JPH04359559A - Formation of resistance element - Google Patents

Formation of resistance element

Info

Publication number
JPH04359559A
JPH04359559A JP13454391A JP13454391A JPH04359559A JP H04359559 A JPH04359559 A JP H04359559A JP 13454391 A JP13454391 A JP 13454391A JP 13454391 A JP13454391 A JP 13454391A JP H04359559 A JPH04359559 A JP H04359559A
Authority
JP
Japan
Prior art keywords
resistance
layer
polycrystalline silicon
layers
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13454391A
Other languages
Japanese (ja)
Inventor
Tomonori Sawano
沢野 知紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP13454391A priority Critical patent/JPH04359559A/en
Publication of JPH04359559A publication Critical patent/JPH04359559A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the relative errors of resistance elements by a method wherein the first resistance layer comprising a polycrystalline silicon layer with an insulating film provided on the surface thereof and the second resistance layer with the surface exposed are simultaneously implanted with impurity ions. CONSTITUTION:An insulating layer 2 is provided on a semiconductor substrate 1 and then polycrystalline silicon layer is deposited on the insulating layer 2 while this polycrystalline silicon layer is selectively etched away so as to form the first and second resistance layers 3a, 3b. Next, a silicon oxide film 4 is deposited on the surface including the resistance layers 3a, 3b and then the film 4 is selectively etched away to expose the resistance layer 3b. Next, boron ions are implanted in the surface using the silicon oxide film 4 as a mask so that the boron ions implanted in the resistance layer 3a by the silicon oxide film 4 may be controlled to adjust the layer resistance of the resistance layers 3a, 3b. Through these procedures, the relative errors of the resistance elements can be reduced.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は抵抗素子の形成方法に関
し、特に半導体集積回路の抵抗素子の形成方法に関する
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of forming a resistive element, and more particularly to a method of forming a resistive element of a semiconductor integrated circuit.

【0002】0002

【従来の技術】従来の半導体集積回路の抵抗素子の第1
の形成方法は、図3(a),(b)に示すように、半導
体基板1の上に設けた絶縁膜2の上に多結晶シリコン層
を0.3μmの厚さに堆積する。次に、多結晶シリコン
層にホウ素イオンを加速エネルギー50keV,ドーズ
量5.0×1014cm−2でイオン注入して熱処理す
る。 次に、フォトリソグラフィ技術を用いて多結晶シリコン
層をパターニングし、抵抗層3d,3eを形成する。次
に、抵抗層3a,3bを含む表面に層間絶縁膜5を堆積
し、抵抗層3d,3e上の層間絶縁膜5を開孔してコン
タクト孔6を設け、コンタクト孔6の抵抗層3d,3e
に接続する電極7を夫々設ける。
[Prior Art] First resistor element of conventional semiconductor integrated circuit
As shown in FIGS. 3A and 3B, a polycrystalline silicon layer is deposited to a thickness of 0.3 μm on an insulating film 2 provided on a semiconductor substrate 1. Next, boron ions are implanted into the polycrystalline silicon layer at an acceleration energy of 50 keV and a dose of 5.0×10 14 cm −2 and heat treated. Next, the polycrystalline silicon layer is patterned using photolithography technology to form resistance layers 3d and 3e. Next, an interlayer insulating film 5 is deposited on the surface including the resistance layers 3a and 3b, and a contact hole 6 is provided by opening the interlayer insulating film 5 on the resistance layers 3d and 3e. 3e
An electrode 7 connected to each is provided.

【0003】ここで、抵抗層3d,3eの層抵抗を1k
Ω/□とし、抵抗層3dの長さLと幅Wの比(以下L/
Wと記す)を1/6,抵抗層3eのL/W比を5.5/
2とすると、抵抗値=(層抵抗)×L/Wより抵抗層3
dの抵抗R1=167Ω,抵抗層3eの抵抗R2 =2
.75KΩとなる。
[0003] Here, the layer resistance of the resistance layers 3d and 3e is set to 1k.
Ω/□, and the ratio of the length L to the width W of the resistance layer 3d (hereinafter L/
) is 1/6, and the L/W ratio of the resistance layer 3e is 5.5/
2, resistance value = (layer resistance) x L/W, resistance layer 3
d resistance R1 = 167Ω, resistance layer 3e resistance R2 = 2
.. It becomes 75KΩ.

