JPS6353963A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6353963A
JPS6353963A JP19757786A JP19757786A JPS6353963A JP S6353963 A JPS6353963 A JP S6353963A JP 19757786 A JP19757786 A JP 19757786A JP 19757786 A JP19757786 A JP 19757786A JP S6353963 A JPS6353963 A JP S6353963A
Authority
JP
Japan
Prior art keywords
resistor
resistance value
active layer
semiconductor device
fet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19757786A
Other languages
Japanese (ja)
Inventor
Yasutaka Kono
河野 康孝
Yukio Higaki
桧垣 幸夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP19757786A priority Critical patent/JPS6353963A/en
Publication of JPS6353963A publication Critical patent/JPS6353963A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To form a resistor having a desired resistance value with high accuracy by performing a trimming through an oxygen ion implantation into the resistor that is formed at an active layer. CONSTITUTION:n-type layers 2; that is, FET and a resistor are formed on a semi-insulated GaAs substrate 1. And when a contact hole to an insulation film 4 is formed, the insulation film 4 to the surface of the resistor is simultaneously removed. Then, after measuring a resistance value of the resistor through a removed opening part, oxygen ion is implanted so that a desired value can be obtained. In such a case, the resistance value can be controlled by adjusting the implanted energy and dosage.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体装置の製造方法に係り、特に化合物
半導体集積回路、主としてGaASICの抵抗体の形成
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for forming a resistor for a compound semiconductor integrated circuit, mainly a GaASIC.

〔従来の技術〕[Conventional technology]

GaAsICにおける抵抗体の形成方法の1つに、イオ
ン注入法がある。これは半絶縁性GaAs基板にSi゛
等の不純物を注入することで、n型導電領域を形成する
ものである。このときの抵抗値は、注入エネルギーとド
ーズ量および注入領域のパターンサイズで決まるので、
所望の抵抗値を設計するには、あらかじめ得られている
データを基に、各種パラメータを決定している。
One method for forming resistors in GaAs ICs is ion implantation. In this method, an n-type conductive region is formed by implanting impurities such as Si into a semi-insulating GaAs substrate. The resistance value at this time is determined by the implantation energy, dose amount, and pattern size of the implanted region, so
To design a desired resistance value, various parameters are determined based on previously obtained data.

第2図(a) 〜(C)は従来のGaAsICの製造工
程を示す図で、まず、第2図(a)に示すように、半絶
縁性GaAs基板1上にフォトレジスト6のレジストパ
ターンをマスクとしてSi。
FIGS. 2(a) to (C) are diagrams showing the manufacturing process of a conventional GaAs IC. First, as shown in FIG. 2(a), a resist pattern of a photoresist 6 is formed on a semi-insulating GaAs substrate 1. Si as a mask.

等のn形不純物を注入し、高温でアニールすることによ
ってn形活性層2を形成する。このn形活性層2は、第
2図において、左側はFETとなる領域で、右側は、抵
抗体となる領域である。次に、第2図(b)に示すよう
に、オーミックコンタクトを得る金属を蕪着、リフトオ
フしく途中の工程は省略)、金属配線3を形成する。こ
の時、FET領域に継かった左右の金属配線3は、FE
Tのソース電極とドレイン電極となり、抵抗領域に継か
った金属配線3は、抵抗のオーミ・ンク電極となる。続
いて、第2図(C)に示すように、FET領域にゲート
金属5を付着させてFETを形成した後、表面を保護膜
としての絶縁膜4で覆う。
The n-type active layer 2 is formed by implanting n-type impurities such as the following, and annealing at a high temperature. In FIG. 2, this n-type active layer 2 has a region on the left that becomes an FET, and a region on the right that becomes a resistor. Next, as shown in FIG. 2(b), a metal for forming an ohmic contact is deposited and lifted off (intermediate steps are omitted) to form a metal wiring 3. At this time, the left and right metal wiring 3 that continued to the FET area is connected to the FE
The metal wiring 3, which becomes the source and drain electrodes of T and is connected to the resistance region, becomes the ohmic electrode of the resistance. Subsequently, as shown in FIG. 2C, after a gate metal 5 is deposited on the FET region to form an FET, the surface is covered with an insulating film 4 as a protective film.

上記のように、抵抗体はFETの動作領域と同時に形成
することができ、工程数を増加させない利点を持ってい
るが、FETの動作特性を主張に注入エネルギーやドー
ズ量は決められてしまうので、抵抗値の設計にはパター
ンサイズだけの自由度しがなくなるという欠点も合わせ
持っている。
As mentioned above, the resistor can be formed at the same time as the FET operating region, which has the advantage of not increasing the number of steps, but the implantation energy and dose are determined based on the FET operating characteristics. However, it also has the disadvantage that there is no freedom in designing the resistance value other than the pattern size.

