JPS6355862A - Hydrogen-adsorptive electrode - Google Patents

Hydrogen-adsorptive electrode

Info

Publication number
JPS6355862A
JPS6355862A JP61200916A JP20091686A JPS6355862A JP S6355862 A JPS6355862 A JP S6355862A JP 61200916 A JP61200916 A JP 61200916A JP 20091686 A JP20091686 A JP 20091686A JP S6355862 A JPS6355862 A JP S6355862A
Authority
JP
Japan
Prior art keywords
hydrogen
electrode
conductive
hydrogen storage
conductive whiskers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61200916A
Other languages
Japanese (ja)
Other versions
JPH07107843B2 (en
Inventor
Nobuyuki Yanagihara
伸行 柳原
Munehisa Ikoma
宗久 生駒
Hiroshi Kawano
川野 博志
Isao Matsumoto
功 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61200916A priority Critical patent/JPH07107843B2/en
Publication of JPS6355862A publication Critical patent/JPS6355862A/en
Publication of JPH07107843B2 publication Critical patent/JPH07107843B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase mechanical strength and extend a charging and discharging cycle life by adding conductive whiskers in a hydrogen-absorptive alloy or a hydride. CONSTITUTION:Conductive whickers are contained at least in a hydrogen- absorptive alloy or a hydride, wherein conductive whiskers are composed of potassium titanate (K2O.nTiO2) and the content of conductive whiskers is preferably 5-20 wt%. With the arrangement, the hydrogen-absorptive alloy particles, fluororesin fibers and conductive whickers are effectively entangled, resulting in an improvement of mechanical strength of the electrode itself and a long life is obtained by reducing the falling of the hydrogen-absorptive alloy because of a small expansion degree in repeated charging and discharging cycle and flexibility of the electrode.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はアルカリ蓄電池に用いる水素吸蔵電極の改良に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to improvements in hydrogen storage electrodes used in alkaline storage batteries.

従来の技術 従来、この種の水素吸蔵合金又は水素化物からなる水素
吸蔵電極は、電気化学的に水素の吸蔵と放出ができるこ
とからアルカリ蓄電池の負極に用いられている。この水
素吸蔵電極は機械的強度が弱く、充・放電を繰り返すと
電極自体が膨張するために亀裂などが発生する。従って
、このような問題点を解決するために結着材を含有させ
て粒子間の結合力を増強している提案もある(特開昭5
3−103541 )。
BACKGROUND ART Conventionally, hydrogen storage electrodes made of hydrogen storage alloys or hydrides of this kind have been used as negative electrodes of alkaline storage batteries because they can electrochemically store and release hydrogen. This hydrogen storage electrode has low mechanical strength, and when it is repeatedly charged and discharged, the electrode itself expands and cracks occur. Therefore, in order to solve these problems, some proposals include adding a binder to increase the bonding force between particles (Japanese Unexamined Patent Application Publication No. 1989-1992).
3-103541).

発明が解決しようとする問題点 この様な従来の構成では、水素吸蔵合金粒子間の結着力
が弱く充・放電サイクルを繰り返すことによって電極自
体が膨張することから発生する亀裂や脱落現象を防止す
ることは難しい。この現象は電極の内部抵抗の増大と活
物質の減少によって容量の低下をまぬきサイクル寿命を
短くするという問題があった。
Problems to be Solved by the Invention In such a conventional structure, the bonding force between the hydrogen storage alloy particles is weak, and it is difficult to prevent cracks and falling-off phenomena that occur due to the expansion of the electrode itself due to repeated charging and discharging cycles. That's difficult. This phenomenon has the problem of increasing the internal resistance of the electrode and decreasing the amount of active material, resulting in a decrease in capacity and a shortened cycle life.

本発明は、このような問題点を解決するもので電極自体
の導電性を低下させないで、機械的強度を増加させ、充
・放電サイクル寿命の伸長を図ることを目的とするもの
である。
The present invention is intended to solve these problems, and aims to increase the mechanical strength of the electrode without reducing its conductivity, thereby extending the charge/discharge cycle life.

