JPS635461B2 - - Google Patents

Info

Publication number
JPS635461B2
JPS635461B2 JP60232643A JP23264385A JPS635461B2 JP S635461 B2 JPS635461 B2 JP S635461B2 JP 60232643 A JP60232643 A JP 60232643A JP 23264385 A JP23264385 A JP 23264385A JP S635461 B2 JPS635461 B2 JP S635461B2
Authority
JP
Japan
Prior art keywords
steel
sscc
inclusions
hardness
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60232643A
Other languages
Japanese (ja)
Other versions
JPS61174359A (en
Inventor
Yoichi Nakai
Nobuo Totsuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP23264385A priority Critical patent/JPS61174359A/en
Publication of JPS61174359A publication Critical patent/JPS61174359A/en
Publication of JPS635461B2 publication Critical patent/JPS635461B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐硫化物応力腐食割れ性に優れた高強
度油井管用シームレスパイプ鋼材に係り、詳しく
は、土中の高い圧力に対抗できるよう、高い強度
を持つて、C量が高いのにも拘らず低P化とNn、
P、Cの量的相互関係の規制によつてこれらの元
素の偏析によつて生ずる鋼の組織、硬度の不均一
を解消し、併せて、低S化の状態でCaを添加し
てMnS等の硫化物系介在物の分散ならびに球状
化を行なつて耐硫化物応力腐蝕割れ性を著しく向
上した鋼材に係る。 従来、硫化水素を含む湿潤環境下で使用される
高強度鋼には、いわゆる硫化物応力腐蝕割れ(以
下SSCCという。)という劣化、破壊現象が発生
することが知られている。 近年、エネルギー消費の増大および入手容易な
良質石油資源の減少に伴ない、硫化水素含有量の
多くかつ深井戸のサワーガス田、サワーオイル田
まで開発されている。これらの開発には苛酷な使
用条件に耐え得る耐SSCC性に優れて、しかも、
高い引張強度を持つたシームレス油井管の開発が
前提になつている。 本来、SSCCは含硫化水素環境下における鋼の
腐蝕反応によつて発生した水素が鋼中に侵入する
ことによつて起こるもので、水素脆化現象の一つ
である。また、SSCCの機構は未だ不明の部分が
多いが、鋼の組成・組織等の冶金学的因子や鋼に
加わる応力状態等の種々の因子が複雑に関連する
現象である。なお、このSSCC感受性は比較的低
強度(引張強度40〜70Kg/mm2)のものではHIC感
受性との間で強い相関性を持つことが知られてい
る。これに対し、例えば、後記の実施例にも示す
如く、高強度(引張強度70Kg/mm2以上)のもので
はHICを伴なわないSSCCが主体を占めているた
め、両者の間の相関性は否定されている。 また、以前から鋼の成分・熱処理等により耐
SSCC性を向上させる方法が提案されているが、
完全な方策でなく、更に、これらの方法は、高価
な合金元素を添加したり、複雑な熱処理を必要と
することから、製造コストが著しく上昇し、現実
には実施できないものである。 そこで、本発明者等は、SSCC現象の発生機構
について詳細に研究し、この結果、SSCC現象は
鋼の偏析や、介在物の形態に密接な関連があるこ
とを見い出し、この偏析や形態を適正に制御して
耐SSCC性を向上させる。すなわち、Mnおよび
P等の偏析部は、硬度が高く、この硬度の高い部
分に、鋼中に侵入した水素が集中し、介在物、な
かでも圧延方向に伸長し易いNnS系介在物の周
辺にも、水素が集中する。また、これら組織ある
いは介在物に水素が集中すると、この集中組織や
集中介在物を基点として割れが発生する。 このため、本発明者等はMn、P等の偏析によ
つて鋼組織の硬度をばらつかないようにし、
NnS系介在物を低減させるか若しくは球状化さ
せることによつて水素を集中させないようにする
と、耐SSCC性を著しく向上させることができ、
このところに基づいて本発明は完成した。 更に詳しく説明すると、本発明においては、上
記の如く、偏析によつて組織や硬度が不均一にな
る成分が主としてMn、P、C等の3つの成分で
あることを知見し、これら各成分について詳細に
研究した。この研究に基づいて、 第1に、Pは0.009%以下に低減させて、硬度
の高い偏析部をなくすこと、 第2に、MnはPならびにCの関係で、関係式
Mn≦3.5―250P―2.5Cの条件を満足すると、Mn、
P等の偏析部で組織・硬度が不均一になることは
なく、組織・硬度の均一性が保持でき、この均一
性によつて耐SSCC性が向上すること、 第3に、水素が集中し易い圧延方向に伸長する
MnS系介在物は、Caの添加により、熱間圧延時
に伸長しない介在物に転換できること、 等がわかつた。 従つて、本発明では、組織・硬度の不均一の原
因となるPを低減すると共にMn量をPおよびC
量との関係で規制し、Caの添加によつて介在物
の分散・球状化を行ない、他の合金元素あるいは
熱処理等によつて影響されることがないと同時
に、鋼の機械的性質および溶接性に悪影響も与え
ることなく、耐SSCC性を向上させる。 以下、本発明について成分限定の理由を通じて
具体的に説明すると、次の通りである。 C: Cは0.25%未満では油井管用シームレス管とし
ての必要強度を得るのが困難であり、0.45%を越
すと鋼の靭性を損ない、焼割れを起こすなど好ま
しくないため、0.25〜0.45%の範囲に限定した。 Si: Siは脱酸上必要な元素であるが、0.01%未満で
は脱酸効果がなく、0.35%を越すと靭性劣化のお
それがあるため、0.010〜0.35%の範囲に限定し
た。 Mn: Mnは0.4%未満では必要強度が確保できない
が、Mnは後記のPとともに、その偏析部の硬度
は高くなり、更に、Sと結合してMnS介在物を
生成する。このため、耐SSCC性の上からは少な
い方が好ましく、また、2.0%を越すと、靭性を
損なう。このため、Mnは0.5〜2.0%の範囲にお
いてPならびにCの関係で後記の如く規制し、更
に、MnSの形成に寄与するSも後記の如く低硫
領域に制限する。 P: Pは0.009%以上になると、硬度の高い偏析部
があらわれて鋼材組織が不均一になり、耐SSCC
性が劣化する。なお、Pはなるべく含まないのが
好ましいが、Pを全く含ませないことは不可能に
近く、どうしてもこん跡程度は残存し、これを下
限とする。 S: Sは後記のCaの添加と相まつて介在物の分
散・球状化に影響を持つ。しかし、0.010%をこ
えると、Caを添加してもMnS介在物が分散せず、
球状化することが困難になり、耐SSCC性を向上
させることができない。なお、SもPと同様に全
く含まないのが好ましいが、どうしてもこん跡程
度が残存し、これを下限とする。 Al: Alは脱酸上必要であるが、本発明ではCaの歩
留りの向上元素として重要である。しかし、0.01
%未満ではその効果がなく、0.1%を越すと結晶
粒の粗大化を起こして、材質を劣化させる。 Ca: Caは上記のMn、P、S、Al等とともに重要な
成分の一つであり、Caの添加によつてMnS介在
物の分散・球状化が行なわれる。この効果は少な
くとも0.0010%を必要とし、0.010%を越す添加
は技術的に困難であるため、上限を0.010%にし
た。 B: Bは焼入性を向上させ、強度を向上させる。し
かし、0.0005%未満では効果がなく、0.005%を
越すと靭性を損なうので0.0005〜0.005%とした。 なお、残部はFeならびに不可避的不純物より
