JPS61228662A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61228662A
JPS61228662A JP6932185A JP6932185A JPS61228662A JP S61228662 A JPS61228662 A JP S61228662A JP 6932185 A JP6932185 A JP 6932185A JP 6932185 A JP6932185 A JP 6932185A JP S61228662 A JPS61228662 A JP S61228662A
Authority
JP
Japan
Prior art keywords
film
mask material
forming
region
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6932185A
Other languages
Japanese (ja)
Inventor
Yasuo Kadota
門田 靖夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6932185A priority Critical patent/JPS61228662A/en
Publication of JPS61228662A publication Critical patent/JPS61228662A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/0802Resistors only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To make it possible to form a resistor elements having different resistivities stably at a high density on a semiconductor element, by determining the shapes and forming positions of all resistance regions by the patterning of a first mask material. CONSTITUTION:A silicon oxide film 102 is formed on an N-type semiconductor substrate 101. An aluminum film 103 is deposited as a first mask material on the entire surface. Then, the aluminum film 103 on a resistance-element forming region is selectively removed by a photoetching method. Thus opening parts 104 and 105 are formed. Then, as a second mask material, photoresist 106 is formed. Thereafter, boron ions are implanted, and a first resistance element region 107 is formed. Then, as a third mask material, photoresist 108 is formed. Boron, whose dose amount is different from the first ion implantation, is implanted and a second resistance element region 109 is formed. Thus the interval between the resistors having different resistivities can be controlled accurately.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体装置の製造方法に関し、特に抵抗素子
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of manufacturing a resistive element.

(従来の技術) 従来、半導体装置に使用される抵抗素子の一つに半導体
基板に不純物をイオン注入して形成する方法がある。こ
の方法では不純物の濃度を適度に設定することにエリ任
意の比抵抗の抵抗素子を形成することが出来る。
(Prior Art) Conventionally, one method of forming a resistance element used in a semiconductor device is to implant impurity ions into a semiconductor substrate. In this method, a resistance element having an arbitrary specific resistance can be formed by setting the impurity concentration appropriately.

8g5図は従来の抵抗素子の一例の平面図、第6図(a
)〜(C)は第5図に示す抵抗素子の製造方法を説明す
るための工程順に示し比断面図である。
Figure 8g5 is a plan view of an example of a conventional resistance element, and Figure 6 (a
) to (C) are ratio cross-sectional views shown in the order of steps for explaining the method of manufacturing the resistance element shown in FIG. 5.

まず、第6図(a)に示すエリにn型シリコン基板20
1にシリコン酸化膜202を形成する0次に、フォトレ
ジスト等の第1のマスク材203に1って、抵抗形成領
域の形状1位置を設足し、イオン注入法に工9、シリコ
ン基板201に第1の抵抗素子領域207’i形成する
First, an n-type silicon substrate 20 is placed on the area shown in FIG. 6(a).
Forming a silicon oxide film 202 in Step 1 Next, a resistor forming region is formed at a position 1 in a first mask material 203 such as a photoresist, and then an ion implantation method is applied to the silicon substrate 201. A first resistance element region 207'i is formed.

次に、1t6図(b)に示すエリに、!1のマスク材2
03を除去し、続いて、8[2のマスク材205を形成
することに工9、第2の抵抗形成領域の形状配置を設定
し、イオン注入法に19基板201にIE2の抵抗素子
領域209を形成する。
Next, to Eri shown in 1t6 figure (b),! 1 mask material 2
03 is removed, and then a mask material 205 of 8[2 is formed, step 9 is set, the shape and arrangement of the second resistor forming region is set, and a resistive element region 209 of IE2 is formed on the substrate 201 by ion implantation. form.

次に、纂6図(C)に示すように、fjg2のマスク材
2051に除去する。
Next, as shown in Figure 6 (C), a mask material 2051 of fjg2 is removed.