問題点を解決するだめの手段 この問題点を解決するために本発明は、水素吸蔵合金又
は水素化物に少なくとも導電性ウィスカーを含有し、し
かもこの導電性ウィスカーがチタン酸カリウム(K2O
・nTio2)からなり、電極自体の機械的強度の増大
による長寿命化を図ったものである。
Means for Solving the Problem In order to solve this problem, the present invention includes at least a conductive whisker in the hydrogen storage alloy or hydride, and the conductive whisker is made of potassium titanate (K2O).
・nTio2), which aims to extend the lifespan by increasing the mechanical strength of the electrode itself.

作用 この様な構成により、水素吸蔵合金又は水素化物の粉末
と細かい繊維状態を形成している導電性のウィスカーが
絡みあって結合しているので、この繊維が電極自体の膨
張を緩和して強度の増大を図るものである。
Function: With this structure, the hydrogen storage alloy or hydride powder and the conductive whiskers forming fine fibers are intertwined and bonded, so these fibers reduce the expansion of the electrode itself and increase its strength. The aim is to increase the number of employees.

以下、その詳細は実施例により説明する。The details will be explained below using examples.

実施例 市販のLa 、Ni 、Goを一定の組成比になるよう
に秤量して混合し、アーク溶解法により加熱溶解させた
。−例として、合金組成がLa、、。N i s、5C
O15になるように選択し、負極用の水素吸蔵電極とし
た。この水素吸蔵合金をボールミルなどで38μm以下
の微粉末とし、この微粉末に適量のフッ素樹脂分散液と
導電性ウィスカーをペースト状に混合し、このペースト
を集電体であるパンチングメタルの両面に塗着しだ後、
加圧、乾燥して電極とした。また、必要に応じて合金を
水素化物にして用いることも出来る。本実施例では、導
電性ウィスカーとして商品名デントールBK−200,
300などで市販されている繊維状チタン酸カリウム(
K2O・nTi0□)を用いた。この繊維の平均長さは
10−・20μmであり、平均直径は0.2〜0.5μ
mである。
Example Commercially available La, Ni, and Go were weighed and mixed to a constant composition ratio, and heated and melted by an arc melting method. - As an example, the alloy composition is La. Nis, 5C
O15 was selected and used as a hydrogen storage electrode for the negative electrode. This hydrogen storage alloy is made into a fine powder of 38 μm or less using a ball mill, etc., an appropriate amount of fluororesin dispersion and conductive whiskers are mixed into a paste, and this paste is applied to both sides of the punched metal that is the current collector. After getting dressed,
It was pressurized and dried to form an electrode. Further, if necessary, the alloy can be used in the form of a hydride. In this example, the conductive whiskers used were Dentol BK-200 (trade name),
Fibrous potassium titanate (commercially available as 300 etc.)
K2O・nTi0□) was used. The average length of this fiber is 10-20 μm, and the average diameter is 0.2-0.5 μm.
It is m.

この負極のサイクル寿命試験に用いたアルカリ蓄電池を
第1図に示す。第1図において、1は水素吸蔵合金から
なる負極、2は焼結式酸化ニッケル正極、3はセパレー
タ、4はアルカリ性電解液、5は注液栓、6は電そうで
ある。水素吸蔵合金10y−(2,6ムhに相当する)
に対して、導電性ウィスカーの添加量を変えて加えた。
The alkaline storage battery used in this negative electrode cycle life test is shown in FIG. In FIG. 1, 1 is a negative electrode made of a hydrogen storage alloy, 2 is a sintered nickel oxide positive electrode, 3 is a separator, 4 is an alkaline electrolyte, 5 is a liquid pouring plug, and 6 is an electric plug. Hydrogen storage alloy 10y- (equivalent to 2.6mmh)
The conductive whiskers were added in different amounts.

そして、負極のサイクル寿命がわかる様に負極容量より
正極容量を太きくし、負極律則とした。電池の充・放電
条件としては、電流soomaで7.5時間(150%
充電)し、500m&で放電した。導電性ウィスカーを
添加しない負極を用いた従来型電池と比較して調べた。
Then, in order to understand the cycle life of the negative electrode, the positive electrode capacity was made larger than the negative electrode capacity, and the negative electrode rule was adopted. The battery charging/discharging conditions are 7.5 hours (150%
(charged) and discharged at 500m&. A comparison was made with a conventional battery using a negative electrode without conductive whiskers.