成る。 以上の通りに、各成分を含有させるほかに、こ
れらの成分のうち、MnはPおよびC量との関連
のもとで、以下の条件式を満足する必要がある。 Mn≦3.5―250P―2.5C この理由は、Mnがこの条件式の範囲をはずれ
る場合には、組織・硬度の不均一が生じ充分な耐
SSCC性を得ることはできないからである。 次に、実施例について説明する。 まず、P、Mn、C規制による組織、硬度の均
一化ならびにCa添加とによつて介在物を分散・
球状化して耐SSCC性の向上を明らかにするため
に、比較鋼(供試鋼記号1)の組成をベースとし
て、このベース鋼においてPを0.002〜0.008%の
如く低くするとともにCaを添加し、第1表に示
す通りに本発明鋼(供試鋼記号2,3,4,7,
8)を調整した。また、比較のために、比較鋼1
はP、Sが高いが、Mnレベルを本発明鋼と一致
させたものであり、比較鋼5は単にPを低くした
ものであり、比較鋼6はCaのみを添加したもの
である。 次に、これら各供試鋼1〜8について熱処理を
行なつて機械的性質を求めたところ、第2表の通
りであつて、その焼入れ条件はいずれも950℃30
分→水焼き入れの条件であつた。 また、各供試鋼に、各々API規格C―75、C―
90、C―110に相当する強度となるよう3種類の
熱処理を行ない、第2表においてこれを規格の項
で示し、これら熱処理を行なつた各供試鋼に例え
ば、C―75の熱処理を行なつたものはサフイツク
スA、C―90の熱処理を行なつたものはサフイツ
クスB、C―110の熱処理を行なつたものはサフ
イツクスCで示した。
The present invention relates to a high-strength seamless pipe steel material for oil country tubular goods with excellent resistance to sulfide stress corrosion cracking. Low P and Nn,
By regulating the quantitative relationship between P and C, we can eliminate the non-uniformity of the steel structure and hardness caused by the segregation of these elements, and at the same time, we can add Ca in a state of low S content to create MnS, etc. This invention relates to a steel material whose sulfide stress corrosion cracking resistance is significantly improved by dispersing sulfide inclusions and making them spheroidized. Conventionally, high-strength steel used in humid environments containing hydrogen sulfide is known to suffer from a deterioration and destruction phenomenon called sulfide stress corrosion cracking (hereinafter referred to as SSCC). In recent years, with the increase in energy consumption and the decrease in easily available high-quality oil resources, sour gas fields and sour oil fields with high hydrogen sulfide content and deep wells have been developed. These developments include materials with excellent SSCC resistance that can withstand harsh usage conditions, and
The premise is the development of seamless oil country tubular goods with high tensile strength. Originally, SSCC occurs when hydrogen generated by the corrosion reaction of steel in a hydrogen sulfide-containing environment penetrates into the steel, and is one of the hydrogen embrittlement phenomena. Although much of the mechanism of SSCC is still unknown, it is a phenomenon in which various factors such as metallurgical factors such as the composition and structure of the steel and the state of stress applied to the steel are intricately related. It is known that this SSCC susceptibility has a strong correlation with HIC susceptibility in materials with relatively low strength (tensile strength 40 to 70 Kg/mm 2 ). On the other hand, as shown in the examples below, for example, in high-strength products (tensile strength of 70 kg/mm 2 or more), SSCC without HIC accounts for the majority, so the correlation between the two is It is denied. In addition, the composition and heat treatment of steel have long made it more resistant.
Methods have been proposed to improve SSCC performance, but
Furthermore, these methods are not perfect solutions, and require the addition of expensive alloying elements and complicated heat treatment, which significantly increases manufacturing costs, making them impracticable in practice. Therefore, the present inventors conducted a detailed study on the mechanism of occurrence of the SSCC phenomenon, and as a result, found that the SSCC phenomenon is closely related to the segregation of steel and the morphology of inclusions, and found that the segregation and morphology of the steel were properly controlled. control to improve