JPH07107843B2 - Hydrogen storage electrode - Google Patents

Hydrogen storage electrode

Info

Publication number
JPH07107843B2
JPH07107843B2 JP61200916A JP20091686A JPH07107843B2 JP H07107843 B2 JPH07107843 B2 JP H07107843B2 JP 61200916 A JP61200916 A JP 61200916A JP 20091686 A JP20091686 A JP 20091686A JP H07107843 B2 JPH07107843 B2 JP H07107843B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
electrode
negative electrode
storage electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61200916A
Other languages
Japanese (ja)
Other versions
JPS6355862A (en
Inventor
伸行 柳原
宗久 生駒
博志 川野
功 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61200916A priority Critical patent/JPH07107843B2/en
Publication of JPS6355862A publication Critical patent/JPS6355862A/en
Publication of JPH07107843B2 publication Critical patent/JPH07107843B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 産業上の利用分野 本発明はアルカリ蓄電池に用いる水素吸蔵電極の改良に
関するものである。
TECHNICAL FIELD The present invention relates to an improvement of a hydrogen storage electrode used in an alkaline storage battery.

従来の技術 従来、この種の水素吸蔵合金又は水素化物からなる水素
吸蔵電極は、電気化学的に水素の吸蔵と放出ができるこ
とからアルカリ蓄電池の負極に用いられている。この水
素吸蔵電極は機械的強度が弱く、充・放電を繰り返すと
電極自体が膨張するために亀裂などが発生する。従っ
て、このような問題点を解決するために結着材を含有さ
せて粒子間の結合力を増強している提案もある(特開昭
53−103541)。
2. Description of the Related Art Conventionally, a hydrogen storage electrode made of this kind of hydrogen storage alloy or hydride has been used as a negative electrode of an alkaline storage battery because it can electrochemically store and release hydrogen. This hydrogen storage electrode has a weak mechanical strength, and when repeated charging and discharging, the electrode itself expands and cracks occur. Therefore, in order to solve such a problem, there is also a proposal that a binding agent is contained to enhance the binding force between particles (Japanese Patent Laid-Open No. S58-242242).
53-103541).

発明が解決しようとする問題点 この様な従来の構成では、水素吸蔵合金粒子間の結着力
が弱く充・放電サイクルを繰り返すことによって電極自
体が膨張することから発生する亀裂や脱落現象を防止す
ることは難しい。この現象は電極の内部抵抗の増大と活
物質の減少によって容量の低下をまねきサイクル寿命を
短くするという問題があった。
Problems to be Solved by the Invention In such a conventional configuration, the binding force between the hydrogen-absorbing alloy particles is weak, and cracks and detachment phenomena caused by expansion of the electrode itself due to repeated charge / discharge cycles are prevented. It's difficult. This phenomenon has a problem in that the internal resistance of the electrode is increased and the active material is decreased, resulting in a decrease in capacity and a shortened cycle life.

本発明は、このような問題点を解決するもので電極自体
が導電性を低下させないで、機械的強度を増加させ、充
・放電サイクル寿命の伸長を図ることを目的とするもの
である。
The present invention solves such a problem, and an object thereof is to increase the mechanical strength and extend the charge / discharge cycle life without reducing the conductivity of the electrode itself.

問題点を解決するための手段 この問題点を解決するために本発明は、水素吸蔵合金又
は水素化物に少なくとも導電性ウィスカーと繊維状のフ
ッ素樹脂を含有し、しかもこの導電性ウィスカーがチタ
ン酸カリウム(K2O・nTiO2)からなり、電極自体の機械
的強度の増大による長寿命化を図ったものである。
Means for Solving the Problems To solve this problem, the present invention provides a hydrogen storage alloy or hydride containing at least a conductive whisker and a fibrous fluororesin, and the conductive whisker is potassium titanate. It is composed of (K 2 O · nTiO 2 ), and has a long life due to an increase in mechanical strength of the electrode itself.

