JPS61174359A - Steel material for oil well pipe having superior resistance to sulfide stress corrosion cracking - Google Patents

Steel material for oil well pipe having superior resistance to sulfide stress corrosion cracking

Info

Publication number
JPS61174359A
JPS61174359A JP23264385A JP23264385A JPS61174359A JP S61174359 A JPS61174359 A JP S61174359A JP 23264385 A JP23264385 A JP 23264385A JP 23264385 A JP23264385 A JP 23264385A JP S61174359 A JPS61174359 A JP S61174359A
Authority
JP
Japan
Prior art keywords
steel
steel material
oil well
resistance
corrosion cracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23264385A
Other languages
Japanese (ja)
Other versions
JPS635461B2 (en
Inventor
Yoichi Nakai
中井 揚一
Nobuo Totsuka
戸塚 信夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP23264385A priority Critical patent/JPS61174359A/en
Publication of JPS61174359A publication Critical patent/JPS61174359A/en
Publication of JPS635461B2 publication Critical patent/JPS635461B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain a steel material for an oil well pipe having superior resistance to sulfide stress corrosion cracking by reducing the P content in a steel material and regulating the Mn content to a specified value in relation to the P and C contents. CONSTITUTION:A steel pipe used in an oil well or the like in a wet environment having a high H2S content is made of a steel material having a composition contg. 0.1-0.45% C, 0.010-0.35% Si, 0.4-2.0% Mn, <0.009% P, <0.010% S, 0.01-0.10% Al, 0.0010-0.020% Ca and 0.0005-0.005% B and satisfying relation represented by an equation Mn<=3.5-250P-2.5C among the Mn, P and C contents. The structure and hardness of the steel are made uniform by the reduced P content and the regulated Mn, P and C contents, and inclusions such as MnS are dispersed and spheroidized by the added Ca, so the steel material for an oil well pipe has superior resistance to sulfide stress corrosion cracking without deteriorating the weldability.

Description

【発明の詳細な説明】 本発明は耐硫化物応力腐蝕割れ性に優れた油井管用鋼材
に係り、詳しくは、低P化とMn、P、+4の規制によ
って、これらの元素の偏析によって生ずる鋼の組織、硬
度の不均一を解消し、併せて、低S化の状態でCaを添
加してMnS等の硫化物系介在物の分散ならびに球状化
を行なって耐硫化物応力腐蝕割れ性を著しく向上した鋼
材に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to steel materials for oil country tubular goods having excellent sulfide stress corrosion cracking resistance, and more specifically, by reducing P and regulating Mn, P, and +4, the present invention relates to steel materials that are produced by segregation of these elements. In addition, Ca is added in a low S state to disperse and spheroidize sulfide-based inclusions such as MnS, thereby significantly improving sulfide stress corrosion cracking resistance. Concerning improved steel materials.

従来、硫化水素を含む湿潤環境下で使用される高強度鋼
には、いわゆる硫化物応力腐蝕割れ(以下5sccとい
う、、)という劣化、破壊現象が発生することが知られ
ている。
BACKGROUND ART Conventionally, it has been known that a deterioration and destruction phenomenon called so-called sulfide stress corrosion cracking (hereinafter referred to as 5 SCC) occurs in high-strength steel used in a humid environment containing hydrogen sulfide.

近年、エネルギー消費の増大および入手容易な良質石油
資源の減少に伴ない、硫化水素含有量の多くかつ深井戸
のサワーガス田、サワーオイル田であっても、開発され
ている。これらの開発には苛酷な使用条件に耐え得る耐
5scc性に優れる油井管の開発が前提になっている。
In recent years, with the increase in energy consumption and the decrease in easily available high-quality oil resources, sour gas fields and sour oil fields with high hydrogen sulfide content and deep wells have been developed. These developments are predicated on the development of oil country tubular goods with excellent 5scc resistance that can withstand severe usage conditions.