SSCC resistance. In other words, the areas where Mn, P, etc. are segregated have high hardness, and the hydrogen that has entered the steel concentrates in these areas with high hardness, causing inclusions, especially around NnS inclusions that tend to elongate in the rolling direction. Also, hydrogen is concentrated. Further, when hydrogen is concentrated in these structures or inclusions, cracks occur from the concentrated structures or inclusions as a starting point. For this reason, the present inventors tried to prevent the hardness of the steel structure from varying due to the segregation of Mn, P, etc.
If hydrogen is prevented from concentrating by reducing NnS-based inclusions or making them spheroidal, SSCC resistance can be significantly improved.
Based on this point, the present invention has been completed. To explain in more detail, in the present invention, as mentioned above, it has been found that the components that cause non-uniform structure and hardness due to segregation are mainly three components such as Mn, P, and C. Researched in detail. Based on this research, firstly, P should be reduced to 0.009% or less to eliminate segregated areas with high hardness, and secondly, Mn should be determined by the relational formula between P and C.
When the conditions of Mn≦3.5―250P―2.5C are satisfied, Mn,
The structure and hardness do not become uneven in the segregated areas of P, etc., and the structure and hardness can maintain uniformity, and this uniformity improves SSCC resistance. Third, hydrogen is concentrated. Elongates in the easy rolling direction
It was found that MnS-based inclusions can be converted into inclusions that do not elongate during hot rolling by adding Ca. Therefore, in the present invention, P, which causes non-uniformity of structure and hardness, is reduced, and the amount of Mn is reduced by P and C.
By adding Ca, inclusions are dispersed and spheroidized, and are not affected by other alloying elements or heat treatment, while improving the mechanical properties of steel and welding. Improves SSCC resistance without adversely affecting performance. Hereinafter, the present invention will be specifically explained through the reasons for limiting the ingredients. C: If C is less than 0.25%, it is difficult to obtain the required strength for seamless oil country tubing, and if it exceeds 0.45%, it impairs the toughness of the steel and causes quench cracking, which is undesirable, so it should be in the range of 0.25 to 0.45%. limited to. Si: Si is an element necessary for deoxidation, but if it is less than 0.01%, there is no deoxidation effect, and if it exceeds 0.35%, there is a risk of deterioration of toughness, so it was limited to a range of 0.010 to 0.35%. Mn: If Mn is less than 0.4%, the required strength cannot be ensured, but Mn, together with P (described later), increases the hardness of its segregated parts, and furthermore, combines with S to form MnS inclusions. Therefore, from the viewpoint of SSCC resistance, it is preferable to have less content, and if it exceeds 2.0%, toughness will be impaired. For this reason, Mn is restricted in the range of 0.5 to 2.0% in relation to P and C as described below, and S, which contributes to the formation of MnS, is also restricted to a low sulfur region as described later. P: When P exceeds 0.009%, segregated areas with high hardness appear and the steel structure becomes non-uniform, resulting in poor SSCC resistance.
