成する研究が鋭意進められており一部実用もな
されている。
Conventionally, the primary coating layer was formed from thermoplastic organic polymers or thermosetting organic polymers, but we focused on the fact that the use of ultraviolet curable paints is advantageous for high-efficiency production of optical fiber cables. Recently, research on forming these layers using ultraviolet curable paints has been actively carried out, and some of them have even been put into practical use.

通常の紫外線硬化性塗料を用い、これを線引きされた石
英ガラス系光ファイバの上に塗布し紫外線照射して形成
した被覆層は、ある局面、たとえば光ファイバケーブル
の接続作業時において必要な光ファイバの剥き出しのた
めの剥離除去のような局面からみれば、能率的なtA離
作業に困難を感じる程に石英ガラス系光ファイバと強固
に密着している。しかしながらこの密着力は、光ファイ
バケーブルにおいて最も重要な局面、即ち光伝送特性上
からみれば必ずしも充分であるとはいい難く、しかも製
造後から経時的に低下する問題がある。
A coating layer formed by applying an ordinary ultraviolet curable paint onto a drawn quartz glass optical fiber and irradiating it with ultraviolet rays can be used to form an optical fiber that is necessary in certain situations, such as when connecting optical fiber cables. From the point of view of peeling and removing to expose the fiber, it is so tightly adhered to the silica glass optical fiber that it is difficult to carry out efficient tA separation work. However, this adhesion strength is not necessarily sufficient from the viewpoint of the most important aspect of optical fiber cables, that is, optical transmission characteristics, and there is a problem that the adhesion strength deteriorates over time after manufacture.

この低下は、特に高湿度環境下において著しい。This decrease is particularly significant in a high humidity environment.

石英ガラス系光ファイバに対する1次被覆層の密着力が
不充分である゛と透水防止作用が乏しくなり透水により
光フアイバ表面上にマイクロクランクが成長し易くなっ
て光ファイバが僅かの外力で切断することがある。
If the adhesion of the primary coating layer to the silica glass optical fiber is insufficient, the water permeation prevention effect will be poor, and microcranks will easily grow on the optical fiber surface due to water permeation, causing the optical fiber to break with a slight external force. Sometimes.

”を  べき−占 上記の事情から、光ファイバケーブル製造直後は勿論の
こと、長期間使用後においても石英ガラス系光ファイバ
に対して優れた密着力を持続する1次被覆層を紫外線硬
化性塗料を用いて実現することが解決を要すべき問題点
としてクローズアップされている。
Due to the above-mentioned circumstances, the primary coating layer, which maintains excellent adhesion to silica glass optical fibers not only immediately after manufacturing the optical fiber cable but also after long-term use, should be coated with an ultraviolet curable paint. The realization of this technology using ``is now being highlighted as a problem that needs to be solved.

、 占を ゛するための 上記の問題点を解決することを目的として、本発明は、
石英ガラス系光ファイバの上に紫外線硬化有機高分子樹
脂の1次被覆層を有する光ファイバケーブルにおいて、
該石英ガラス系光ファイバと該1次被覆層との界面の引
抜き力が温度25℃、相対湿度50%において0.5k
g/cm以上であり、かつ温度25℃、相対湿度90%
において0.45kg/cm以上であることを特徴とす
る光ファイバケーブルを提供しようとするものである。
The present invention aims to solve the above-mentioned problems for fortune-telling.
In an optical fiber cable having a primary coating layer of an ultraviolet curing organic polymer resin on a silica glass optical fiber,
The pulling force at the interface between the silica glass optical fiber and the primary coating layer is 0.5 k at a temperature of 25°C and a relative humidity of 50%.
g/cm or more, and the temperature is 25°C and the relative humidity is 90%.
It is an object of the present invention to provide an optical fiber cable characterized in that its weight is 0.45 kg/cm or more.

重囲」じ8≧迩栗 本発明者らの知見によれは、石英ガラス系光ファイバと
該1次被覆層との界面の引抜き力が上記した常温常温下
において0.5kg/cm以上の高密着力を有し、しか
も相対湿度90%に°おいても、0.45kg/cm以
上もの、すなわち常温常温下での引抜き力の90%以上
の高密着力を持続する場合には、優れた長期安定性を示
す。
According to the findings of the present inventors, the drawing force at the interface between the silica glass optical fiber and the primary coating layer is a high adhesion force of 0.5 kg/cm or more at room temperature as described above. If it has a high adhesion force of 0.45 kg/cm or more even at a relative humidity of 90%, that is, 90% or more of the pull-out force at room temperature, it has excellent long-term stability. shows.

したがって本発明の光ファイバケーブルは、長期間にわ
たって高度の光伝送特性の持続が要求される用途に好適
に使用することができる。
Therefore, the optical fiber cable of the present invention can be suitably used in applications that require maintenance of high optical transmission characteristics over a long period of time.