【0004】このように層抵抗が同じ抵抗層で異った大
きさの抵抗値を得るには抵抗層のL/W比を変えなくて
はならないが、複数の抵抗素子の間で抵抗層のL/W比
の大きさが1桁以上も異なる場合には製造時のばらつき
による寸法精度が悪くなったり、熱処理やストレスで抵
抗値が変動するということが知られている。この問題を
解決するために層抵抗の異る抵抗層を形成する方法があ
る。
[0004] In this way, in order to obtain different resistance values in resistance layers with the same layer resistance, it is necessary to change the L/W ratio of the resistance layer. It is known that when the L/W ratio differs by one order of magnitude or more, dimensional accuracy deteriorates due to manufacturing variations, and resistance value fluctuates due to heat treatment or stress. To solve this problem, there is a method of forming resistance layers having different layer resistances.

【0005】図4(a)〜(c)は従来の抵抗素子の第
2の形成方法を説明するための工程順に示した半導体チ
ップの断面図である。
FIGS. 4A to 4C are cross-sectional views of a semiconductor chip shown in the order of steps for explaining a second method of forming a conventional resistance element.

【0006】図4(a)に示すように、半導体基板1の
上に設けた絶縁膜2の上に多結晶シリコン層3を0.3
μmの厚さに堆積し、多結晶シリコン層3にホウ素イオ
ンを加速エネルギー50keV,ドーズ量2×1014
cm−2でイオン注入する。
As shown in FIG. 4(a), a polycrystalline silicon layer 3 is formed on an insulating film 2 provided on a semiconductor substrate 1 with a thickness of 0.3
Deposited to a thickness of μm, boron ions are deposited on the polycrystalline silicon layer 3 at an energy of 50 keV and a dose of 2×10 14
Ion implantation is performed at cm-2.

【0007】次に、図4(b)に示すように、フォトリ
ソグラフィ技術により多結晶シリコン層3をパターニン
グして抵抗層3a,3bを形成する。次に、抵抗層3a
,3bを含む表面にフォトレジスト膜8を塗布してパタ
ーニングし抵抗層3bを露出させる。次に、フォトレジ
スト膜8をマスクとしてホウ素イオンをイオン注入する
Next, as shown in FIG. 4(b), the polycrystalline silicon layer 3 is patterned by photolithography to form resistance layers 3a and 3b. Next, the resistance layer 3a
, 3b is coated with a photoresist film 8 and patterned to expose the resistive layer 3b. Next, boron ions are implanted using the photoresist film 8 as a mask.

【0008】次に、図4(c)に示すように、フォトレ
ジスト膜8を除去した後熱処理し、抵抗層3a,3bを
含む表面に層間絶縁膜5を堆積してコンタクト孔6を設
け、コンタクト孔6の抵抗層3a,3bと接続する電極
7を設ける。
Next, as shown in FIG. 4C, after removing the photoresist film 8, heat treatment is performed, and an interlayer insulating film 5 is deposited on the surface including the resistance layers 3a and 3b to form a contact hole 6. An electrode 7 is provided to connect to the resistance layers 3a, 3b of the contact hole 6.

【0009】このように、抵抗層3a,3bの層抵抗を
変えることにより、抵抗層の寸法を大幅に変えなくとも
抵抗値が大きく異なる抵抗素子を形成できる。
As described above, by changing the layer resistances of the resistance layers 3a and 3b, it is possible to form resistance elements having greatly different resistance values without significantly changing the dimensions of the resistance layers.

【0010】0010

【発明が解決しようとする課題】従来の抵抗素子の形成
方法は、抵抗層の層抵抗を調整するためにイオン注入す
るドーズ量が各抵抗層間で相関が無いため抵抗素子間の
相対誤差が大きくなるという問題点がある。半導体集積
回路においては、ある一組の抵抗は抵抗製造の絶対誤差
に対して相対誤差が小さいことを期待されているが、抵
抗値の大きさのみで層抵抗を決定するとその期待が果せ
なくなるという問題点がある。
[Problem to be Solved by the Invention] In the conventional method of forming a resistor element, the dose of ions implanted to adjust the layer resistance of the resistor layer has no correlation between each resistor layer, so the relative error between resistors is large. There is a problem with that. In semiconductor integrated circuits, it is expected that a set of resistors will have a small relative error compared to the absolute error in resistor manufacturing, but if the layer resistance is determined only by the magnitude of the resistance value, this expectation will not be fulfilled. There is a problem.