sex deteriorates. Although it is preferable to not include P as much as possible, it is almost impossible to not include P at all, and some traces will inevitably remain, so this is set as the lower limit. S: Together with the addition of Ca described later, S has an effect on the dispersion and spheroidization of inclusions. However, if it exceeds 0.010%, MnS inclusions will not be dispersed even if Ca is added.
It becomes difficult to form spheroids, and SSCC resistance cannot be improved. It should be noted that, like P, it is preferable that S is not contained at all, but some trace remains, and this is set as the lower limit. Al: Al is necessary for deoxidation, and is important as an element for improving the Ca yield in the present invention. But 0.01
If it is less than 0.1%, it has no effect, and if it exceeds 0.1%, the crystal grains will become coarser and the material will deteriorate. Ca: Ca is one of the important components along with the above-mentioned Mn, P, S, Al, etc., and the addition of Ca causes the MnS inclusions to be dispersed and spheroidized. This effect requires at least 0.0010%, and since it is technically difficult to add more than 0.010%, the upper limit was set at 0.010%. B: B improves hardenability and improves strength. However, if it is less than 0.0005%, it is ineffective, and if it exceeds 0.005%, the toughness is impaired, so it was set at 0.0005 to 0.005%. Note that the remainder consists of Fe and unavoidable impurities. As described above, in addition to containing each component, among these components, Mn must satisfy the following conditional expression in relation to the amounts of P and C. Mn≦3.5-250P-2.5C The reason for this is that if Mn is outside the range of this conditional expression, the structure and hardness will be non-uniform, resulting in insufficient durability.
This is because SSCC properties cannot be obtained. Next, examples will be described. First, inclusions are dispersed by uniformizing the structure and hardness by regulating P, Mn, and C, and by adding Ca.
In order to clarify the improvement in SSCC resistance due to spheroidization, based on the composition of the comparative steel (sample steel code 1), P was lowered to 0.002 to 0.008% in this base steel, and Ca was added. As shown in Table 1, the steels of the present invention (sample steel symbols 2, 3, 4, 7,
8) was adjusted. Also, for comparison, comparative steel 1
Although P and S are high, the Mn level is made the same as that of the steel of the present invention, Comparative Steel 5 simply has lower P, and Comparative Steel 6 has only Ca added. Next, each of these test steels 1 to 8 was heat treated to determine the mechanical properties, and the results were as shown in Table 2.The quenching conditions were 950℃30
The conditions were water quenching. In addition, API standard C-75, C-
90, three types of heat treatment were performed to obtain a strength equivalent to C-110, and these are shown in the standard section in Table 2. Each of the test steels that underwent these heat treatments was subjected to, for example, C-75 heat treatment. Those subjected to heat treatment are shown as Saffix A, those subjected to heat treatment of C-90 are shown as Safix B, and those subjected to heat treatment of C-110 are indicated as Safix C.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 そこで、以上の通りに熱処理した各供試鋼につ
いて、次の如く耐SSCC性試験を行なつたとこ
ろ、第3表の通りの結果が得られた。 すなわち、耐SSCC性試験は第1図に示す寸法
(t=5mm、W=15mm、l=105mm)の短冊型試験
片を用いて、この試験片lは第2図に示す如く4
本のガラス棒2によつて4点支持し、定歪4点曲
げ方式によつて測定した。なお、第2図において
W1=100mm、W2=40mmであつた。 また、試験液は硫化水素飽和0.5%酢酸+5%
食塩水を用い、応力を付加した試料をこの液中に
720時間浸漬した後、割れの有無を判定した。な
お、付加応力は各試料の0.5%耐力を基準にその
0.2〜1.2倍の応力を付加し、第3表の付加応力の