本来、5sccは含硫化水素環境下における鋼の腐蝕反
応によって発生した水素が鋼中に侵入することによって
起こるもので、水素脆化現象の一つである。また、5s
ccの機構は未だ不明の部分が多いが、鋼の組成・組織
等の冶金学的因子や鋼に加わる応力状態等の種々の因子
が複雑に関連する現象である。
Originally, 5scc occurs when hydrogen generated by a corrosion reaction of steel in a hydrogen sulfide-containing environment penetrates into the steel, and is one of the hydrogen embrittlement phenomena. Also, 5s
The mechanism of cc is still largely unknown, but it is a phenomenon in which various factors such as metallurgical factors such as the composition and structure of the steel and the state of stress applied to the steel are intricately related.

また、以前から鋼の成分・熱処理等により耐5scc性
を向上させる方法が提案されているが、完全な方策でな
く、更に、これら方法は、高価な合金元素を添加したり
、複雑な熱処理を必要とする口とから、製造コストが著
しく上昇し、現実には実施できないものである。
Additionally, methods have been proposed for improving the 5SCC resistance by changing the composition of the steel, heat treatment, etc., but these methods are not perfect, and furthermore, these methods do not require the addition of expensive alloying elements or complicated heat treatment. The manufacturing cost increases significantly due to the required openings, making it impracticable in reality.

そこで、本発明者らは、5scc現象の発生機構につい
て詳細に研究し、この結果、5scc現象は鋼の偏析や
、介在物の形態に密接な関連があることを見い出し、こ
の偏析や形態を適正に制御して耐5scc性を向上させ
る。すなわち、MnおよびP等の偏析部は、硬度が高く
、この硬度の高い部分に、鋼中に侵入した水素が集中し
、介在物、なかでも圧延方向に伸長し易いMnS系介在
物の周辺にも、この水素が集中する。また、これら組織
あるいは介在物に水素が集中すると、この集中組織や集
中介在物を基点として割れが発生する。
Therefore, the present inventors conducted a detailed study on the mechanism of occurrence of the 5scc phenomenon, and as a result, found that the 5scc phenomenon is closely related to the segregation of steel and the morphology of inclusions, and that this segregation and morphology can be adjusted appropriately. control to improve the 5scc resistance. In other words, the areas where Mn, P, etc. are segregated have high hardness, and hydrogen that has entered the steel concentrates in these areas with high hardness, causing inclusions, especially around MnS-based inclusions that tend to elongate in the rolling direction. Also, this hydrogen is concentrated. Further, when hydrogen is concentrated in these structures or inclusions, cracks occur from the concentrated structures or inclusions as a starting point.

このため、本発明者等はMn、 P等の偏析によって鋼
組織の硬度をばらつかないようにし、MnP系介在物を
低減させるか若しくは球状化させることによって水素を
集中させないようにすると、耐5scc性を著しく向上
させることができ、このところにもとずいて本発明は完
成した。
For this reason, the present inventors have determined that the hardness of the steel structure does not vary due to the segregation of Mn, P, etc., and that hydrogen concentration is prevented by reducing MnP-based inclusions or making them spheroidal. The present invention was completed based on this fact.

更に詳しく説明すると、本発明においては、上記の如く
、偏析によって組織や硬度が不均一になる成分が主とし
てMn、P%C等の3つの成分であることを知見し、こ
れら各成分について詳細に研究した。この研究にもとず
いて、第1に、Pは0.009%以下に低減させて、硬
度の高い遍析部をなくすこと、 第2に、Mnは、PならびにCの関係で、関係式Mn≦
3.5−250P−2,5Gの条件を満足すると、Mn
、P等の偏析部で組織・硬度が不均一になることはなく
、組織・硬度の均一性が保持でき、この均一性によって
耐5scc性が向上すること、第3に、水素が集中し易
い圧延方向に伸長するMnS系介在物は、Caの添加に
より、熱間圧延時に伸長しない介在物に転換できること
、等がわかった。
To explain in more detail, in the present invention, as mentioned above, it has been found that the components that cause non-uniform structure and hardness due to segregation are mainly three components such as Mn and P%C, and each of these components is described in detail. Researched. Based on this research, firstly, P should be reduced to 0.009% or less to eliminate the highly hard uniform part, and secondly, Mn should be reduced according to the relational formula between P and C. Mn≦
When the conditions of 3.5-250P-2,5G are satisfied, Mn
The structure and hardness do not become non-uniform in the segregated areas of , P, etc., and the uniformity of structure and hardness can be maintained, and this uniformity improves the 5scc resistance. Thirdly, hydrogen tends to concentrate. It was found that MnS-based inclusions that elongate in the rolling direction can be converted to inclusions that do not elongate during hot rolling by adding Ca.