【0011】[0011]

【課題を解決するための手段】本発明の抵抗素子の形成
方法は、半導体基板上に多結晶シリコン層を堆積し前記
多結晶シリコン層を選択的にエッチングして第1及び第
2の抵抗層を形成する工程と、前記第1及び第2の抵抗
層を含む表面に絶縁膜を堆積して選択的にエッチングし
、前記第2の抵抗層を露出させる工程と、前記絶縁膜を
マスクとして不純物をイオン注入し、前記第1及び第2
の抵抗層に異なる濃度の不純物を導入する工程とを含ん
で構成される。
[Means for Solving the Problems] A method for forming a resistance element of the present invention includes depositing a polycrystalline silicon layer on a semiconductor substrate, selectively etching the polycrystalline silicon layer, and forming first and second resistance layers. a step of depositing an insulating film on the surface including the first and second resistance layers and selectively etching it to expose the second resistance layer; ions are implanted into the first and second
and introducing impurities at different concentrations into the resistance layer.

【0012】0012

【実施例】次に、本発明について図面を参照して説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be explained with reference to the drawings.

【0013】図1(a)〜(c)は本発明の第1の実施
例を説明するための工程順に示した半導体チップの断面
図である。
FIGS. 1A to 1C are cross-sectional views of a semiconductor chip shown in the order of steps for explaining a first embodiment of the present invention.

【0014】まず、図1(a)に示すように、半導体基
板1の上に絶縁膜2を設け、絶縁膜2の上に多結晶シリ
コン層を0.3μmの厚さに堆積しフォトリソグラフィ
技術により選択的にエッチングして第1及び第2の抵抗
層3a,3bを形成する。
First, as shown in FIG. 1(a), an insulating film 2 is provided on a semiconductor substrate 1, and a polycrystalline silicon layer is deposited to a thickness of 0.3 μm on the insulating film 2 using a photolithography technique. selectively etching is performed to form first and second resistance layers 3a and 3b.

【0015】次に、図1(b)に示すように、抵抗層3
a,3bを含む表面に酸化シリコン膜4を0.3μmの
厚さに堆積して選択的にエッチングし、抵抗層3bを露
出させる。次に酸化シリコン膜4をマスクとしてホウ素
イオンを加速エネルギー50keV,ドーズ量5×10
15cm−2でイオン注入し、酸化シリコン膜4により
抵抗層3aに注入されるホウ素イオンを制御し、抵抗層
3aと抵抗層3bとの層抵抗を調整する。
Next, as shown in FIG. 1(b), the resistive layer 3
A silicon oxide film 4 is deposited to a thickness of 0.3 μm on the surface including layers a and 3b and selectively etched to expose the resistive layer 3b. Next, using the silicon oxide film 4 as a mask, boron ions are accelerated at an energy of 50 keV and a dose of 5×10
Ions are implanted at a depth of 15 cm<-2>, and the boron ions implanted into the resistive layer 3a are controlled by the silicon oxide film 4 to adjust the layer resistance between the resistive layers 3a and 3b.

【0016】次に、図1(c)に示すように、酸化シリ
コン膜4をエッチングして除去し、熱処理した後抵抗層
3a,3bを含む表面に層間絶縁膜5を堆積する。次に
、抵抗層3a,3b上の層間絶縁膜5を選択的に開孔し
てコンタクト孔6を設け、コンタクト孔6を含む表面に
金属層を堆積して選択的にエッチングし、コンタクト孔
6の抵抗層3a,3bと夫々接続する電極7を形成する
Next, as shown in FIG. 1C, the silicon oxide film 4 is etched and removed, and after heat treatment, an interlayer insulating film 5 is deposited on the surface including the resistance layers 3a and 3b. Next, contact holes 6 are formed by selectively opening the interlayer insulating film 5 on the resistance layers 3a and 3b, and a metal layer is deposited on the surface including the contact holes 6 and selectively etched. Electrodes 7 are formed to connect to the resistance layers 3a and 3b, respectively.

【0017】ここで、抵抗層3a,3bの層抵抗は夫々
数kΩ/□,数百kΩ/□となり、抵抗値にて1桁以上
異る抵抗素子を形成する場合でも、あまり違わないL/
W比で形成することができる。また、イオン注入のばら
つきによる抵抗値の変化は抵抗層3a,3b間で同じ傾
向で示すので、相対誤差を小さく保つことが可能である
Here, the layer resistances of the resistance layers 3a and 3b are several kΩ/□ and several hundred kΩ/□, respectively, and even when forming resistance elements whose resistance values differ by more than one digit, L/□ is not much different.
It can be formed with a W ratio. Moreover, since the resistance value changes due to variations in ion implantation show the same tendency between the resistance layers 3a and 3b, it is possible to keep the relative error small.

