JPS6356297B2 - - Google Patents

Info

Publication number
JPS6356297B2
JPS6356297B2 JP54104862A JP10486279A JPS6356297B2 JP S6356297 B2 JPS6356297 B2 JP S6356297B2 JP 54104862 A JP54104862 A JP 54104862A JP 10486279 A JP10486279 A JP 10486279A JP S6356297 B2 JPS6356297 B2 JP S6356297B2
Authority
JP
Japan
Prior art keywords
amorphous
atomic
rare earth
weight
polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54104862A
Other languages
Japanese (ja)
Other versions
JPS5629639A (en
Inventor
Katsuhiko Yahagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEIKO DENSHI KOGYO KK
Original Assignee
SEIKO DENSHI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEIKO DENSHI KOGYO KK filed Critical SEIKO DENSHI KOGYO KK
Priority to JP10486279A priority Critical patent/JPS5629639A/en
Publication of JPS5629639A publication Critical patent/JPS5629639A/en
Publication of JPS6356297B2 publication Critical patent/JPS6356297B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0611Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0611Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires
    • B22D11/062Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires the metal being cast on the inside surface of the casting wheel

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 本発明は希土類元素、遷移元素および半金属元
素のそれぞれが一種以上の組成からなるアモルフ
アス希土類磁石に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an amorphous rare earth magnet composed of one or more types of rare earth elements, transition elements, and metalloid elements.

従来、希土類磁石(以後R・M磁石と称す。R
は希土類元素、Mはその他の元素を意味する。)
は磁気特性が優れており広く用いられている。
Conventionally, rare earth magnets (hereinafter referred to as R・M magnets.R
represents a rare earth element, and M represents another element. )
has excellent magnetic properties and is widely used.

そして高い磁気特性を得るために、R・M合金
粉末を高密度に結合して磁石としている。一般に
結合は有機バインダーを混合する方法や侵入させ
固化する方法がある又プレス成形後に高温で焼結
する方法がとられている。
In order to obtain high magnetic properties, the R/M alloy powder is combined with high density to form a magnet. Generally, bonding is achieved by mixing an organic binder, by infiltrating the material and solidifying it, or by sintering at high temperature after press molding.

しかし、このような結晶粒の集合体である多結
晶体希土類磁石は磁気特性は他の磁石より優れて
いるとは言え、密度が100%でないため、残留磁
束密度(Br)が高くないし保磁力(Hc)も低
い。
However, although polycrystalline rare earth magnets, which are aggregates of crystal grains, have better magnetic properties than other magnets, their density is not 100%, so their residual magnetic flux density (Br) is not high and their coercivity is low. (Hc) is also low.

また、硬く脆いために機械的に弱くカケやす
い。又靭性がないため加工性も悪い等の多くの欠
点を有している。
Also, because it is hard and brittle, it is mechanically weak and easily breaks. Furthermore, it has many drawbacks such as poor workability due to lack of toughness.

また、アモルフアス希土類・遷移金属合金とし
て研究されているが、これらは基板上に、上記合
金をスパツタリング法、蒸着法、イオンプレーテ
イング法、又、電着(メツキ)法等で部分的に又
は全部をアモルフアス状態にする方法である。
In addition, research is being conducted on amorphous rare earth/transition metal alloys, which can be partially or completely coated onto a substrate by sputtering, vapor deposition, ion plating, or electrodeposition (plating). This is a method to make the amorphous state.

しかし基板に付着しないアモルフアス状態を含
む希土類磁石の薄板、薄片を製造する方法および
製品はまだ見つけられていない。
However, a method and product for producing thin plates and flakes of rare earth magnets containing an amorphous state that do not adhere to substrates have not yet been found.

また、上記のアモルフアス希土類・遷移金属合
金は磁石としての磁気特性である、Br、Hcとも
に著しく悪く、多結晶体希土類磁石に比べてもは
るかに劣る欠点を有する。
Further, the amorphous rare earth/transition metal alloy described above has extremely poor magnetic properties as a magnet, both Br and Hc, and has the disadvantage that it is far inferior to polycrystalline rare earth magnets.