次に、i45図に示すように、各抵抗素子領域の両端の
シリコン酸化膜を選択的に除去して、コンタクト穴21
0t−形成する0次に、電極配線211を形成すること
にエリ抵抗素子が形成される。
Next, as shown in Figure i45, the silicon oxide film at both ends of each resistive element region is selectively removed, and
Next, after forming the electrode wiring 211, an edge resistance element is formed.

(発明が解決しょうとする問題点) 上述の工うな形成方法では、IE6図(b)に示すよう
に、第2のマスク材205を形成する際に、第1の抵抗
素子領域2070段差が形成されていないので第1の抵
抗素子領域207に対して直接的に位置合せを行なうこ
とが不可能である0位置ずれに工っでは抵抗領域207
と209間の接近による耐圧劣化や著しい場合は短絡を
起こすという欠点がある。
(Problems to be Solved by the Invention) In the above-mentioned method for forming a hole, a step is formed in the first resistive element region 2070 when forming the second mask material 205, as shown in FIG. Therefore, it is impossible to directly align the resistor region 207 with respect to the first resistor element region 207.
There is a drawback that the close proximity between 209 and 209 causes deterioration of withstand voltage and, in severe cases, short circuit.

従って、第1の抵抗領域207と纂2の抵抗領域209
の間隔Wは第1のマスク材203の位置ずれに対する余
裕と、第2のマスク材205の位置ずれに対する余裕を
加味して設定しなければならず、抵抗素子形成領域の高
密度化の障害となっているという問題があった。
Therefore, the first resistance region 207 and the second resistance region 209
The interval W must be set by taking into account allowances for misalignment of the first mask material 203 and misalignment of the second mask material 205, which may be an obstacle to increasing the density of the resistive element forming area. There was a problem that

本発明の目的は、上記従来の欠点を解決し、比抵抗の異
なる抵抗素子を高密度に安定的に半導体基板に形成する
方法を含む半導体装置の製造方法を提供することにある
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned conventional drawbacks and to provide a method for manufacturing a semiconductor device including a method for stably forming resistive elements having different specific resistances in a high density on a semiconductor substrate.

(問題点t−解決するための手段) 本発明の半導体装置の製造方法は、表面を絶縁膜で覆わ
れた第1導電形の半導体基板上に第1の膜を被着し抵抗
素子形成領域に開口部を形成する工程と、所定の位置の
前記開孔部t−榎う工うに構2の膜を形成する工程と、
前記第1の膜と第2の膜をマスクとして、イオン注入法
に工り、前記半導体基板に反対導電形の第1の不純物層
領域を形成する工程と、前記第2の膜を除去して続いて
少なくとも前記1!1の不純物層領域を覆う工うに、@
3の膜を形成する工程と、W!i1の膜と纂3の膜をマ
スクとしてイオン注入法に19、前記半導体基板に反対
導電形の81の不純物層とは比抵抗の異なる鷹2の不純
物層を形成する工程とを含んで構成される。
(Problem t - Means for Solving) A method for manufacturing a semiconductor device of the present invention includes depositing a first film on a semiconductor substrate of a first conductivity type whose surface is covered with an insulating film, and forming a resistive element forming area. a step of forming an opening at a predetermined position, and a step of forming a membrane of the opening section 2 at a predetermined position;
forming a first impurity layer region of opposite conductivity type in the semiconductor substrate by using the first film and the second film as masks, and removing the second film; Then, to cover at least the 1!1 impurity layer region, @
Step 3 of forming the film and W! 19, using the film i1 and the film 3 as masks, using an ion implantation method, and forming an impurity layer 2 on the semiconductor substrate having a resistivity different from that of the impurity layer 81, which is of an opposite conductivity type. Ru.

ここで、第1の膜として多結晶シリコンまたはアルミニ
ウムが選ばれ、第2及び第3の膜としてフォトレジスト
が選ばれる。また、IElの膜が多結晶シリコンである
とき、第2及び第3の膜としてアルミニウムを用いるこ
とができる。
Here, polycrystalline silicon or aluminum is selected as the first film, and photoresist is selected as the second and third films. Furthermore, when the IEl film is polycrystalline silicon, aluminum can be used as the second and third films.