その結果を第2図と第3図に示す。第2図は、導電性ウ
ィスカーの添加量と50サイクル後の放電容量を測定し
た結果であり、初期容量の80チ以上容量を保持する必
要があることを考慮に入れると、5〜20重貴チが適切
な範囲である。5重量%以下では、電極の機械的強度を
上げる効果が少なく、20重量係以上では、電極自体の
密度が小さくなり、逆に強度が弱くなって来ると共に電
極単位重量当たりの有効水素量が減少するので放電容量
も低下して来る。よって、サイクル寿命の伸長などの性
能の観点からも添加量は5〜20重量係が最適な範囲で
ある。
The results are shown in FIGS. 2 and 3. Figure 2 shows the results of measuring the amount of conductive whiskers added and the discharge capacity after 50 cycles. is within an appropriate range. If it is less than 5% by weight, there is little effect of increasing the mechanical strength of the electrode, and if it is more than 20% by weight, the density of the electrode itself becomes smaller, and the strength becomes weaker, and the effective amount of hydrogen per unit weight of the electrode decreases. Therefore, the discharge capacity also decreases. Therefore, from the viewpoint of performance such as extension of cycle life, the optimum addition amount is 5 to 20% by weight.

さらに、この範囲の中で一例として添加量1゜重量係の
本発明型負極を用いた電池のサイクル寿命試験行なった
結果を従来型負極を用いた電池と比較して第3図に示し
である。第3図において、従来型負極を用いた電池では
50サイクル後の容量が初期の容量から70%まで低下
している。これに対して、本発明型負極を用いた電池は
50サイクル後でも96チの容量を保持している。また
、100サイクル後では83%の容量を持っていること
から、サイクル寿命が著しく向上している。
Furthermore, within this range, as an example, a cycle life test was conducted on a battery using the negative electrode of the present invention with an additive amount of 1° by weight, and the results are shown in Figure 3 in comparison with a battery using a conventional negative electrode. . In FIG. 3, in the battery using the conventional negative electrode, the capacity after 50 cycles has decreased to 70% of the initial capacity. In contrast, the battery using the negative electrode of the present invention maintains a capacity of 96 cm even after 50 cycles. Furthermore, since the capacity was 83% after 100 cycles, the cycle life was significantly improved.

ここでは結着材として繊維状のフッ素樹脂を採用してい
ることで、水素吸蔵合金粒子、フッ素樹脂の繊維、導電
性ウィスカーが効果的に絡み合って電極自体の機械的強
度を向上させ、充・放電サイクルを繰り返しても膨張の
度合いが小さく、また、柔軟性があるなどの理由から水
素吸蔵合金の脱落も少なく長寿命化が図れたものと考え
られる。
By using fibrous fluororesin as the binder, the hydrogen storage alloy particles, fluororesin fibers, and conductive whiskers are effectively intertwined, improving the mechanical strength of the electrode itself and improving charging and It is thought that the degree of expansion is small even after repeated discharge cycles, and due to its flexibility, there is less chance of the hydrogen storage alloy falling off, resulting in a longer life.

また、本実施例では集電体としてパンチングメタルを用
いたが、発砲状ニッケル多孔体用いるとこの格子の作用
によってさらに効果が上がる。
Further, in this embodiment, a punched metal was used as the current collector, but if a foamed nickel porous body is used, the effect of the lattice will be even higher.