作 用 この様な構成により、水素吸蔵合金又は水素化物の粉末
と細かい繊維状態を形成している導電性のウィスカーと
フッ素樹脂の繊維が絡み合って結合しているので、この
繊維が電極自体の膨張を緩和して強度の増大を図るもの
である。
Operation With this structure, the hydrogen storage alloy or hydride powder, the conductive whiskers that form a fine fiber state, and the fluororesin fiber are entangled and bonded, so this fiber expands the electrode itself. To increase the strength.

以下、その詳細は実施例により説明する。Hereinafter, the details will be described by way of examples.

実施例 市販のLa,Ni,Coを一定の組成比になるように秤量して混
合し、アーク溶解法により加熱溶解させた。一例とし
て、合金組成がLa1.0Ni3.5Co1.5になるように選択し、
負極用の水素吸蔵電極とした。この水素吸蔵合金をボー
ルミルなどで38μm以下の微粉末とし、その微粉末に適
量のフッ素樹脂分散液と導電性ウィスカーをペースト状
に混合し、このペーストを集電体であるパンチングメタ
ルの両面に塗着した後、加圧,乾燥して電極とした。ま
た、必要に応じて合金を水素化物として用いることも出
来る。本実施例では、導電性ウィスカーとして商品名デ
ントールBK−200,300などで市販されている繊維状チタ
ン酸カリウム(K2O・nTiO2)を用いた。この繊維の平均
長さは10−20μmであり、平均直径は0.2〜0.5μmであ
る。
Example Commercially available La, Ni, and Co were weighed and mixed so as to have a constant composition ratio, and heated and melted by an arc melting method. As an example, the alloy composition is selected to be La 1.0 Ni 3.5 Co 1.5 ,
It was used as a hydrogen storage electrode for the negative electrode. This hydrogen storage alloy is made into a fine powder of 38 μm or less by a ball mill, etc., and an appropriate amount of fluororesin dispersion liquid and conductive whiskers are mixed in a paste form, and this paste is applied to both sides of the punching metal, which is a current collector. After wearing, it was pressed and dried to form an electrode. Further, the alloy can be used as a hydride if necessary. In this example, fibrous potassium titanate (K 2 O.nTiO 2 ) commercially available under the trade name Dentor BK-200,300 was used as the conductive whiskers. The fibers have an average length of 10-20 μm and an average diameter of 0.2-0.5 μm.

この負極のサイクル寿命試験に用いたアルカリ蓄電池を
第1図に示す。第1図において、1は水素吸蔵合金から
なる負極、2は焼結式酸化ニッケル正極、3はセパレー
タ、4はアルカリ性電極液、5は注液栓、6は電そうで
ある。水素吸蔵合金10g(2.5Ahに相当する)に対して、
導電性ウィスカーの添加量を変えて加えた。そして、負
極のサイクル寿命がわかる様に負極容量より正極容量を
大きくし、負極律則とした。電池の充・放電条件として
は、電流500mAで7.5時間(150%充電)し、500mAで放電
した。導電性ウィスカーを添加しない負極を用いた従来
型電池と比較して調べた。その結果を第2図と第3図に
示す。第2図は、導電性ウィスカーの添加量と50サイク
ル後の放電容量を測定した結果であり、初期容量の80%
以上容量を保持する必要があることを考慮に入れると、
5〜20重量%が適切な範囲である。5重量%以下では、
電極の機械的強度を上げる効果が少なく、20重量%以上
では、電極自体の密度が小さくなり、逆に強度が弱くな
って来ると共に電極単位重量当たりの有効水素量が減少
するので放電容量も低下して来る。よって、サイクル寿
命の伸長などの性能の観点からも添加量は5〜20重量%
が最適な範囲である。
The alkaline storage battery used for the cycle life test of this negative electrode is shown in FIG. In FIG. 1, 1 is a negative electrode made of a hydrogen storage alloy, 2 is a sintered nickel oxide positive electrode, 3 is a separator, 4 is an alkaline electrode liquid, 5 is a liquid injection stopper, and 6 is an electrode. For hydrogen storage alloy 10g (equivalent to 2.5Ah),
The amount of conductive whiskers added was changed. Then, the positive electrode capacity was made larger than the negative electrode capacity so that the cycle life of the negative electrode could be understood, and the negative electrode rule was adopted. The battery was charged and discharged at a current of 500 mA for 7.5 hours (150% charge) and discharged at 500 mA. The comparison was made with a conventional battery using a negative electrode to which conductive whiskers were not added. The results are shown in FIGS. 2 and 3. Figure 2 shows the results of measuring the amount of conductive whiskers added and the discharge capacity after 50 cycles, which was 80% of the initial capacity.
Taking into account the need to hold more capacity,
A suitable range is 5 to 20% by weight. Below 5% by weight,
There is little effect of increasing the mechanical strength of the electrode, and if it is 20% by weight or more, the density of the electrode itself becomes small, and on the contrary, the strength becomes weaker and the effective hydrogen amount per unit weight of the electrode decreases, so the discharge capacity also decreases. Will come. Therefore, from the viewpoint of performance such as extension of cycle life, the addition amount is 5 to 20% by weight.
Is the optimum range.