従って、本発明では、組織・硬度の不均一の原因となる
Pを低減すると共にMnlをPおよびC岳との関係で規
制し、Caの添加によって介在物の分散・球状化を行な
い、他の合金元素あるいは熱処理等によって影響される
口とがないと同時に、鋼の機械的性質および溶接性に悪
影響も与える口となく、耐5scc性を向上させる。
Therefore, in the present invention, P, which causes non-uniformity of structure and hardness, is reduced, Mnl is regulated in relation to P and C peaks, inclusions are dispersed and spheroidized by the addition of Ca, and other There is no effect of alloying elements or heat treatment, etc., and at the same time there is no effect of adverse effects on the mechanical properties and weldability of the steel, improving the 5scc resistance.

以下、本発明について成分限定の理由を通じて具体的に
説明すると次の通りである。
Hereinafter, the present invention will be specifically explained through the reasons for limiting the ingredients.

C: Cは0.10未満では油井管としての必要強度を得るの
が困難であり、0.45%を越すと鋼の靭性を損ない、
焼割れを起こすなど好ましくないため、0.10〜0,
45%の範囲に限定した。
C: If C is less than 0.10, it is difficult to obtain the necessary strength for oil country tubular goods, and if it exceeds 0.45%, it impairs the toughness of the steel.
0.10 to 0, since it is undesirable to cause quench cracking.
It was limited to a range of 45%.

Sl: Siは脱酸上必要な元素であるが、0.01%未満では
脱酸効果がなく 、 0.35%を越すと靭性劣化のお
それがあるため、o、oio〜0.35%の範囲に限定
した。
Sl: Si is an element necessary for deoxidation, but if it is less than 0.01%, it has no deoxidizing effect, and if it exceeds 0.35%, there is a risk of toughness deterioration. limited to a range.

Mn: Mnは0.4%未満では必要強度が確保できないが、M
nは後記のeとともに、その偏析部の硬度は高くなり、
更に、Sと結合してMnS介在物を生成する。このため
、耐5scc性の上からは少ない方が好ましく、また、
2.0%を越すと、靭性を損なう。このため、Mnは0
.5〜2.0%の範囲においてPならびにCの関係で後
記の如く規制し、更に、MnSの形成に寄与するSも後
記の如く低硫領域に制限する。
Mn: If Mn is less than 0.4%, the required strength cannot be secured, but Mn
As n increases with e mentioned below, the hardness of the segregated part increases,
Furthermore, it combines with S to generate MnS inclusions. Therefore, from the viewpoint of 5scc resistance, it is preferable to have less.
If it exceeds 2.0%, toughness will be impaired. Therefore, Mn is 0
.. The relationship between P and C is controlled as described below in the range of 5 to 2.0%, and S, which contributes to the formation of MnS, is also limited to a low sulfur range as described below.

P: Pは0.009%以上になると、硬度の高い偏析部があ
られれて鋼材組織が不均一になり、耐5scc性が劣化
する。なお、Pはなるべく含まないのが好ましいが、P
を全く含ませない口とは不可能に近く、どうしてもこん
跡程度は残存し、これを下限とする。
P: When P exceeds 0.009%, segregated areas with high hardness are formed, the steel structure becomes non-uniform, and the 5scc resistance deteriorates. Although it is preferable to not include P as much as possible,
It is almost impossible to have a mouth that does not contain any substances, and some traces will inevitably remain, so this is set as the lower limit.