大隻■ 第1図および第2図は、いずれも本発明の実施例の断面
図であって、1はステップインデックス形、グレーデド
インデックス形、シングルモード形などの石英ガラス系
光ファイバ、2は光ファイバlの直上に設けられた1次
被覆層、3は2次被覆層、4はジャケット層である。
Figures 1 and 2 are both cross-sectional views of embodiments of the present invention, in which 1 is a silica glass optical fiber such as a step index type, graded index type, or single mode type; 3 is a primary coating layer provided directly above the optical fiber 1, 3 is a secondary coating layer, and 4 is a jacket layer.

1次被覆層2.2次被覆層3、およびジャケット層4の
厚さは、それぞれ10〜200μ閑、lO〜SOOμ閣
、および0〜300μ−程度である。
The thicknesses of the primary coating layer 2, secondary coating layer 3, and jacket layer 4 are approximately 10 to 200 μm, 10 to 300 μm, and 0 to 300 μm, respectively.

1次被覆層2および2次被覆層3はいずれも紫外線硬化
有機高分子樹脂からなっている。
Both the primary coating layer 2 and the secondary coating layer 3 are made of ultraviolet curing organic polymer resin.

就中1次被覆層2は、光ファイバ1との界面の引抜き力
が温度25℃、相対湿度50%において0.5kg/C
m以上であり、かつ温度25℃、相対湿度90%におい
て0.45kg/cm以上であることを要する。常温常
温下および常温高湿下における引抜き力がそれぞれ上記
した値未満である1次被覆層は、密着力不足のために本
発明の課題を解決することができない、1次被覆層2と
して特に好ましいものは、光ファイバ1との界面の引抜
き力が温度25℃、相対湿度50%において1.0kg
/cm以上であり、かつ温度25℃、相対湿度90%に
おいて0.9kg/cm以上であるものである。
In particular, the primary coating layer 2 has a drawing force of 0.5 kg/C at the interface with the optical fiber 1 at a temperature of 25° C. and a relative humidity of 50%.
m or more, and 0.45 kg/cm or more at a temperature of 25° C. and a relative humidity of 90%. A primary coating layer whose pull-out force at room temperature and at room temperature and high humidity is less than the above-mentioned values is particularly preferred as the primary coating layer 2, which cannot solve the problems of the present invention due to insufficient adhesion. The pulling force at the interface with the optical fiber 1 is 1.0 kg at a temperature of 25°C and a relative humidity of 50%.
/cm or more, and 0.9 kg/cm or more at a temperature of 25° C. and a relative humidity of 90%.

1次被覆層2を形成するのに適した紫外線硬化性樹脂と
しては、たとえば日本合成ゴム社製のデソライト950
YO75、同111005 、大日本インキ社製のグラ
ンデインクPC−566、横浜ゴム社製のIJD−03
1などを例示することができる。1次被覆層は、上記し
た引抜き力を有する他、25℃におけるヤング率が5〜
1’00kg/cm”であることが好ましい。
As an ultraviolet curable resin suitable for forming the primary coating layer 2, for example, Desolite 950 manufactured by Nippon Synthetic Rubber Co., Ltd.
YO75, 111005, Grande Ink PC-566 manufactured by Dainippon Ink Co., Ltd., IJD-03 manufactured by Yokohama Rubber Company
1 etc. can be exemplified. In addition to having the above-mentioned pull-out force, the primary coating layer has a Young's modulus of 5 to 5 at 25°C.
1'00 kg/cm'' is preferable.

2次被覆層3は、1次被覆層2と同種の紫外線硬化性樹
脂であっても良く、あるいは従来から光フアイバ用とし
て知られている樹脂であってもよい、そのような紫外線
硬化性樹脂塗料としては、たとえばシリコン樹脂塗料、
ウレタン樹脂塗料、エポキシ樹脂塗料、ウレタンエポキ
シ樹脂塗料、ブタジェン樹脂塗料、エーテル樹脂塗料な
どがあげられる。さらに2次被覆層は25℃におけるヤ
ング率が1,000〜20.000kg/cm富のもの
が好ましい。
The secondary coating layer 3 may be the same type of ultraviolet curable resin as the primary coating layer 2, or may be a resin conventionally known for use in optical fibers. Examples of paint include silicone resin paint,
Examples include urethane resin paint, epoxy resin paint, urethane epoxy resin paint, butadiene resin paint, and ether resin paint. Further, the secondary coating layer preferably has a Young's modulus of 1,000 to 20,000 kg/cm at 25°C.