項はn0.5σvで示し、このnは0.5%の耐力(Kg/
mm2)の倍数であり、〇印は割なし、×印は割れあ
りを示す。 第3表で示す試験結果は、API規格C―75、C
―90、C―110毎にまとめて示した。 第3表から明らかなように、本発明鋼は、優れ
た耐SSCC性を示している。これに対し、単に、
低P化のみを行なつた比較鋼5およびCa処理の
みを行なつた比較鋼6は他の比較鋼に比べると優
れた耐SSCC性を示すが、本発明鋼に較べると劣
つていることがわかる。また、Mnレベルに拘ら
ず、本発明鋼は優れた耐SSCC性を示すが、この
中で、Mnレベルの低いものの方がより優れた耐
SSCC性を示す。 要するに、本発明鋼は熱処理および成分系が異
なつても有効性を損なわず、耐SSCC性が向上
し、きわめて有効であることがわかる。 以上詳しく説明した通り、本発明鋼は、Cが高
くシームレス鋼管として必要な強度を持つている
のにも拘らず、低P化に併せてMn、P、Cを量
的に規制し、これらの元素の偏析によつて生ずる
組織・硬度の不均一を解消すると同時に、低S化
ならびにCa添加によつて硫化物系介在物の分
散・球状化を達成するものである。従つて、極め
て優れた耐SSCC性が得られ、かつシームレス油
井管として必要な強度を持つものであつて、しか
も、この効果は他の合金元素等の添加や熱処理に
よつても損なわれない。
[Table] Therefore, the following SSCC resistance test was conducted on each of the sample steels that had been heat treated as described above, and the results shown in Table 3 were obtained. That is, the SSCC resistance test used a rectangular test piece with the dimensions shown in Figure 1 (t = 5 mm, W = 15 mm, l = 105 mm), and this test piece l was 4 mm as shown in Figure 2.
It was supported at four points by a book glass rod 2 and measured by a constant strain four-point bending method. In addition, in Figure 2
W 1 = 100 mm, W 2 = 40 mm. In addition, the test solution was hydrogen sulfide saturated 0.5% acetic acid + 5%
Using a saline solution, a stressed sample is placed in this solution.
After 720 hours of immersion, the presence or absence of cracks was determined. Note that the added stress is based on the 0.5% proof stress of each sample.
A stress of 0.2 to 1.2 times is added, and the term of added stress in Table 3 is expressed as n0.5σv, where n is 0.5% proof stress (Kg/
mm 2 ), 〇 indicates no cracks, and × indicates cracks. The test results shown in Table 3 are based on API standard C-75, C
-90 and C-110 are shown together. As is clear from Table 3, the steel of the present invention exhibits excellent SSCC resistance. In contrast, simply
Comparative Steel 5, which was subjected only to low P treatment, and Comparative Steel 6, which was treated only to Ca, show superior SSCC resistance compared to other comparative steels, but are inferior to the steel of the present invention. Recognize. In addition, the steel of the present invention exhibits excellent SSCC resistance regardless of the Mn level, but among these, the steel with a lower Mn level has better resistance.
Shows SSCC property. In short, it can be seen that the steel of the present invention does not lose its effectiveness even with different heat treatments and compositional systems, has improved SSCC resistance, and is extremely effective. As explained in detail above, although the steel of the present invention has a high C content and has the necessary strength as a seamless steel pipe, the amount of Mn, P, and C is regulated in conjunction with the reduction in P, and these This eliminates the nonuniform structure and hardness caused by element segregation, and at the same time achieves dispersion and spheroidization of sulfide-based inclusions by reducing the S content and adding Ca. Therefore, it has extremely excellent SSCC resistance and has the strength necessary for seamless oil country tubular goods, and this effect is not impaired even by the addition of other alloying elements or heat treatment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は耐SSCC性試験に供せられる試験片の
斜視図、第2図は耐SSCC性試験として行なう4
点曲げ試験用ジグの説明図である。 符号1……試験片、2……ガラス棒。
Figure 1 is a perspective view of the test piece used for the SSCC resistance test, and Figure 2 is the specimen used for the SSCC resistance test.
It is an explanatory view of a jig for a point bending test. Code 1...test piece, 2...glass rod.