S: Sは後記のCaの添加と相まって介在物の分散・球状化
に影響を持つ。しかし、0.010%をこえると、Ca
を添加してもMnS介在物が分散せず、球状化すること
が困難になり、耐5scc性を向上させることができな
い。なお%SもPと同様に全く含まないのが好ましいが
、どうしてもこん跡程度は残存し、これを下限とする。
S: S, together with the addition of Ca described later, has an effect on the dispersion and spheroidization of inclusions. However, if it exceeds 0.010%, Ca
Even if MnS inclusions are added, the MnS inclusions are not dispersed, making it difficult to form balls, and the 5scc resistance cannot be improved. Note that, like P, it is preferable that %S is not contained at all, but some trace remains, and this is set as the lower limit.

Al : 八lは脱酸上必要であるが、本発明ではCaの歩留りの
向上元素として重要である。しかし、0.01%未満で
はその効果がなく、o、i%を越すと結晶粒の粗大化を
起こして、材質を劣化させる。
Al: 8L is necessary for deoxidation, and in the present invention is important as an element for improving the Ca yield. However, if it is less than 0.01%, it has no effect, and if it exceeds o or i%, crystal grains become coarse and the material quality deteriorates.

Ca: Caは上記のMn、 P、 S、 AI等とともに重要
な成分の一つであり、Caの添加によってMnS介在物
の分散・球状化が行なわれる。この効果は少なくともo
、ooio%を必要とし、0.020%を越す添加は技
術的に困難であるため、上限を0.020%にした。
Ca: Ca is one of the important components along with the above-mentioned Mn, P, S, AI, etc., and the addition of Ca causes the MnS inclusions to be dispersed and spheroidized. This effect is at least o
, ooio%, and it is technically difficult to add more than 0.020%, so the upper limit was set at 0.020%.

B: しは焼入性を向上させ、強度を向上させる。B: It improves hardenability and strength.

しかし、0.0005%未満では効果がな(,0,00
5%を越すと靭性を損なうのでo、 ooos〜0.0
05%とした。
However, it is ineffective if it is less than 0.0005% (,0,00
If it exceeds 5%, toughness will be impaired, so o, ooos ~ 0.0
05%.

なお、残部は「eならびに不可避的不純物より成る。The remainder consists of "e" and unavoidable impurities.

以上の通りに、各成分を含有させるほかに、これらの成
分のうち、MnはPおよびCaとの関連のもとで、以下
の条件式を満足する必要がある。
As mentioned above, in addition to containing each component, among these components, Mn needs to satisfy the following conditional expression in relation to P and Ca.

M11≦3.5−250P−2,5G 口の理由は、Mnがこの条件式の範囲をはずれる場合に
は、組織・硬度の不均一が生じ充分な耐5scc性を得
ることはできないからである。
The reason for M11≦3.5-250P-2,5G is that if Mn is outside the range of this conditional expression, the structure and hardness will be non-uniform and sufficient 5scc resistance cannot be obtained. .

次に、実施例について説明する。Next, examples will be described.

まず、P、 Mn、 C規制による組織、硬度の均一化
ならびにCa添加とによって介在物を分散・球状化して
耐5scc性の向上を明らかにするために。
First, to clarify the improvement of 5scc resistance by homogenizing the structure and hardness by regulating P, Mn, and C, and by dispersing and spheroidizing inclusions by adding Ca.

比較鋼(供試鋼記号1)の組成をベースとして、このベ
ース鋼においてPを0.002〜0.008%の如く低
くするとともにCaを添加し、第1表に示す通りに本発
明鋼(供試鋼記号2.3.4、)を調整した。また、比
較のために、比較miはP、Sが高いが、Mnレベルを
本発明鋼と一致させたものであり、比較tA5は単にP
を低くしたものであり、比較鋼6はGaのみを添加した
ものである。
Based on the composition of the comparative steel (sample steel code 1), P was lowered to 0.002 to 0.008% and Ca was added to this base steel, and as shown in Table 1, the invention steel ( The test steel symbol 2.3.4) was adjusted. Also, for comparison, comparative mi has high P and S, but the Mn level is made to match that of the invention steel, and comparative tA5 has only high P and S.
Comparative steel 6 has only Ga added thereto.