(実施例) 次に、本発明の実施例について図面を用いて説明する。(Example) Next, embodiments of the present invention will be described using the drawings.

IE i 図(a)、 (b)乃至wE4図(a)、 
(b)W本発明の一実施例全説明するための工程順に示
した平面図及び断面図である。
IE i Figures (a), (b) to wE4 (a),
(b) W is a plan view and a cross-sectional view showing the steps in order to fully explain an embodiment of the present invention.

まず、第1図(11,(b)に示す工うに、n型半尋体
基板101上にシリコン酸化膜102t−200OAの
厚さに形成する1次に、全面に第1のマスク材としてア
ルミニウム1la103t−500OAの厚さに被着さ
せる。続いて、フォトエツチング法によって抵抗素子形
成領域上のアルミニウム膜103を選択的に除去するこ
とによって開孔部104.105を形成する。
First, in the process shown in FIG. 1 (11, (b)), a silicon oxide film is formed on the n-type half-layer substrate 101 to a thickness of 102t-200OA, and then aluminum is coated on the entire surface as a first mask material. The aluminum film 103 is deposited to a thickness of 1 la 10 3 t-500 OA.Then, the aluminum film 103 on the resistor element formation region is selectively removed by photoetching to form openings 104 and 105.

次に、第2図(a)、 (b)に示す工うに、開孔部1
05を覆うように、第2のマスク材としてフオトレジス
)106t−形成し、続いてイオン注入法にJ:リホウ
素1k1.0X10  cm  打込むことにLD%鷹
1の抵抗素子領域107を形成する。
Next, as shown in FIGS. 2(a) and 2(b), the opening 1 is
A photoresist (photoresist) 106t is formed as a second mask material so as to cover the resistor element region 106t as a second mask material, and then a resistive element region 107 with an LD% of 1 is formed by implanting 1k1.0×10 cm of lithium boron using an ion implantation method.

次に、第3図(a)、 (b)に示す工うに、フォトレ
ジスト106を除去し、続いて開孔部104を覆う工う
に、第3のマスク材としてフォトレジスト108を形成
する。続いてイオン注入に工り、第1のイオン注入とは
異なるドーズ量のホウ素t”LOXlo”cm−”@度
打込むことにエフ、第2の抵抗素子領域109t−形成
する。
Next, as shown in FIGS. 3A and 3B, the photoresist 106 is removed, and then a photoresist 108 is formed as a third mask material to cover the opening 104. Subsequently, ion implantation is performed, and a second resistance element region 109t- is formed by implanting boron at a dose t"LOXlo"cm-" which is different from the first ion implantation.

第4図(a)、 (b)に示す工うに、フォトレジスト
108を除去し、続いてアルミニウム膜102t−除去
する0次に、イ、オン注入された不純物層の活性化の為
に900℃でアニールを行ない、抵抗素子領域の両端の
シリコン酸化膜102t−選択的に除去して電極取出し
、開孔部110會形成し、次にアルミニウム電極111
t−形成することに工って、抵抗素子が形成される。
In the process shown in FIGS. 4(a) and 4(b), the photoresist 108 is removed, and then the aluminum film 102t is removed. The silicon oxide film 102t at both ends of the resistive element region is selectively removed to take out the electrode, an opening 110 is formed, and then an aluminum electrode 111 is formed.
A resistive element is formed by forming the resistive element.

上記実施例において[、I!1のマスク材にアルミニウ
ム、第2.@3のマスク材に7オトレジストt−用いた
が、他のマスク材として多結晶シリコン膜なども適用で
きる。
In the above embodiment, [,I! The first mask material is aluminum, the second mask material is aluminum. Although 7-otoresist t- was used as the mask material in @3, other mask materials such as polycrystalline silicon films can also be used.