以下、実施例および比較例により本発明を一層詳細に説
明する。
Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

実施例I VAD法で製造したGI形石英ガラス系光ファイバ母材
を線引して得られた直後の直径125μ鐘の光ファイバ
の上に紫外線硬化性ウレタン樹脂塗料(日本合成ゴム社
製の商品名デソライ) 950Y075)を塗布し紫外
線照射して1次被覆層を形成した。さらにその上に紫外
線硬化性ウレタン樹脂塗料(日本合成ゴム社製の商品名
デソライ)R3014A)を塗布し紫外線照射して2次
被覆層を形成した。1次被覆層および2次被覆層各厚さ
は、それぞれ約80μm、約110μ−であった。
Example I An ultraviolet curable urethane resin paint (a product manufactured by Japan Synthetic Rubber Co., Ltd.) was applied to an optical fiber having a diameter of 125 μm immediately after drawing a GI type quartz glass optical fiber base material manufactured by the VAD method. 950Y075) was applied and irradiated with ultraviolet rays to form a primary coating layer. Furthermore, an ultraviolet curable urethane resin paint (trade name: Desolai R3014A, manufactured by Nippon Gosei Rubber Co., Ltd.) was applied thereon and irradiated with ultraviolet rays to form a secondary coating layer. The thicknesses of the primary coating layer and the secondary coating layer were approximately 80 μm and approximately 110 μm, respectively.

比較例1 実施例1で用いた1次被覆層の紫外線硬化性ウレタン樹
脂塗料に代わって、紫外線硬化性ウレタン樹脂塗料(大
日本インキ社製の商品名ダイキュア7705)を用い、
その他は実施例1と同様にして1次被覆層および2次被
覆層の各厚さが、それぞれ約80μm、約110μ−の
光ファイバケーブルを得た。
Comparative Example 1 Instead of the ultraviolet curable urethane resin paint for the primary coating layer used in Example 1, an ultraviolet curable urethane resin paint (trade name Daicure 7705, manufactured by Dainippon Ink Co., Ltd.) was used,
Otherwise, an optical fiber cable was obtained in the same manner as in Example 1, in which the thicknesses of the primary coating layer and the secondary coating layer were approximately 80 μm and approximately 110 μm, respectively.

実施例2 実施例1で用いた1次被覆層の紫外線硬化性ウレタン樹
脂塗料にかわって紫外線硬化性ウレタン樹脂塗料(大日
本インキ社製の商品名グランデインクFC566)を用
い、その他は実施例1と同様にして1次被覆層および2
次被覆層の各厚さが、それぞれ約80#■、約110μ
輪の光ファイバケーブルを得た。
Example 2 An ultraviolet curable urethane resin paint (trade name: Grande Ink FC566, manufactured by Dainippon Ink Co., Ltd.) was used instead of the ultraviolet curable urethane resin paint of the primary coating layer used in Example 1, and the other conditions were as in Example 1. In the same manner as above, the primary coating layer and the secondary coating layer are formed.
The thickness of the next coating layer is approximately 80#■ and approximately 110μ, respectively.
Obtained a ring fiber optic cable.

実施例1〜2、および比較例1で得た各光ファイバケー
ブルについて、1次被覆層と光ファイバとの界面での温
度25℃、相対湿度50%および温度25℃、相対湿度
90%における各引抜き力並びに光ファイバの機械的強
度変化特性(いずれも10試料の平均値を示す)を第1
表に示す。
For each optical fiber cable obtained in Examples 1 to 2 and Comparative Example 1, the temperature at the interface between the primary coating layer and the optical fiber was 25°C and the relative humidity was 50%, and the temperature at the interface between the primary coating layer and the optical fiber was 25°C and the relative humidity was 90%. The drawing force and the mechanical strength change characteristics of the optical fiber (both show the average value of 10 samples) were
Shown in the table.

なお、上記の各引抜き力、並びに光ファイバの機械的強
度変化特性は、下記の方法により測定し、た。
In addition, each of the above-mentioned pulling forces and the mechanical strength change characteristics of the optical fiber were measured by the following method.

引抜きカニ試料光ファイバケーブルを温度25℃、相対
湿度50%のデシケータ中および温度25℃、相対湿度
90%のデシケータ中にそれぞれ48時間放置した後、
ストリッパー(200μ論)で2Qmm長の被覆を50
m/minの速度で引抜く際の最大応力を測定した。
After leaving the pulled crab sample optical fiber cable in a desiccator at a temperature of 25°C and a relative humidity of 50% and in a desiccator at a temperature of 25°C and a relative humidity of 90% for 48 hours,
Coat 2Qmm long with a stripper (200μ theory) for 50 minutes.
The maximum stress during pulling out at a speed of m/min was measured.

光ファイバの機械的強度変化特性;試料光ファイバケー
ブルを温度25℃、相対湿度90%のデシケータ中に放
置し、その間における光ファイバの引張り強さくスパン
長=10m)の経時変化を測定した。
Mechanical strength change characteristics of optical fiber: A sample optical fiber cable was left in a desiccator at a temperature of 25°C and a relative humidity of 90%, and the change in tensile strength (span length = 10 m) of the optical fiber over time was measured.