さらに、この範囲の中で一例として添加量10重量%の本
発明型負極を用いた電池のサイクル寿命試験を行なった
結果を従来型負極を用いた電池と比較して第3図に示し
てある。第3図において、従来型負極を用いた電池では
50サイクル後の容量が初期の容量から70%まで低下して
いる。これに対して、本発明型負極を用いた電池は50サ
イクル後でも96%の容量を保持している。また、100サ
イクル後では83%の容量を持っていることから、サイク
ル寿命が著しく向上している。
Further, as an example within this range, the results of the cycle life test of the battery using the negative electrode of the present invention with the addition amount of 10% by weight are shown in FIG. 3 in comparison with the battery using the conventional negative electrode. . In FIG. 3, in the battery using the conventional negative electrode
The capacity after 50 cycles has dropped from the initial capacity to 70%. On the other hand, the battery using the negative electrode of the present invention retains 96% capacity even after 50 cycles. In addition, since it has a capacity of 83% after 100 cycles, the cycle life is remarkably improved.

本発明では結着材として繊維状のフッ素樹脂を採用して
いることで、水素吸蔵合金粒子、フッ素樹脂の繊維、導
電性ウィスカーが効果的に絡み合って電極自体の機械的
強度を向上させ、充・放電サイクルを繰り返しても膨張
の度合いが小さく、また、柔軟性があるなどの理由から
水素吸蔵合金の脱落も少なく長寿命化が図れたものと考
えられる。また、本実施例では集電体としてパンチメタ
ルを用いたが、発砲状ニッケル多孔体用いるところの格
子の作用によってさらに効果が上がる。
In the present invention, by adopting the fibrous fluororesin as the binder, the hydrogen storage alloy particles, the fluororesin fibers, and the conductive whiskers are effectively entangled to improve the mechanical strength of the electrode itself, -It is considered that the expansion of the hydrogen-absorbing alloy was small and the life was extended because the expansion degree was small and the flexibility was maintained even after repeated discharge cycles. Further, although punch metal is used as the current collector in this embodiment, the effect is further enhanced by the action of the lattice when the foamed nickel porous body is used.

発明の効果 以上のように、本発明によれば充・放電サイクル寿命の
長い水素吸蔵電極が得られるという効果が得られる。
EFFECTS OF THE INVENTION As described above, according to the present invention, it is possible to obtain an effect that a hydrogen storage electrode having a long charge / discharge cycle life can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例に用いたアルカリ蓄電池の構造
を示す断面略図、第2図は導電性ウィスカーの添加量に
おける50サイクル後の容量を示した図、第3図は本発明
の負極を用いた電池と、従来型負極を用いた電池とのサ
イクル寿命を比較した図である。 1……負極、2……正極、3……セパレータ、4……ア
ルカリ電解液、5……注液栓、6……電そう。
FIG. 1 is a schematic cross-sectional view showing the structure of an alkaline storage battery used in an example of the present invention, FIG. 2 is a diagram showing the capacity after 50 cycles of the addition amount of conductive whiskers, and FIG. 3 is a negative electrode of the present invention. FIG. 3 is a diagram comparing the cycle life of the battery using the battery with the battery using the conventional negative electrode. 1 ... Negative electrode, 2 ... Positive electrode, 3 ... Separator, 4 ... Alkaline electrolyte solution, 5 ... Injection plug, 6 ...