次に、これら各供試鋼1〜Gについて熱処理を行なって
機械的性質を求めたところ、第2表の通りであって、そ
の焼入れ条件はいずれも 950℃30分→本焼き入れ
の条件であった。
Next, each of these test steels 1 to G was heat treated to determine its mechanical properties, as shown in Table 2, and the quenching conditions were: 950°C for 30 minutes → main quenching. there were.

また、各供試鋼に、各々API規格C−75、C−90
、c−iloで示す3種類の熱処理を行ない、第2表に
おいてこれを規格の項で示し、これら熱処理を行なった
各供試鋼に例えば、C−75の熱処理を行なったものは
サフィックスA、 C−90の熱処理を行なったものは
サフィックスB、 C−110の熱処理を行なったもの
はサフィックスCで示そこで、以上の通りに熱処理した
各供試鋼について、次の如く耐5scc性試験をhなっ
たところ、第3表の通りの結果が得られた。
In addition, API standards C-75 and C-90 were applied to each sample steel.
, c-ilo, and these are shown in the specifications section of Table 2. For example, the steel samples that were heat treated with C-75 are given the suffix A, Steels that were heat treated to C-90 are shown with suffix B, and those that were heat-treated to C-110 are shown with suffix C. Therefore, each test steel that was heat treated as described above was subjected to a 5 scc resistance test as follows. The results shown in Table 3 were obtained.

すなわち、耐5scc性試験は第1図に示す寸法(t=
5a+m、 11=15mm、j!=105a)の短冊
型試験片を用いて、この試験片1は第2図に示す如く4
本のガラス棒2によって4点支持し、定歪4点曲げ方式
によって測定した。なお、第2図において*、 =10
0mm%*2=40mmであった。
That is, in the 5scc resistance test, the dimensions (t=
5a+m, 11=15mm, j! = 105a), this test piece 1 has a diameter of 4 as shown in Figure 2.
It was supported at four points by a book glass rod 2 and measured using a constant strain four-point bending method. In addition, in Fig. 2, *, =10
0mm%*2=40mm.

また、試験液は硫化水素飽和0.5%酢酸+5%食塩水
を用い、応力を付加した試料をこの液中に720時間浸
漬した後、割れの有無を判定した。
Further, the test liquid used was 0.5% acetic acid + 5% saline saturated with hydrogen sulfide, and the presence or absence of cracks was determined after the stressed sample was immersed in this liquid for 720 hours.

なお、付加応力は各試料の0.5%耐力を基準にその0
.2〜1.2倍の応力を付加し、第3表の付加応力の項
はn065σyで示し、このnは0.5%の耐力(kg
/mm2)の倍数であり、○印は割なし、X印は割れあ
りを示す。
In addition, the added stress is based on the 0.5% proof stress of each sample.
.. A stress of 2 to 1.2 times is added, and the term of added stress in Table 3 is shown as n065σy, where n is 0.5% proof stress (kg
/mm2), ○ indicates no cracks, and X indicates cracks.

第3表で示す試験結果は、API規格C−75、C−9
0、C−110毎にまとめて示した。
The test results shown in Table 3 are based on API standards C-75 and C-9.
0 and C-110.

第3表から明らかなように、本発明鋼は、優れた耐5s
cc性を示している。これに対し、単に、低P化のみを
行なった比較vA5およびCa処理のみを行なった比較
WA6は他の比較鋼に比べると優れた耐5scc性を示
すが、本発明鋼に較べると劣っていることがわかる。ま
た、Mnレベルにかかわらず、本発明鋼は優れた耐5s
cc性を示すが、この中で、Mnレベルの低いものの方
がより侵れた耐5scc性を示す。
As is clear from Table 3, the steel of the present invention has an excellent resistance to 5 s.
It shows cc property. On the other hand, comparative vA5, which was simply subjected to low P reduction, and comparative WA6, which was only subjected to Ca treatment, exhibited superior 5scc resistance compared to other comparative steels, but was inferior compared to the steel of the present invention. I understand that. In addition, regardless of the Mn level, the steel of the present invention has excellent resistance to 5 s.
cc resistance, but among these, those with lower Mn levels exhibit more aggressive 5scc resistance.