発明の効果 以上のように、本発明によれば充・放電サイクル寿命の
長い水素吸蔵電極が得られるという効果が得られる。
Effects of the Invention As described above, the present invention has the effect of providing a hydrogen storage electrode with a long charge/discharge cycle life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に用いたアルカリ蓄電池の構造
を示す断面略図、第2図は導電性ウィスカーの添加量に
おける50サイクル後の容量を示した図、第3図は本発
明の負極を用いた電池と、従来型負極を用いた電池との
サイクル寿命を比較した図である。 1・・・・・・負極、2・・・・・・正極、3・・・・
・・セパレータ、4・・・・・・アルカリ電解液、6・
・・・・・注液栓、6・・・・・・電そう。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名菓 
1 図              1− 負 4々2
−正 4憂 第2図
Figure 1 is a schematic cross-sectional view showing the structure of an alkaline storage battery used in an example of the present invention, Figure 2 is a diagram showing the capacity after 50 cycles depending on the amount of conductive whiskers added, and Figure 3 is a negative electrode of the present invention. FIG. 3 is a diagram comparing the cycle life of a battery using a conventional negative electrode and a battery using a conventional negative electrode. 1...Negative electrode, 2...Positive electrode, 3...
...Separator, 4...Alkaline electrolyte, 6.
...Filling tap, 6...Let's turn it on. Name of agent: Patent attorney Toshio Nakao and one other name
1 Figure 1- Negative 4-2
-Correct 4 Worries Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)水素吸蔵合金又は水素化物に少なくとも導電性ウ
ィスカーを含有することを特徴とする水素吸蔵電極。
(1) A hydrogen storage electrode characterized in that a hydrogen storage alloy or hydride contains at least conductive whiskers.
(2)水素吸蔵合金又は水素化物に含有する導電性ウィ
スカーがチタン酸カリウム(K_2O・nTiO_2)
からなることを特徴とする特許請求の範囲第1項記載の
水素吸蔵電極。
(2) The conductive whisker contained in the hydrogen storage alloy or hydride is potassium titanate (K_2O・nTiO_2)
The hydrogen storage electrode according to claim 1, characterized in that it consists of:
(3)導電性ウィスカーの含有量が5〜20重量パーセ
ントである特許請求の範囲第1項記載の水素吸蔵電極。
(3) The hydrogen storage electrode according to claim 1, wherein the content of conductive whiskers is 5 to 20% by weight.
JP61200916A 1986-08-27 1986-08-27 Hydrogen storage electrode Expired - Lifetime JPH07107843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61200916A JPH07107843B2 (en) 1986-08-27 1986-08-27 Hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61200916A JPH07107843B2 (en) 1986-08-27 1986-08-27 Hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPS6355862A true JPS6355862A (en) 1988-03-10
JPH07107843B2 JPH07107843B2 (en) 1995-11-15

Family

ID=16432406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61200916A Expired - Lifetime JPH07107843B2 (en) 1986-08-27 1986-08-27 Hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JPH07107843B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196280A (en) * 2005-01-13 2006-07-27 Univ Of Fukui Composite sheet body and its manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60172166A (en) * 1984-02-16 1985-09-05 Matsushita Electric Ind Co Ltd Metal hydride negative electrode for alkaline battery
JPS6166372A (en) * 1984-09-06 1986-04-05 Sanyo Electric Co Ltd Hydrogen-occlusion electrode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60172166A (en) * 1984-02-16 1985-09-05 Matsushita Electric Ind Co Ltd Metal hydride negative electrode for alkaline battery
JPS6166372A (en) * 1984-09-06 1986-04-05 Sanyo Electric Co Ltd Hydrogen-occlusion electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196280A (en) * 2005-01-13 2006-07-27 Univ Of Fukui Composite sheet body and its manufacturing method
JP4644801B2 (en) * 2005-01-13 2011-03-09 国立大学法人福井大学 Composite sheet body and method for producing the same

Also Published As

Publication number Publication date
JPH07107843B2 (en) 1995-11-15

Similar Documents

Publication Publication Date Title
JP2575840B2 (en) Dry manufacturing method of hydrogen storage alloy electrode
JP3541090B2 (en) Positive active material for alkaline storage battery and method for producing the same
JPS6355862A (en) Hydrogen-adsorptive electrode
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JPH03179664A (en) Hydrogen storage electrode for alkaline storage battery
JP2558624B2 (en) Nickel-hydrogen alkaline storage battery
JP3071026B2 (en) Metal hydride storage battery
JPH07107848B2 (en) Non-sintered positive electrode for alkaline storage battery
JP2002319429A (en) Alkali storage battery
JPH0763004B2 (en) Sealed alkaline storage battery
JPH1197002A (en) Hydrogen storage alloy electrode for alkaline storage battery
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JP2530281B2 (en) Alkaline storage battery
JP3268013B2 (en) Hydrogen storage alloy electrode
JP3330088B2 (en) Negative electrode for secondary battery
JPH0471311B2 (en)
JPS6222370A (en) Nickel-hydrogen alkaline storage battery
JPS61176066A (en) Hydrogen occlusion electrode
JP3071033B2 (en) Hydrogen storage electrode
JPH09115512A (en) Hydrogen storage alloy electrode for alkaline storage battery
JPH0795443B2 (en) Sealed alkaline storage battery
JPS61168869A (en) Metal-hydrogen alkaline storage battery
JPH07103434B2 (en) Hydrogen storage Ni-based alloy and sealed Ni-hydrogen storage battery
JPS6147076A (en) Metal-hydrogen alkaline storage battery
JPH0586622B2 (en)