Claims (1)

【特許請求の範囲】[Claims] 1 C:0.25〜0.45%、Si:0.010〜0.35%、
Mn:0.4〜2.0%、P:0.009%以下、S:0.010%
以下、Al:0.01〜0.10%、Ca:0.0010〜0.010%、
B:0.0005〜0.005%を含み、残部がFeおよび不
可避的不純物よりなつて、Mn、P,Cに関する
条件式Mn≦3.5―250P―2.5Cを満足することを特
徴とする耐硫化物応力腐食割れ性に優れた高強度
油井管用シームレスパイプ鋼材。
1 C: 0.25-0.45%, Si: 0.010-0.35%,
Mn: 0.4-2.0%, P: 0.009% or less, S: 0.010%
Below, Al: 0.01~0.10%, Ca: 0.0010~0.010%,
B: Sulfide stress corrosion cracking resistant, characterized by containing 0.0005 to 0.005%, with the remainder consisting of Fe and unavoidable impurities, and satisfying the conditional expression Mn≦3.5-250P-2.5C regarding Mn, P, and C. Seamless pipe steel material for high-strength oil country tubular goods with excellent durability.
JP23264385A 1985-10-18 1985-10-18 Steel material for oil well pipe having superior resistance to sulfide stress corrosion cracking Granted JPS61174359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23264385A JPS61174359A (en) 1985-10-18 1985-10-18 Steel material for oil well pipe having superior resistance to sulfide stress corrosion cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23264385A JPS61174359A (en) 1985-10-18 1985-10-18 Steel material for oil well pipe having superior resistance to sulfide stress corrosion cracking