上記実施例において、抵抗素子領域107と109の距
離Wは第1図(b)に示す工うに、アルミニウム膜10
3のパターンで決定されており、従来の製造方法の欠点
である位置ずれによる距離Wの短縮に伴う、抵抗領域間
の耐圧劣化や短絡が解決されている。
In the above embodiment, the distance W between the resistive element regions 107 and 109 is as shown in FIG.
3, which solves the drawbacks of conventional manufacturing methods, such as deterioration in breakdown voltage and short circuits between resistance regions due to shortening of distance W due to positional deviation.

(発明の効果] 以上説明し友工うに、本発明は、第1のマスク材のバタ
ーニングに工って、すべての抵抗領域の形状及び形成位
置を決定している為に、比抵抗の異なる抵抗の間隔を正
確に制御することが可能であり、かつ、十分に短縮して
も安定し比特性の抵抗素子を得ることができる。
(Effects of the Invention) As explained above, the present invention utilizes the patterning of the first mask material to determine the shapes and formation positions of all the resistance regions. It is possible to accurately control the distance between the resistors, and even if the resistor spacing is sufficiently shortened, a resistive element with stable specific characteristics can be obtained.

従って、抵抗素子の高密度つ′tす、半導体装置の集積
度の同上に効果がある。
Therefore, it is effective to increase the density of resistive elements and the degree of integration of semiconductor devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、 (b)乃至薦4図(a)、 (b)f
1本発qo−実施例を説明するための工程順に示し比平
面図及び断面図、纂5図は従来の抵抗素子の一例の平面
図、渠6図(a)〜(C)は第5図に示す抵抗素子の製
造方法を説明するための工程順に示し友断面図である。 101・・・・・・半導体基板、102・・・・・・シ
リコン酸化膜、103・・・・・・アルミニウム膜、1
04,105・・・・・・開孔部、106・・・・・・
フォトレジスト、107・・・・・・第1の抵抗素子領
域、108・・・・・・フォトレジスト、109・・・
・・・第2の抵抗素子領域、110・・・・・・開孔i
、111・・・・・・アルミニウム電極、201・・・
・・・シリコン基板、202・・・・・・シリコン酸化
膜、203・・・・・・第1のマスク材(アルミニウム
]、205・・・・・・第2のマスク材、207・・・
・・・第1の抵抗素子領域、209・・・・・・第2の
抵抗素子領域、210・・・・・・コンタクト穴、21
1−・−アルミニウム電極。 御4図
Figure 1 (a), (b) to Recommended Figure 4 (a), (b)f
Figure 5 is a plan view of an example of a conventional resistance element, Figure 6 (a) to (C) are Figure 5. FIGS. 3A and 3B are cross-sectional views shown in order of steps for explaining the method for manufacturing the resistance element shown in FIGS. 101...Semiconductor substrate, 102...Silicon oxide film, 103...Aluminum film, 1
04,105...Opening part, 106...
Photoresist, 107...First resistance element region, 108...Photoresist, 109...
...Second resistance element region, 110...Opening i
, 111...aluminum electrode, 201...
... Silicon substrate, 202 ... Silicon oxide film, 203 ... First mask material (aluminum), 205 ... Second mask material, 207 ...
...First resistance element region, 209...Second resistance element region, 210...Contact hole, 21
1-.-Aluminum electrode. Figure 4

Claims (4)