そして、以上の多結晶体希土類磁石、アモルフ
アス希土類・遷移金属合金はいずれも100%の密
度でないため、耐食性、機械的強度、靭性が劣つ
ている欠点を有する。
Both of the polycrystalline rare earth magnets and amorphous rare earth/transition metal alloys described above have a disadvantage of poor corrosion resistance, mechanical strength, and toughness because they do not have 100% density.

本発明は上記欠点等を改良し、磁石の磁気特性
のBr、Hcが大きく優れ、又靭性、機械的強度、
耐食性が従来より良好な、アモルフアス希土類磁
石を提供することを目的とする。
The present invention improves the above-mentioned drawbacks, has greatly superior magnetic properties of Br and Hc, and has excellent toughness, mechanical strength, and
The purpose of the present invention is to provide an amorphous rare earth magnet that has better corrosion resistance than conventional magnets.

多結晶体希土類磁石は希土類元素R(Sm、Pr、
Ce、Sc、Y、La、Nd、Pm、Eu、Gd、Dy、
Ho、Er、Yb、Lu、Tb、Tm)が一種以上と、
他の元素MはCo、Fe、Cu、Mn、Cr、Ni等の一
種以上を主成分とするが、場合によつてMは次に
示す元素一種以上を加えることによつて、磁気特
性が向上する。
Polycrystalline rare earth magnets contain rare earth elements R (Sm, Pr,
Ce, Sc, Y, La, Nd, Pm, Eu, Gd, Dy,
Ho, Er, Yb, Lu, Tb, Tm) is one or more types,
Other elements M are mainly composed of one or more of Co, Fe, Cu, Mn, Cr, Ni, etc., but in some cases, magnetic properties can be improved by adding one or more of the following elements to M. do.

Ti、Zr、Hf、Nb、Ta、W等の遷移金属、
Au、Pt等の貴金属、Zn、In、Sn、Sb等の低融点
金属、Be、Mg等のA族、B、Al、Si、Te、
C等の半金属、半導体元素等がある。
Transition metals such as Ti, Zr, Hf, Nb, Ta, W, etc.
Noble metals such as Au and Pt, low melting point metals such as Zn, In, Sn, and Sb, group A metals such as Be and Mg, B, Al, Si, Te,
There are semimetals such as C, semiconductor elements, etc.

従来、多結晶体希土類磁石として、RCo5
R2Co17、R2Co7、R2(Co1-X MX17(なお、M=
Fe、Cu、Mn、Cr、Ni、Ta、V、Mo、Zr、Ti、
Nb、Ag)、R(Co、Fe)5、R2(Co、Fe)17が知ら
れており、これらから明らかなように希土類元素
Rの組成比は、10原子%〜22原子%の範囲で有効
であることが分かつている。
Conventionally, as polycrystalline rare earth magnets, RCo 5 ,
R 2 Co 17 , R 2 Co 7 , R 2 (Co 1-X M X ) 17 (M=
Fe, Cu, Mn, Cr, Ni, Ta, V, Mo, Zr, Ti,
Nb, Ag), R (Co, Fe) 5 and R 2 (Co, Fe) 17 are known, and it is clear from these that the composition ratio of the rare earth element R is in the range of 10 atomic % to 22 atomic %. It is known to be effective.

本発明の合金成分も主成分は多結晶体希土類磁
石と同一でよいが、更にアモルフアス化しやすい
ように特別の元素を加えたものである。この元素
は半金属のC、B、P、Si、Ge等で原子パーセ
ントで1〜30%含む。
The main components of the alloy of the present invention may be the same as those of the polycrystalline rare earth magnet, but special elements are added to facilitate amorphization. This element is a metalloid such as C, B, P, Si, Ge, etc., and contains 1 to 30% in atomic percent.