【0018】図2(a)〜(c)は本発明の第2の実施
例を説明するための工程順に示した半導体チップの断面
図である。
FIGS. 2A to 2C are cross-sectional views of a semiconductor chip shown in order of steps for explaining a second embodiment of the present invention.

【0019】図2(a)に示すように、半導体基板1の
上に設けた絶縁膜2の上に多結晶シリコン層3を堆積し
て設け、多結晶シリコン層3の上に選択的に厚さ0.3
μmの酸化シリコン膜4a及び厚さ0.2μmの酸化シ
リコン膜4bの夫々を設ける。
As shown in FIG. 2(a), a polycrystalline silicon layer 3 is deposited on an insulating film 2 provided on a semiconductor substrate 1, and a thick layer is selectively formed on the polycrystalline silicon layer 3. Sa0.3
A silicon oxide film 4a with a thickness of μm and a silicon oxide film 4b with a thickness of 0.2 μm are provided, respectively.

【0020】次に、図2(b)に示すように、酸化シリ
コン膜4a,4bをマスクとして多結晶シリコン層3中
にホウ素イオンをイオン注入し、酸化シリコン膜4a,
4bが存在する部分及び表面が露出している部分の多結
晶シリコン層3に夫々異なるドーズ量でホウ素イオンを
注入する。次に、酸化シリコン膜4a,4bを除去した
後多結晶シリコン層3を選択的にエッチングして抵抗層
3a,3b,3cを形成する。
Next, as shown in FIG. 2B, boron ions are implanted into the polycrystalline silicon layer 3 using the silicon oxide films 4a, 4b as masks, and the silicon oxide films 4a, 4b are implanted into the polycrystalline silicon layer 3.
Boron ions are implanted at different doses into the polycrystalline silicon layer 3 in the portion where 4b is present and the portion where the surface is exposed. Next, after removing the silicon oxide films 4a, 4b, the polycrystalline silicon layer 3 is selectively etched to form resistance layers 3a, 3b, 3c.

【0021】次に、図2(c)に示すように、抵抗層3
a,3b,3cを含む表面に層間絶縁膜5を形成してコ
ンタクト孔6を設け、コンタクト孔の抵抗層3a,3b
,3cの夫々と接続する電極7を形成する。
Next, as shown in FIG. 2(c), the resistive layer 3
A contact hole 6 is provided by forming an interlayer insulating film 5 on the surface including layers a, 3b, and 3c, and the resistance layer 3a, 3b of the contact hole is
, 3c are formed.

【0022】[0022]

【発明の効果】以上説明したように本発明は、多結晶シ
リコン層からなり表面に絶縁膜を設けた第1の抵抗層及
び表面を露出させた第2の抵抗層の夫々に同時に不純物
をイオン注入して第1及び第2の抵抗層の導電率を高め
ることにより第1の抵抗層と第2の抵抗層の層抵抗の変
化に相関性を持たせることができ、抵抗素子の相対誤差
を小さくすることができるという効果を有する。
Effects of the Invention As explained above, the present invention simultaneously ions impurities into each of a first resistance layer made of a polycrystalline silicon layer and having an insulating film on its surface, and a second resistance layer whose surface is exposed. By increasing the conductivity of the first and second resistive layers through injection, it is possible to correlate changes in the layer resistance of the first resistive layer and the second resistive layer, thereby reducing the relative error of the resistive element. It has the effect of being able to be made smaller.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の第1の実施例を説明するための工程順
に示した半導体チップの断面図。
FIG. 1 is a cross-sectional view of a semiconductor chip shown in the order of steps for explaining a first embodiment of the present invention.

【図2】本発明の第2の実施例を説明するための工程順
に示した半導体チップの断面図。
FIG. 2 is a cross-sectional view of a semiconductor chip shown in the order of steps for explaining a second embodiment of the present invention.

【図3】従来の抵抗素子の第1の例を示す半導体チップ
の平面図及びA−A′線断面図。
FIG. 3 is a plan view and a cross-sectional view taken along line A-A' of a semiconductor chip showing a first example of a conventional resistance element.