なお、GaAsICには、FETや抵抗体の他にインダ
クタやキャパシタも形成されるが、ここでは図示は省略
している。
Note that, in addition to FETs and resistors, inductors and capacitors are also formed in the GaAs IC, but illustration thereof is omitted here.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のように形成されたGaAsICは、主として高周
波動作に使われるものであるが、高周波回路においては
、抵抗体やインダクタなどの非能動素子は、動作を確認
しながら値を変更する必要性が非常に高い。これをトリ
ミングという。しかるに、従来方法で作成した抵抗体で
は、パターン設計時に値が決められると、以後の工程で
の変更は不可能となるという欠点があった。
GaAs ICs formed as described above are mainly used for high-frequency operation, but in high-frequency circuits, it is extremely necessary to change the values of non-active elements such as resistors and inductors while checking their operation. expensive. This is called trimming. However, resistors made by conventional methods have the disadvantage that once the values are determined at the time of pattern design, they cannot be changed in subsequent steps.

この発明は、上記のような問題点を解消するためになさ
れたもので、工程の後半部において、抵抗体の値をトリ
ミングできる半導体装置の製造方法を提供するものであ
る。
The present invention has been made to solve the above-mentioned problems, and provides a method for manufacturing a semiconductor device in which the value of the resistor can be trimmed in the latter half of the process.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る半導体装置の製造方法は、FET形成の
終了した基板の抵抗体の表面を露出させ、抵抗値の測定
を可能ならしめ、さらに、抵抗体に酸素イオンを注入し
てその抵抗値をトリミングするものである。
The method for manufacturing a semiconductor device according to the present invention exposes the surface of the resistor of the substrate on which the FET has been formed to enable measurement of the resistance value, and further implants oxygen ions into the resistor to measure the resistance value. It is for trimming.

〔作用〕[Effect]

この発明においては、n形活性層に酸素イオンを注入し
て、その伝導度が減少する現象を利用したので、この酸
素イオンを抵抗体に注入することによって抵抗値のトリ
ミングが行われ、注入エネルギーとドーズ量をコントロ
ールすることで、抵抗値を所望の値にトリミングするこ
とができる。
In this invention, oxygen ions are implanted into the n-type active layer and the phenomenon in which the conductivity decreases is utilized, so by implanting these oxygen ions into the resistor, the resistance value is trimmed, and the implantation energy is By controlling the amount and dose, the resistance value can be trimmed to a desired value.

〔実施例〕〔Example〕

この発明の一実施例を第1図(a)〜(d)によって説
明する。
An embodiment of the present invention will be described with reference to FIGS. 1(a) to 1(d).

まず、第1図(a)〜(C)に示すように、第2図(a
)〜(C)の従来例と同様に、半絶縁性GaAs基板I
 J:にn形活性層2、すなわちFETと抵抗体を形成
する。次に、絶縁膜4へのコンタクトホール形成時に抵
抗体表面上への絶縁膜4も同時に剥離する。さらに、絶
縁B24の剥離された開口部を通して抵抗体の抵抗値を
測定した後、第2図(d)に示すように、酸素イオン注
入を行って所望の抵抗値を測定する。この場合、抵抗値
は注入エネルギーとドーズ量によってコントロール可能
である。
First, as shown in Figures 1 (a) to (C), Figure 2 (a)
) to (C), semi-insulating GaAs substrate I
An n-type active layer 2, that is, an FET and a resistor are formed on J:. Next, when forming a contact hole in the insulating film 4, the insulating film 4 on the surface of the resistor is also peeled off at the same time. Furthermore, after measuring the resistance value of the resistor through the peeled opening of the insulation B24, as shown in FIG. 2(d), oxygen ions are implanted to measure a desired resistance value. In this case, the resistance value can be controlled by the implantation energy and dose.

また、この実施例では、酸素イオン注入に際し、他の半
絶縁性GaAs基板1表面が全屈配線3、絶縁+124
で覆われているため、特に注入用のマスクは必要としな
い。このため、工程数の増加は、酸素イオン注入のみで
ある。
In addition, in this embodiment, when oxygen ions are implanted, the surface of the other semi-insulating GaAs substrate 1 is fully bent wiring 3, insulation +124
No special mask is required for injection. Therefore, the only increase in the number of steps is oxygen ion implantation.

また、抵抗値を工程の後半部においてトリミングする方
法として、酸素イオン注入法と同様に、第1図(a)〜
(d)に示すパターン形成後、抵抗体自体をウェットエ
ツチングする方法も考えられる。しかし、CVD法で形
成される絶縁膜4は、ゲート金属5.金属配線3間が第
3図に示すようなりラックの入った形状となるため、ウ
ェットエツチングを用いると、そのクラックを通してエ
ツチングが進みトランジスタのn形活性層2を損傷する
ため適当ではない。
In addition, as a method for trimming the resistance value in the latter half of the process, similar to the oxygen ion implantation method, FIG.
It is also possible to wet-etch the resistor itself after forming the pattern shown in (d). However, the gate metal 5. Since the space between the metal wiring lines 3 has a racked shape as shown in FIG. 3, wet etching is not suitable because the etching proceeds through the cracks and damages the n-type active layer 2 of the transistor.