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP14929680A Division JPS5773163A (en) 1980-10-27 1980-10-27 Steel products for oil well pipe with superior sulfide stress corrosion cracking resistance

Publications (2)

Publication Number Publication Date
JPS61174359A JPS61174359A (en) 1986-08-06
JPS635461B2 true JPS635461B2 (en) 1988-02-03

Family

ID=16942509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23264385A Granted JPS61174359A (en) 1985-10-18 1985-10-18 Steel material for oil well pipe having superior resistance to sulfide stress corrosion cracking

Country Status (1)

Country Link
JP (1) JPS61174359A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104018065B (en) * 2014-06-18 2016-09-07 内蒙古包钢钢联股份有限公司 S275JR think gauge adds the production method of boron plate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431019A (en) * 1977-08-12 1979-03-07 Kawasaki Steel Co Steel material having good resistance to hydrogenninduceddcracking
JPS5438214A (en) * 1977-08-31 1979-03-22 Kawasaki Steel Co Steel material having good resistivity to hydrogenninduceddcracking for use as line pipes
JPS55113861A (en) * 1979-02-21 1980-09-02 Nippon Steel Corp Steel plate with superior hydrogen induced cracking resistance
JPS55134155A (en) * 1979-04-03 1980-10-18 Nippon Steel Corp Steel plate with superior hydrogen-induced crack resistance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431019A (en) * 1977-08-12 1979-03-07 Kawasaki Steel Co Steel material having good resistance to hydrogenninduceddcracking
JPS5438214A (en) * 1977-08-31 1979-03-22 Kawasaki Steel Co Steel material having good resistivity to hydrogenninduceddcracking for use as line pipes
JPS55113861A (en) * 1979-02-21 1980-09-02 Nippon Steel Corp Steel plate with superior hydrogen induced cracking resistance
JPS55134155A (en) * 1979-04-03 1980-10-18 Nippon Steel Corp Steel plate with superior hydrogen-induced crack resistance

Also Published As

Publication number Publication date
JPS61174359A (en) 1986-08-06

Similar Documents

Publication Publication Date Title
US4407681A (en) High tensile steel and process for producing the same
EA008934B1 (en) Steel for steel pipes
JPH0967624A (en) Production of high strength oil well steel pipe excellent in sscc resistance
JPH06104849B2 (en) Method for producing low alloy high strength oil well steel excellent in sulfide stress cracking resistance
JPS63230847A (en) Low-alloy steel for oil well pipe excellent in corrosion resistance
JPH05287381A (en) Manufacture of high strength corrosion resistant steel pipe
JPH01259124A (en) Manufacture of high-strength oil well tube excellent in corrosion resistance
JPH06116635A (en) Production of high strength low alloy steel for oil well use, excellent in sulfide stress corrosion cracking resistance
JPS634047A (en) High-tensile steel for oil well excellent in sulfide cracking resistance
JPS634046A (en) High-tensile steel for oil well excellent in resistance to sulfide cracking
JPS60174822A (en) Manufacture of thick-walled seamless steel pipe of high strength
JPH06271975A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JPS635461B2 (en)
JPH09202942A (en) High strength stainless steel wire rope excellent in fatigue resistance and corrosion resistance and its production
JP3075314B2 (en) Manufacturing method of steel wire for ultra high strength spring
JPH07188840A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JPS5811492B2 (en) Manufacturing method of high-tensile and high-ductility wire and steel bars for high-strength bolts
CN106756537B (en) A kind of resistance to H2The excellent tough normalizing pipe line steel of height of S corrosive nature and production method
JPH06336648A (en) High strength pc bar wire excellent in delayed fracture resistance and its production
JP2003096544A (en) Wire for high strength high carbon steel wire, and production method therefor
JP2730090B2 (en) High yield ratio martensitic stainless steel
KR100345704B1 (en) A method of manufacturing high strength hot rolled steel strip with low susceptibility of SSCC
JPS6358892B2 (en)
JPH0570890A (en) Steel for high strength bolt excellent in delayed fracture resistance
JPS6210240A (en) Steel for seamless drawn oil well pipe excellent in corrosion resistance and collapsing strength