第1表Table 1

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、いずれも本更明の実施例の断面
図であって、1はステップインデックス形、グレーデド
インデックス形、シングルモード形などの石英ガラス系
光ファイバ、2は光ファイバlの直上に設けられた1次
被覆層、3は2次被覆層、4はジャケット層である。
1 and 2 are cross-sectional views of an embodiment of the present invention, in which 1 is a silica glass optical fiber such as a step index type, graded index type, or single mode type, and 2 is an optical fiber. A primary coating layer is provided directly above the fiber 1, 3 is a secondary coating layer, and 4 is a jacket layer.

Claims (1)

【特許請求の範囲】[Claims] 1、石英ガラス系光ファイバの上に紫外線硬化有機高分
子樹脂の1次被覆層を有する光ファイバケーブルにおい
て、該石英ガラス系光ファイバと該1次被覆層との界面
の引抜き力が温度25℃、相対湿度50%において0.
5kg/cm以上であり、かつ温度25℃、相対湿度9
0%において0.45g/cm以上であることを特徴と
する光ファイバケーブル。
1. In an optical fiber cable having a primary coating layer of an ultraviolet curing organic polymer resin on a silica glass optical fiber, the pulling force at the interface between the silica glass optical fiber and the primary coating layer is at a temperature of 25°C. , 0 at 50% relative humidity.
5 kg/cm or more, and the temperature is 25°C and the relative humidity is 9.
An optical fiber cable having a weight of 0.45 g/cm or more at 0%.
JP61310227A 1986-12-24 1986-12-24 Optical fiber cable Pending JPS63161416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61310227A JPS63161416A (en) 1986-12-24 1986-12-24 Optical fiber cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61310227A JPS63161416A (en) 1986-12-24 1986-12-24 Optical fiber cable

Publications (1)

Publication Number Publication Date
JPS63161416A true JPS63161416A (en) 1988-07-05

Family

ID=18002720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61310227A Pending JPS63161416A (en) 1986-12-24 1986-12-24 Optical fiber cable

Country Status (1)

Country Link
JP (1) JPS63161416A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005533287A (en) * 2002-07-18 2005-11-04 ディーエスエム アイピー アセッツ ビー.ブイ. Coated photonic crystal fiber
WO2023210461A1 (en) * 2022-04-27 2023-11-02 株式会社フジクラ Optical fiber wire, and production method for optical fiber ribbon

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5992947A (en) * 1982-11-20 1984-05-29 Nippon Telegr & Teleph Corp <Ntt> Coating material for optical glass fiber
JPS59111950A (en) * 1982-12-14 1984-06-28 Nitto Electric Ind Co Ltd Coating material for optical fiber glass

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5992947A (en) * 1982-11-20 1984-05-29 Nippon Telegr & Teleph Corp <Ntt> Coating material for optical glass fiber
JPS59111950A (en) * 1982-12-14 1984-06-28 Nitto Electric Ind Co Ltd Coating material for optical fiber glass

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005533287A (en) * 2002-07-18 2005-11-04 ディーエスエム アイピー アセッツ ビー.ブイ. Coated photonic crystal fiber
WO2023210461A1 (en) * 2022-04-27 2023-11-02 株式会社フジクラ Optical fiber wire, and production method for optical fiber ribbon

Similar Documents

Publication Publication Date Title
JP5323664B2 (en) Optical fiber core
JP3568956B2 (en) Fiber optic components and fiber optic cables
JP3733000B2 (en) Fiber optic array
JP5041450B2 (en) Optical fiber colored core
JPWO2008012926A1 (en) Optical fiber
CN101346654A (en) Optical fiber core and method of evaluation thereof
TW201505990A (en) Optical fiber coating for short data network
JPS63161416A (en) Optical fiber cable
WO2009113361A1 (en) Optical fiber core
JPH0627887B2 (en) Fiber for optical transmission
JPH0776118B2 (en) Manufacturing method of coated optical fiber
CA2381024A1 (en) Coated optical fibre
JPS63128309A (en) Optical fiber
JPH1164692A (en) Light conductor and ribbon structure light conductor
JPH1123919A (en) Coated optical fiber and its manufacture
JPS63281109A (en) Fiber for light transmission
JP3462634B2 (en) Optical fiber core and method of removing coating
US11740403B2 (en) Optical fibers with high-temperature write-through coatings
JP4142002B2 (en) Optical fiber core
JP2001083381A (en) Coated optical fiber
CN102495453A (en) Anti-alcohol optical fiber belt
JPH06194549A (en) Colored element fiber for coated optical fiber ribbon and its production
JPH01319714A (en) Coated optical fiber
JPH08220371A (en) Optical fiber coupler
JPH1062662A (en) Optical coated fiber