【図4】従来の抵抗素子の第2の例を説明するための工
程順に示した半導体チップの断面図。
FIG. 4 is a cross-sectional view of a semiconductor chip shown in order of steps for explaining a second example of a conventional resistance element.

【符号の説明】[Explanation of symbols]

1    半導体基板 2    絶縁膜 3    多結晶シリコン層 3a,3b,3c    抵抗層 4,4a,4b    酸化シリコン膜5    層間
絶縁膜 6    コンタクト孔 7    電極 8    フォトレジスト膜
1 Semiconductor substrate 2 Insulating film 3 Polycrystalline silicon layers 3a, 3b, 3c Resistance layers 4, 4a, 4b Silicon oxide film 5 Interlayer insulating film 6 Contact hole 7 Electrode 8 Photoresist film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  半導体基板上に多結晶シリコン層を堆
積し前記多結晶シリコン層を選択的にエッチングして第
1及び第2の抵抗層を形成する工程と、前記第1及び第
2の抵抗層を含む表面に絶縁膜を堆積して選択的にエッ
チングし、前記第2の抵抗層を露出させる工程と、前記
絶縁膜をマスクとして不純物をイオン注入し、前記第1
及び第2の抵抗層に異なる濃度の不純物を導入する工程
とを含むことを特徴とする抵抗素子の形成方法。
1. A step of depositing a polycrystalline silicon layer on a semiconductor substrate and selectively etching the polycrystalline silicon layer to form first and second resistance layers; depositing an insulating film on the surface including the layer and selectively etching it to expose the second resistive layer; implanting impurity ions using the insulating film as a mask;
and introducing impurities of different concentrations into the second resistance layer.
JP13454391A 1991-06-06 1991-06-06 Formation of resistance element Pending JPH04359559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13454391A JPH04359559A (en) 1991-06-06 1991-06-06 Formation of resistance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13454391A JPH04359559A (en) 1991-06-06 1991-06-06 Formation of resistance element

Publications (1)

Publication Number Publication Date
JPH04359559A true JPH04359559A (en) 1992-12-11

Family

ID=15130778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13454391A Pending JPH04359559A (en) 1991-06-06 1991-06-06 Formation of resistance element

Country Status (1)

Country Link
JP (1) JPH04359559A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196559A (en) * 2000-01-13 2001-07-19 Seiko Epson Corp Semiconductor device and method of manufacturing the same
JP2012134195A (en) * 2010-12-20 2012-07-12 New Japan Radio Co Ltd Semiconductor device manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196559A (en) * 2000-01-13 2001-07-19 Seiko Epson Corp Semiconductor device and method of manufacturing the same
JP2012134195A (en) * 2010-12-20 2012-07-12 New Japan Radio Co Ltd Semiconductor device manufacturing method

Similar Documents

Publication Publication Date Title
US4643777A (en) Method of manufacturing a semiconductor device comprising resistors of high and low resistances
JPS6057952A (en) Manufacture of semiconductor device
JPH0434966A (en) Manufacture of semiconductor device
US6143474A (en) Method of fabricating polysilicon structures with different resistance values for gate electrodes, resistors, and capacitor plates
US5759887A (en) Semiconductor device and a method of manufacturing a semiconductor device
JPH04359559A (en) Formation of resistance element
JP2626060B2 (en) Semiconductor device and manufacturing method thereof
JPS63152164A (en) Semiconductor device
JP2630616B2 (en) Method for manufacturing semiconductor device
JP2901262B2 (en) Manufacturing method of polysilicon resistance element
JPS63202953A (en) Manufacture of semiconductor device
KR950011565B1 (en) Manufacturing method of semiconductor device
JPS63244764A (en) Manufacture of semiconductor device
JPS61228661A (en) Semiconductor device and manufacture thereof
JPH02199865A (en) Manufacture of semiconductor device
JPH0444250A (en) Manufacture of semiconductor device
JPS58147145A (en) Manufacture of semiconductor device
JPH05283619A (en) Formation of resistor element
JPH01260850A (en) Manufacture of semiconductor device
JPH04324672A (en) Formation of resistance
JPH01260849A (en) Manufacture of semiconductor device
JPH02296337A (en) Manufacture of semiconductor device
JPS61248547A (en) Manufacture of semiconductor device
JPH01194321A (en) Manufacture of semiconductor device
JPH01302748A (en) Manufacture of semiconductor device