要するに、本発明鋼は熱処理および成分系が異っても有
効性を損なわず、耐5scc性が向上し、きわめて有効
であることがわかる。
In short, it can be seen that the steel of the present invention does not lose its effectiveness even if the heat treatment and composition are different, and the 5scc resistance is improved, making it extremely effective.

以上詳しく説明した通り、本発明鋼は、低P化に併せて
Mn、 P、 Oを」的に規制し、これらの元素の偏析
によって生ずる組織・硬度の不均一を解消すると同時に
、低S化ならびにCa添加によって硫化物系介在物の分
散・球状化を達成するものである。従って、極めて優れ
た耐5scc性が得られ、油井管用鋼材として好適であ
って、しかも、この効果は他の合金元素等の添加や熱処
理によっても損なわれない。
As explained in detail above, the steel of the present invention not only has low P content but also controls Mn, P, and O, and eliminates the non-uniformity of structure and hardness caused by the segregation of these elements. In addition, the addition of Ca achieves dispersion and spheroidization of sulfide inclusions. Therefore, extremely excellent 5scc resistance can be obtained and it is suitable as a steel material for oil country tubular goods, and this effect is not impaired even by the addition of other alloying elements or by heat treatment.

なお、上記のところでは本発明について、油井管用鋼材
を中心として説明したが、これ以外に水素に起因しての
脆化現象の場合には全て適用でき、例えば、高張力ボル
ト材、高圧容器用鋼材等の高強度鋼にも適用できる。
Although the present invention has been explained above with a focus on steel materials for oil country tubular goods, it can also be applied to all cases of embrittlement caused by hydrogen, such as high-tensile bolt materials and high-pressure vessel steel materials. It can also be applied to high-strength steel such as steel.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は耐5scc性試験に供せられる試験片の斜視図
、第2図は耐5scc試験として行なう4点曲げ試験用
ジグの説明図である。
FIG. 1 is a perspective view of a test piece to be subjected to a 5 scc resistance test, and FIG. 2 is an explanatory diagram of a jig for a four-point bending test conducted as a 5 scc resistance test.

Claims (1)

【特許請求の範囲】[Claims] C:0.1〜0.45%、Si:0.010〜0.35
%、Mn:0.4〜2.0%、P:0.009%以下、
S:0.010%以下、Al:0.01〜0.10%、
Ca:0.0010〜0.020%、B:0.0005
〜0.005%を含み、残部がFeおよび不可避的不純
物よりなって、Mn、P、Cに関する条件式Mn≦3.
5−250P−2.5Cを満足することを特徴とする耐
硫化物応力腐蝕割れ性に優れた油井管用鋼材。
C: 0.1-0.45%, Si: 0.010-0.35
%, Mn: 0.4 to 2.0%, P: 0.009% or less,
S: 0.010% or less, Al: 0.01 to 0.10%,
Ca: 0.0010-0.020%, B: 0.0005
~0.005%, the remainder being Fe and unavoidable impurities, and the conditional expression Mn≦3 regarding Mn, P, and C is satisfied.
A steel material for oil country tubular goods having excellent resistance to sulfide stress corrosion cracking and satisfying 5-250P-2.5C.
JP23264385A 1985-10-18 1985-10-18 Steel material for oil well pipe having superior resistance to sulfide stress corrosion cracking Granted JPS61174359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23264385A JPS61174359A (en) 1985-10-18 1985-10-18 Steel material for oil well pipe having superior resistance to sulfide stress corrosion cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23264385A JPS61174359A (en) 1985-10-18 1985-10-18 Steel material for oil well pipe having superior resistance to sulfide stress corrosion cracking