一方、酸素イオン注入では、第3図に示すような形状の
絶縁膜4でも十分な注入阻止膜となり、トランジスタに
悪影響を及ぼすことはなく、抵抗値を所望の値に設定す
ることができる。
On the other hand, in the case of oxygen ion implantation, the insulating film 4 having the shape as shown in FIG. 3 serves as a sufficient implant blocking film, and the resistance value can be set to a desired value without adversely affecting the transistor.

なお、上記実施例では、化合物半導体としてGaAsを
用いた場合について説明したが、この発明の酸素イオン
注入による抵抗値のコントロールは、他の化合物半導体
を用いたIC形成時にも同様の効果を奏する。
In the above embodiment, the case where GaAs is used as the compound semiconductor has been described, but the resistance value control by oxygen ion implantation of the present invention has similar effects when forming an IC using other compound semiconductors.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、化合物半導体によるI
C製造工程において、金属配線上の絶縁膜へのコンタク
トホール形成と同時に抵抗体上の絶縁膜も除去した後、
抵抗体に酸素イオンを注入することによって所望の抵抗
値にトリミングするようにしたので、抵抗体の抵抗値を
所望の値に精度よくコントロールすることができる効果
がある。
As explained above, this invention provides an I
In the C manufacturing process, after forming a contact hole in the insulating film on the metal wiring and removing the insulating film on the resistor,
Since the resistor is trimmed to a desired resistance value by implanting oxygen ions into the resistor, the resistance value of the resistor can be accurately controlled to a desired value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例のGaASICの製造工程
を示す図、第2図は従来のGaAs1Cの製造工程を示
す図、第3図はCVD法による絶縁膜の堆積形状の一例
を示す図である。 図において、1は半絶縁性GaAs基板、2はn多活性
層、3は金属配線、4は絶縁膜、5はゲート金属である
。 なお、各図中の同一符号は同一または相当部分を示す。
FIG. 1 is a diagram showing the manufacturing process of GaASIC according to an embodiment of the present invention, FIG. 2 is a diagram showing the manufacturing process of conventional GaAs1C, and FIG. 3 is a diagram showing an example of the deposition shape of an insulating film by the CVD method. It is. In the figure, 1 is a semi-insulating GaAs substrate, 2 is an n-type active layer, 3 is a metal wiring, 4 is an insulating film, and 5 is a gate metal. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 基板上に一導電型の活性層を形成し、一方の活性層を抵
抗体として利用する化合物半導体を用いた半導体装置の
製造方法において、前記抵抗体上に形成された絶縁膜を
金属配線上のコンタクトホールの形成と同時に除去した
後、前記抵抗体に酸素イオンを注入して所望の抵抗値に
トリミングすることを特徴とする半導体装置の製造方法
In a method for manufacturing a semiconductor device using a compound semiconductor in which an active layer of one conductivity type is formed on a substrate and one active layer is used as a resistor, an insulating film formed on the resistor is applied to a metal wiring. 1. A method of manufacturing a semiconductor device, comprising: forming and removing a contact hole, and then implanting oxygen ions into the resistor to trim it to a desired resistance value.
JP19757786A 1986-08-22 1986-08-22 Manufacture of semiconductor device Pending JPS6353963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19757786A JPS6353963A (en) 1986-08-22 1986-08-22 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19757786A JPS6353963A (en) 1986-08-22 1986-08-22 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6353963A true JPS6353963A (en) 1988-03-08

Family

ID=16376809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19757786A Pending JPS6353963A (en) 1986-08-22 1986-08-22 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6353963A (en)

Similar Documents

Publication Publication Date Title
CA1085969A (en) Semiconductor devices and method of manufacturing the same
US4514893A (en) Fabrication of FETs
US4285117A (en) Method of manufacturing a device in a silicon wafer
JPS6353963A (en) Manufacture of semiconductor device
JPS59207652A (en) Semiconductor integrated circuit device and manufacture thereof
KR100370987B1 (en) Compound semiconductor device and method for controlling characteristics of the same
JP2766492B2 (en) Method for manufacturing integrated capacitors in MOS technology
KR100205221B1 (en) Method of manufacture having resistance layer of high and low resistance
JPS60257162A (en) Gaas semiconductor integrated circuit
JPS63312632A (en) Manufacture of semiconductor device
JPS6167225A (en) Pattern forming method
JPS5939046A (en) Manufacture of gate array
JPS60132377A (en) Manufacture of semiconductor device
KR930008643B1 (en) Test mehtod of semiconductor i.c.
JPS61228662A (en) Manufacture of semiconductor device
JPS62171152A (en) Forming method for resistor
JPS5826177B2 (en) Manufacturing method of semiconductor device
JPH01302748A (en) Manufacture of semiconductor device
JPH04359559A (en) Formation of resistance element
JPH0444250A (en) Manufacture of semiconductor device
JPS6331155A (en) Manufacture of semiconductor integrated circuit device
JPH02296337A (en) Manufacture of semiconductor device
JPS63292663A (en) Manufacture of semiconductor device
JPS5999759A (en) Integrated circuit
JPS5861625A (en) Manufacture of semiconductor device