そして、1%以下ではアモルフアス化の影響が
少ないし、また30%以上ではアモルフアス化は容
易であるが、磁気特性が悪化してしまう。
If it is less than 1%, the influence of amorphization is small, and if it is more than 30%, amorphization is easy, but the magnetic properties deteriorate.

本発明の製造方法としては、第1図〜第3図に
示すように、上記元素の混合物又は合金1を、全
部加熱溶融した後、ノズル2から噴出させ、これ
を冷却ドラム3や冷却ロール4,5上で急冷して
アモルフアス化した試料6を製造する方法であ
る。
In the manufacturing method of the present invention, as shown in FIGS. 1 to 3, the mixture or alloy 1 of the above elements is heated and melted, and then jetted from a nozzle 2, and then sprayed onto a cooling drum 3 or a cooling roll. , 5 to produce amorphous sample 6.

溶融させる方法は高周波加熱法、カーボンや金
属発熱体による抵抗加熱、白金やIr金属ルツボを
高周波加熱する法、又キセノンランプ等の赤外線
加熱、電子ビーム加熱等がある。
Methods for melting include high frequency heating, resistance heating using a carbon or metal heating element, high frequency heating of a platinum or Ir metal crucible, infrared heating using a xenon lamp, etc., and electron beam heating.

そして希土類元素は酸化又は蒸発しやすいの
で、真空後アルゴン等の不活性ガス中大気圧又は
加圧して溶融する必要がある。
Since rare earth elements are easily oxidized or evaporated, it is necessary to melt them under vacuum and then under atmospheric pressure or pressurization in an inert gas such as argon.

これらの溶融合金は耐食性、耐熱性の良い白金
やPr・Rh合金、Irノズルより落下もしくは減圧
しながら噴出される。この調整を適当にすること
によつて、アモルフアス化の割合や、アモルフア
ス試料の厚さの調整ができる。
These molten alloys are ejected from platinum, Pr/Rh alloys, or Ir alloys, which have good corrosion resistance and heat resistance, while falling or under reduced pressure. By making this adjustment appropriately, the rate of amorphization and the thickness of the amorphous sample can be adjusted.

良質にアモルフアス希土類磁石を得るには、こ
の溶融合金を熱伝導性の良い回転体ドラムやロー
ル上の面に噴出させて急冷する必要がある。この
ために回転体はAl、Ag、Cu、Fe、等または合金
等の熱伝導性の良好な金属や合金が良い。
In order to obtain a high-quality amorphous rare earth magnet, it is necessary to spray this molten alloy onto the surface of a rotating drum or roll with good thermal conductivity and rapidly cool it. For this purpose, the rotating body is preferably made of a metal or alloy with good thermal conductivity such as Al, Ag, Cu, Fe, or an alloy.

しかし、耐熱性が必要な場合は耐熱性の良い
Mo、Ir、Wやこれらの合金製か又は回転体表面
に板として貼りつける必要がある。更に表面層を
ライニング加工すれば良好となる。
However, if heat resistance is required, use
It must be made of Mo, Ir, W, or an alloy thereof, or it must be attached as a plate to the surface of the rotating body. Further, if the surface layer is subjected to lining processing, it becomes better.

回転体は高速回転することによつて、冷却速度
を変化できるし又試料の厚さ、アモルフアス化の
割合に関係する。このため回転速度は1000rpm以
上が必要である。このようにして急冷することに
よつて10万℃/sec以上の冷却速度が得られ、大
部分アモルフアス化したリボン状の長い連続薄板
が得られる。
By rotating the rotating body at high speed, the cooling rate can be changed, and it is also related to the thickness of the sample and the rate of amorphization. Therefore, the rotation speed needs to be 1000 rpm or more. By rapidly cooling in this manner, a cooling rate of 100,000° C./sec or more can be obtained, and a long ribbon-like continuous thin plate that is mostly amorphous can be obtained.