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP14929680A Division JPS5773163A (en) 1980-10-27 1980-10-27 Steel products for oil well pipe with superior sulfide stress corrosion cracking resistance

Publications (2)

Publication Number Publication Date
JPS61174359A true JPS61174359A (en) 1986-08-06
JPS635461B2 JPS635461B2 (en) 1988-02-03

Family

ID=16942509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23264385A Granted JPS61174359A (en) 1985-10-18 1985-10-18 Steel material for oil well pipe having superior resistance to sulfide stress corrosion cracking

Country Status (1)

Country Link
JP (1) JPS61174359A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104018065A (en) * 2014-06-18 2014-09-03 内蒙古包钢钢联股份有限公司 S275JR thick borated steel plate and production method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431019A (en) * 1977-08-12 1979-03-07 Kawasaki Steel Co Steel material having good resistance to hydrogenninduceddcracking
JPS5438214A (en) * 1977-08-31 1979-03-22 Kawasaki Steel Co Steel material having good resistivity to hydrogenninduceddcracking for use as line pipes
JPS55113861A (en) * 1979-02-21 1980-09-02 Nippon Steel Corp Steel plate with superior hydrogen induced cracking resistance
JPS55134155A (en) * 1979-04-03 1980-10-18 Nippon Steel Corp Steel plate with superior hydrogen-induced crack resistance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431019A (en) * 1977-08-12 1979-03-07 Kawasaki Steel Co Steel material having good resistance to hydrogenninduceddcracking
JPS5438214A (en) * 1977-08-31 1979-03-22 Kawasaki Steel Co Steel material having good resistivity to hydrogenninduceddcracking for use as line pipes
JPS55113861A (en) * 1979-02-21 1980-09-02 Nippon Steel Corp Steel plate with superior hydrogen induced cracking resistance
JPS55134155A (en) * 1979-04-03 1980-10-18 Nippon Steel Corp Steel plate with superior hydrogen-induced crack resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104018065A (en) * 2014-06-18 2014-09-03 内蒙古包钢钢联股份有限公司 S275JR thick borated steel plate and production method thereof

Also Published As

Publication number Publication date
JPS635461B2 (en) 1988-02-03

Similar Documents

Publication Publication Date Title
CN110468341B (en) 1400 MPa-level delayed fracture-resistant high-strength bolt and manufacturing method thereof
JPS6354765B2 (en)
JPH0967624A (en) Production of high strength oil well steel pipe excellent in sscc resistance
JPH06104849B2 (en) Method for producing low alloy high strength oil well steel excellent in sulfide stress cracking resistance
US4409026A (en) Spring steel for vehicles
JPS63230847A (en) Low-alloy steel for oil well pipe excellent in corrosion resistance
JPH06116635A (en) Production of high strength low alloy steel for oil well use, excellent in sulfide stress corrosion cracking resistance
JPS60174822A (en) Manufacture of thick-walled seamless steel pipe of high strength
US4282047A (en) Method of producing steel pipe material for oil well
JPS61174359A (en) Steel material for oil well pipe having superior resistance to sulfide stress corrosion cracking
JP3075314B2 (en) Manufacturing method of steel wire for ultra high strength spring
JPH07188840A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JPS6358892B2 (en)
JPS5940220B2 (en) Low alloy steel with excellent sulfide corrosion cracking resistance
JPH0570890A (en) Steel for high strength bolt excellent in delayed fracture resistance
JPS6130653A (en) High strength spring steel
JP2559272B2 (en) Method for producing high strength hot rolled steel sheet with excellent ductility
JPS5974221A (en) Production of high strength seamless steel pipe
JP3912186B2 (en) Spring steel with excellent fatigue resistance
JPS6046318A (en) Preparation of steel excellent in sulfide cracking resistance
JPS58171558A (en) Tough nitriding steel
JPS6361369B2 (en)
JPS5844726B2 (en) Method for manufacturing high-strength ERW steel pipes for oil wells with excellent hydrogen embrittlement resistance
JPH049847B2 (en)
JPH02104639A (en) High yield ratio martensitic stainless steel