【特許請求の範囲】[Claims] (1)表面を絶縁膜で覆われた第1導電形の半導体基板
上に第1の膜を被着し抵抗素子形成領域に開口部を形成
する工程と、所定の位置の前記開孔部を覆うように第2
の膜を形成する工程と、前記第1の膜と第2の膜をマス
クとして、イオン注入法により、前記半導体基板に反対
導電形の第1の不純物層領域を形成する工程と、前記第
2の膜を除去して続いて、少なくとも前記第1の不純物
層領域を覆うように、第3の膜を形成する工程と、第1
の膜と第3の膜をマスクとして、イオン注入法により、
前記半導体基板に反対導電形の第1の不純物層とは比抵
抗の異なる第2の不純物層を形成する工程を含むことを
特徴とする半導体装置の製造方法。
(1) A step of depositing a first film on a semiconductor substrate of a first conductivity type whose surface is covered with an insulating film and forming an opening in a resistor element formation region, and forming the opening at a predetermined position. second to cover
forming a first impurity layer region of opposite conductivity type in the semiconductor substrate by ion implantation using the first film and the second film as masks; forming a third film so as to cover at least the first impurity layer region;
By using the ion implantation method using the film and the third film as masks,
A method of manufacturing a semiconductor device, comprising the step of forming a second impurity layer having a resistivity different from that of the first impurity layer of an opposite conductivity type on the semiconductor substrate.
(2)第1の膜が多結晶シリコン膜であり、第2の膜及
び第3の膜がフォトレジスト膜である特許請求の範囲第
(1)項記載の半導体装置の製造方法。
(2) The method of manufacturing a semiconductor device according to claim (1), wherein the first film is a polycrystalline silicon film, and the second film and third film are photoresist films.
(3)第1の膜がアルミニウムであり、第2の膜及び第
3の膜がフォトレジスト膜である特許請求の範囲第(1
)項記載の半導体装置の製造方法。
(3) Claim No. 1, wherein the first film is aluminum, and the second film and the third film are photoresist films.
) The method for manufacturing a semiconductor device according to item 2.
(4)第1の膜が多結晶シリコン膜であり、第2の膜及
び第3の膜がアルミニウムである特許請求の範囲第(1
)項記載の半導体装置の製造方法。
(4) Claim No. 1 in which the first film is a polycrystalline silicon film, and the second film and the third film are aluminum.
) The method for manufacturing a semiconductor device according to item 2.
JP6932185A 1985-04-02 1985-04-02 Manufacture of semiconductor device Pending JPS61228662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6932185A JPS61228662A (en) 1985-04-02 1985-04-02 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6932185A JPS61228662A (en) 1985-04-02 1985-04-02 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61228662A true JPS61228662A (en) 1986-10-11

Family

ID=13399169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6932185A Pending JPS61228662A (en) 1985-04-02 1985-04-02 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61228662A (en)

Similar Documents

Publication Publication Date Title
CA1085969A (en) Semiconductor devices and method of manufacturing the same
JPH0543300B2 (en)
US6143474A (en) Method of fabricating polysilicon structures with different resistance values for gate electrodes, resistors, and capacitor plates
US4404581A (en) ROM With redundant ROM cells employing a highly resistive polysilicon film for programming the cells
JPS61228662A (en) Manufacture of semiconductor device
KR100370987B1 (en) Compound semiconductor device and method for controlling characteristics of the same
JPS62140451A (en) Manufacture of polycrystalline silicon resistor and wiring
JPS6325505B2 (en)
JPS62211955A (en) Manufacture of semiconductor device
JPS63202953A (en) Manufacture of semiconductor device
KR100249178B1 (en) Method for manufacturing mask rom cell
JPS62154622A (en) Manufacture of semiconductor device
JPH04359559A (en) Formation of resistance element
JP2527044B2 (en) Method of manufacturing embedded resistor for integrated circuit device
JPS6232639A (en) Input protective circuit of semiconductor device and manufacture thereof
JPH02159755A (en) Manufacture of semiconductor device
JPS6353963A (en) Manufacture of semiconductor device
JPS63278361A (en) Semiconductor device and resistance trimming method for semiconductor
JPS60236257A (en) Semiconductor device
JPS6074627A (en) Manufacture of semiconductor device
JPS58147145A (en) Manufacture of semiconductor device
JPS63280448A (en) Semiconductor device and resistance trimming thereof
McElroy Improved semiconductive device and method
JPS6279658A (en) Manufacture of resistance element in semiconductor device
JPS6259893B2 (en)