また、回転体の直径も溶融合金の冷却時間との
関係があるため、50〜500φ程度は必要である。
良質なアモルフアス試料を得るには試料の厚さは
10〜100μ程度の場合であり100μ以上厚いとアモ
ルフアス化の割合が少なくなる。又、10μ以下だ
と連続して製造することが難しくなる。
Furthermore, since the diameter of the rotating body is also related to the cooling time of the molten alloy, it is necessary to have a diameter of about 50 to 500φ.
To obtain a good quality amorphous sample, the sample thickness must be
The thickness is about 10 to 100μ, and if it is thicker than 100μ, the rate of amorphous formation decreases. Moreover, if it is less than 10 μm, it will be difficult to manufacture it continuously.

このようにして製造されたアモルフアス希土類
磁石は多結晶体、スパツター、蒸着法等で製造さ
れたものより密度が100%であり、又急冷のため
成分の偏析がないこと、又結晶粒界がないことな
どから磁気特性のBrは高く、耐食性、靭性、強
度が良好となる。しかも短時間に連続して板状に
製造できることから、製造工数も少なくコスト的
にも安価となる。
The amorphous rare earth magnet produced in this way has a density 100% higher than that produced by polycrystalline, sputtering, vapor deposition, etc., and due to rapid cooling, there is no segregation of components, and there are no grain boundaries. For this reason, the magnetic properties of Br are high, and corrosion resistance, toughness, and strength are good. Furthermore, since the plate shape can be manufactured continuously in a short period of time, the number of manufacturing steps is small and the cost is also low.

また、このように急冷で得たアモルフアス試料
はリボン状、薄板状であり、曲げても折れ難い
し、硬さも非常に硬く、磁壁が動き難くなるため
に磁気特性のHcも大きくなる。
In addition, amorphous amorphous samples obtained by rapid cooling in this way are ribbon-like or thin-plate-like, and are difficult to break even when bent, and are extremely hard, making it difficult for the domain walls to move, resulting in a large magnetic property, Hc.

以下この発明の実施例について説明をする。 Examples of the present invention will be described below.

実施例 1 金属Sm13重量%、Pr13重量%、Fe15重量%、
Ag5重量%、Hf1重量%、Ti1重量%、そして半
金属のC、B、Si、Geを各々1重量%、残りは
Coから成る材料を、高周波加熱法によつてAr雰
囲気中で溶融し、融点より50℃以内の温度に保
ち、白金、ロジウム合金のノズルより連続的に落
下させた。そして第3図に示したように片ロール
の直径150φ、ステンレス鋼(18―8)の
3000rpm回転体面上での急冷(10万℃/sec)し
た。得られたリボンは厚さ10μ〜50μで、幅は1
mm〜30mm、長さ数mの物であつた。なお、上記材
料の重量%を原子%に換算すると、Sm6原子%、
Pr6原子%、Fe17原子%、Ag3原子%、Hr1原子
%、Ti1原子%、C5原子%、B6原子%、Si2原子
%、Ge1原子%となる。このようにして作成した
アモルフアス試料について調べた結果は次の通り
であつた。
Example 1 Metal Sm13% by weight, Pr13% by weight, Fe15% by weight,
5% by weight of Ag, 1% by weight of Hf, 1% by weight of Ti, and 1% by weight each of semimetals C, B, Si, and Ge, and the rest
A material made of Co was melted in an Ar atmosphere using high-frequency heating, kept at a temperature within 50°C of the melting point, and continuously dropped through a platinum-rhodium alloy nozzle. As shown in Figure 3, one roll has a diameter of 150φ and is made of stainless steel (18-8).
Rapid cooling (100,000°C/sec) was performed on the surface of a rotating body at 3000 rpm. The resulting ribbon has a thickness of 10μ to 50μ and a width of 1
It was mm to 30 mm and several meters long. In addition, when converting the weight% of the above materials to atomic%, Sm6 atomic%,
Pr6 atomic%, Fe17 atomic%, Ag3 atomic%, Hr1 atomic%, Ti1 atomic%, C5 atomic%, B6 atomic%, Si2 atomic%, Ge1 atomic%. The results of the investigation on the amorphous amorphous sample thus prepared were as follows.