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】水素吸蔵合金又は水素化物に少なくとも導
電性ウィスカーと繊維状のフッ素樹脂を含有することを
特徴とする水素吸蔵電極。
1. A hydrogen storage electrode comprising a hydrogen storage alloy or a hydride containing at least a conductive whisker and a fibrous fluororesin.
【請求項2】水素吸蔵合金又は水素化物に含有する導電
性ウィスカーがチタン酸カリウム(K2O・nTiO2)からな
ることを特徴とする特許請求の範囲第1項記載の水素吸
蔵電極。
2. The hydrogen storage electrode according to claim 1, wherein the conductive whiskers contained in the hydrogen storage alloy or the hydride are potassium titanate (K 2 O.nTiO 2 ).
【請求項3】導電性ウィスカーの含有量が5〜20重量パ
ーセントである特許請求の範囲第1項記載の水素吸蔵電
極。
3. The hydrogen storage electrode according to claim 1, wherein the content of the conductive whiskers is 5 to 20% by weight.
JP61200916A 1986-08-27 1986-08-27 Hydrogen storage electrode Expired - Lifetime JPH07107843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61200916A JPH07107843B2 (en) 1986-08-27 1986-08-27 Hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61200916A JPH07107843B2 (en) 1986-08-27 1986-08-27 Hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPS6355862A JPS6355862A (en) 1988-03-10
JPH07107843B2 true JPH07107843B2 (en) 1995-11-15

Family

ID=16432406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61200916A Expired - Lifetime JPH07107843B2 (en) 1986-08-27 1986-08-27 Hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JPH07107843B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4644801B2 (en) * 2005-01-13 2011-03-09 国立大学法人福井大学 Composite sheet body and method for producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60172166A (en) * 1984-02-16 1985-09-05 Matsushita Electric Ind Co Ltd Metal hydride negative electrode for alkaline battery
JPS6166372A (en) * 1984-09-06 1986-04-05 Sanyo Electric Co Ltd Hydrogen-occlusion electrode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60172166A (en) * 1984-02-16 1985-09-05 Matsushita Electric Ind Co Ltd Metal hydride negative electrode for alkaline battery
JPS6166372A (en) * 1984-09-06 1986-04-05 Sanyo Electric Co Ltd Hydrogen-occlusion electrode

Also Published As

Publication number Publication date
JPS6355862A (en) 1988-03-10

Similar Documents

Publication Publication Date Title
JP2575840B2 (en) Dry manufacturing method of hydrogen storage alloy electrode
JPH11176436A (en) Alkaline storage battery
JP2708452B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP3541090B2 (en) Positive active material for alkaline storage battery and method for producing the same
JP3387381B2 (en) Alkaline storage battery
JP2692786B2 (en) Hydrogen storage electrode
JPH07107843B2 (en) Hydrogen storage electrode
JPH0423381B2 (en)
JPH0580106B2 (en)
JPS6215769A (en) Nickel-hydrogen alkaline battery
JPH07107848B2 (en) Non-sintered positive electrode for alkaline storage battery
JP2558624B2 (en) Nickel-hydrogen alkaline storage battery
JPH03179664A (en) Hydrogen storage electrode for alkaline storage battery
JP3786143B2 (en) Hydrogen storage alloy electrode
JP2002319429A (en) Alkali storage battery
JP3071026B2 (en) Metal hydride storage battery
JPH0736333B2 (en) Sealed alkaline storage battery
JP3330088B2 (en) Negative electrode for secondary battery
JPH0763004B2 (en) Sealed alkaline storage battery
JP2983066B2 (en) Method for producing paste-type nickel electrode
JPH1197002A (en) Hydrogen storage alloy electrode for alkaline storage battery
JPS61176066A (en) Hydrogen occlusion electrode
JP2762671B2 (en) Hydrogen storage Ni-Zr alloy
JP3268013B2 (en) Hydrogen storage alloy electrode
JPS6147076A (en) Metal-hydrogen alkaline storage battery