磁気特性: アモルフアスBr=12300G(ガウス) Hc=7800Oe(エルステツド) 多結晶体Br=10600G(ガウス) Hc=6300Oe(エルステツド) 機械的強度: アモルフアスは107Kg/mm2の破壊強度であつた
が、多結晶体は39Kg/mm2であつた。
Magnetic properties: Amorphous Br = 12300G (Gauss) Hc = 7800Oe (Oersted) Polycrystalline Br = 10600G (Gauss) Hc = 6300Oe (Oersted) Mechanical strength: Amorphous amorphous had a breaking strength of 107Kg/ mm2 , but The crystal mass was 39Kg/mm 2 .

靭 性: アモルフアスの曲げ強度は測定不可すなわち、
90度以上でも折れずに曲がるだけであつたが、一
方、多結晶体のそれば12Kg/mm2で折れてしまつ
た。
Toughness: The bending strength of amorphous amorphous metal cannot be measured, i.e.
The polycrystalline material could only be bent without breaking even at an angle of 90 degrees or more, but the polycrystalline material broke at 12 kg/mm 2 .

耐食性: アモルフアスは水中で一日放置しても表面の鏡
面に曇りの発生はないが、多結晶は完全に黒く変
色している。
Corrosion resistance: Even if amorphous amorphous is left in water for a day, the mirror surface does not become cloudy, but polycrystalline material turns completely black.

X線回折では、大部分(90%以上)はアモルフ
アス化していた。
X-ray diffraction revealed that most of the material (more than 90%) was amorphous.

実施例 2 金属Pr26重量%、Fe15重量%、Cu2重量%、
Ag2重量%、Nb1重量%、V1重量%、P3重量%、
Si7重量%残りCoからなる成分についても同様に
実施例1で製造した。
Example 2 Metal Pr26% by weight, Fe15% by weight, Cu2% by weight,
Ag2 weight%, Nb1 weight%, V1 weight%, P3 weight%,
A component consisting of 7% by weight of Si and the remainder Co was also produced in the same manner as in Example 1.

この結果、約100%近くアモルフアス化してい
た。
As a result, nearly 100% of the material was amorphous.

なお、上記材料の重量%を原子%に換算する
と、Pr10原子%、Fe14原子%、Cu2原子%、Ag1
原子%、Nb1原子%、V1原子%、P5原子%、Si1
原子%となる。
In addition, when converting the weight% of the above materials to atomic%, Pr10 atomic%, Fe14 atomic%, Cu2 atomic%, Ag1
atomic%, Nb1 atomic%, V1 atomic%, P5 atomic%, Si1
It becomes atomic%.

また、このアモルフアス試料の特性は次のとお
りであつた。
Further, the characteristics of this amorphous amorphous sample were as follows.

磁気特性: アモルフアスBr=12500G(ガウス) Hc=7900Oe(エルステツド) 多結晶体Br=10800G(ガウス) Hc=6500Oe(エルステツド) 機械的強度: アモルフアスは104Kg/mm2の破壊強度であつた
が、多結晶体は35Kg/mm2であつた。
Magnetic properties: Amorphous Br = 12500G (Gauss) Hc = 7900Oe (Oersted) Polycrystalline Br = 10800G (Gauss) Hc = 6500Oe (Oersted) Mechanical strength: Amorphous amorphous had a breaking strength of 104Kg/ mm2 , but The crystal mass was 35Kg/mm 2 .

靭性、耐食性は実施例1とほぼ同じであつた。 Toughness and corrosion resistance were almost the same as in Example 1.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するための装置の一実施
例を示す概略斜視図である。すなわち冷却ドラム
によつて急冷する装置である。第2図は本発明を
実施するための装置の他の実施例を示す概略斜視
図である。すなわち双ロールによつて圧延しなが
ら急冷する装置である。第3図は本発明を実施す
るための装置の他の実施例を示す概略図である。
すなわち単ロール面上で急冷する装置である。
FIG. 1 is a schematic perspective view showing an embodiment of an apparatus for implementing the present invention. In other words, it is a device that rapidly cools the material using a cooling drum. FIG. 2 is a schematic perspective view showing another embodiment of the apparatus for carrying out the present invention. In other words, it is a device that rapidly cools the material while rolling it using twin rolls. FIG. 3 is a schematic diagram showing another embodiment of the apparatus for carrying out the invention.
In other words, it is a device that performs rapid cooling on the surface of a single roll.

Claims (1)

【特許請求の範囲】[Claims] 1 希土類元素が1種以上で10原子%〜22原子
%、半金属元素(C、B、P、Si、Ge)が1種
以上で1原子%〜30原子%、残りが遷移金属
(Co、Fe、Cu、Mn、Cr、Ni)の1種以上から
なる溶融金属を噴出させ超急冷して作製したアモ
ルフアス希土類磁石。
1 One or more rare earth elements are 10 to 22 atom%, one or more metalloid elements (C, B, P, Si, Ge) are 1 to 30 atom%, and the rest are transition metals (Co, Amorphous rare earth magnets made by ejecting and ultra-quenching molten metal consisting of one or more of Fe, Cu, Mn, Cr, and Ni).
JP10486279A 1979-08-17 1979-08-17 Amorphous rare earth magnets and producing thereof Granted JPS5629639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10486279A JPS5629639A (en) 1979-08-17 1979-08-17 Amorphous rare earth magnets and producing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10486279A JPS5629639A (en) 1979-08-17 1979-08-17 Amorphous rare earth magnets and producing thereof

Publications (2)

Publication Number Publication Date
JPS5629639A JPS5629639A (en) 1981-03-25
JPS6356297B2 true JPS6356297B2 (en) 1988-11-08

Family

ID=14392052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10486279A Granted JPS5629639A (en) 1979-08-17 1979-08-17 Amorphous rare earth magnets and producing thereof

Country Status (1)

Country Link
JP (1) JPS5629639A (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4496395A (en) * 1981-06-16 1985-01-29 General Motors Corporation High coercivity rare earth-iron magnets
JPS5822351A (en) * 1981-08-04 1983-02-09 Seiko Epson Corp Rare earth metal-cobalt permanent magnet
JPS5822350A (en) * 1981-08-04 1983-02-09 Seiko Epson Corp Rare earth metal-cobalt permanent magnet
JPS5822349A (en) * 1981-08-04 1983-02-09 Seiko Epson Corp Rare earth metal-cobalt permanent magnet
JPS58136740A (en) * 1982-02-05 1983-08-13 Mitsubishi Steel Mfg Co Ltd Rapidly cooled magnet alloy and its manufacture
JPH0649912B2 (en) * 1982-02-05 1994-06-29 三菱製鋼株式会社 Quenched magnet alloy and method for producing the same
US4792368A (en) * 1982-08-21 1988-12-20 Sumitomo Special Metals Co., Ltd. Magnetic materials and permanent magnets
CA1316375C (en) * 1982-08-21 1993-04-20 Masato Sagawa Magnetic materials and permanent magnets
JPS5946008A (en) * 1982-08-21 1984-03-15 Sumitomo Special Metals Co Ltd Permanent magnet
US5172751A (en) * 1982-09-03 1992-12-22 General Motors Corporation High energy product rare earth-iron magnet alloys
US5174362A (en) * 1982-09-03 1992-12-29 General Motors Corporation High-energy product rare earth-iron magnet alloys
US4851058A (en) * 1982-09-03 1989-07-25 General Motors Corporation High energy product rare earth-iron magnet alloys
EP0108474B2 (en) * 1982-09-03 1995-06-21 General Motors Corporation RE-TM-B alloys, method for their production and permanent magnets containing such alloys
JPS5939789U (en) * 1982-09-07 1984-03-14 三菱電機株式会社 Compressor support device
JPS5940789U (en) * 1982-09-07 1984-03-15 三菱電機株式会社 refrigerator box
JPS5985845A (en) * 1982-11-09 1984-05-17 Mitsubishi Steel Mfg Co Ltd Rapidly cooled magnet alloy
JPS5985844A (en) * 1982-11-09 1984-05-17 Mitsubishi Steel Mfg Co Ltd Rapidly cooled magnet alloy
EP0125347B1 (en) * 1983-05-06 1990-04-18 Sumitomo Special Metals Co., Ltd. Isotropic magnets and process for producing same
US4840684A (en) * 1983-05-06 1989-06-20 Sumitomo Special Metals Co, Ltd. Isotropic permanent magnets and process for producing same
US4597938A (en) * 1983-05-21 1986-07-01 Sumitomo Special Metals Co., Ltd. Process for producing permanent magnet materials
US4601875A (en) * 1983-05-25 1986-07-22 Sumitomo Special Metals Co., Ltd. Process for producing magnetic materials
CA1235631A (en) * 1984-02-28 1988-04-26 Hitoshi Yamamoto Process for producing permanent magnets and products thereof
JPS61243154A (en) * 1985-02-25 1986-10-29 新日本製鐵株式会社 Permanent magnet alloy enhanced in residual magnetization and its magnetic body and its production
JPH0696925A (en) * 1992-10-28 1994-04-08 Mitsubishi Steel Mfg Co Ltd Bond magnet
KR100763496B1 (en) 2006-05-02 2007-10-04 학교법인연세대학교 Two-phase metallic glasses with multi-pass deformation properties
CN103658575B (en) * 2013-12-09 2016-04-06 北京工业大学 A kind of internal roller type single roller rapid quenching prepares the method for amorphous thin ribbon

Also Published As

Publication number Publication date
JPS5629639A (en) 1981-03-25

Similar Documents

Publication Publication Date Title
JPS6356297B2 (en)
JP2611994B2 (en) Fe-based alloy powder and method for producing the same
TW226034B (en)
JPH0336243A (en) Amorphous alloy excellent in mechanical strength, corrosion resistance, and workability
JPWO2005012591A1 (en) Sputtering target and manufacturing method thereof
JPS6123848B2 (en)
JP3365625B2 (en) Nanocomposite magnet powder and method for producing magnet
WO2004028724A1 (en) Method and apparatus for producing amorphous alloy sheet, and amorphous alloy sheet produced using the same
JPH0851010A (en) Green compact of soft magnetic alloy, production method thereof and coating powder therefor
Chen et al. Preparation of glassy metals
CN113388766B (en) Manganese-based nanocrystalline/amorphous composite structure alloy and preparation method thereof
JP3604308B2 (en) Raw material alloy for nanocomposite magnet, powder and manufacturing method thereof, and nanocomposite magnet powder and magnet manufacturing method
JP2000348919A (en) Nanocomposite crystalline sintered magnet and manufacture of the same
JP3299887B2 (en) Hard magnetic material
CN114496439A (en) Soft magnetic alloy, magnetic core, and magnetic component
JP4529198B2 (en) Iron-based permanent magnet containing a small amount of rare earth metal and method for producing the same
JPS6037179B2 (en) amorphous magnetic alloy
JP3534218B2 (en) Method for producing Fe-based soft magnetic metallic glass sintered body
JP4374633B2 (en) Method for producing raw material alloy for nanocomposite magnet, and method for producing nanocomposite magnet powder and magnet
JPH08337839A (en) Soft magnetic alloy compacted body and its production
JPH10324939A (en) Cobalt-base amorphous soft magnetic alloy
WO2021132272A1 (en) Alloy
JPH07252561A (en) Ti-zr alloy
JP2755661B2 (en) Manufacturing method of hydrogen storage alloy
JPH0693394A (en) Aluminum-base alloy with high strength and corrosion resistance