JPS6352476A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS6352476A
JPS6352476A JP19545086A JP19545086A JPS6352476A JP S6352476 A JPS6352476 A JP S6352476A JP 19545086 A JP19545086 A JP 19545086A JP 19545086 A JP19545086 A JP 19545086A JP S6352476 A JPS6352476 A JP S6352476A
Authority
JP
Japan
Prior art keywords
electrode
film
semiconductor device
metal
metal electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19545086A
Other languages
Japanese (ja)
Inventor
Hiroshi Yokoyama
横山 洋
Kazuyuki Takahashi
一幸 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Power Semiconductor Device Ltd
Original Assignee
Hitachi Ltd
Hitachi Haramachi Electronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Haramachi Electronics Ltd filed Critical Hitachi Ltd
Priority to JP19545086A priority Critical patent/JPS6352476A/en
Publication of JPS6352476A publication Critical patent/JPS6352476A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a bad state of contact resistance by a method wherein a semiconductor nitride film which is formed at a comparatively low temperature is provided between a metal electrode and a protective insulating film. CONSTITUTION:After a metal electrode 3 has been formed, an SiN film 9 with a thickness of 1000-2000 Angstrom is formed by a reaction by making use of plasma discharge and used as a passivation film. This SiN film 9 is formed at about 260 deg.C. An SOG (spin on glass) coating 5 is formed such that it is about 1000Angstrom thick above a gate electrode and also buries steps at the sides of the gate electrode, and the coating is then baked. Because the SiN film 9 formed at a low temperature exists, it is possible to prevent that the surface of the metal electrode 3 is oxidized during a subsequent heat-treatment process and that the contact resistance in relation other wiring parts connected with the surface is increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高融点金属を有するMOsFET(絶縁ゲート
電界効果トランジスタ)にキ」シ、特に上記金属電極と
配線金属との接触抵抗低減技術に関するO 〔従来技術〕 半導体装置において、下部電極と上部電極(配線)とを
層間絶縁膜の透孔(スルーホール)を通して電気的導通
を得る際に微細化されたスルーホール部の下部電極面に
おけろ生成物質によるコンタクト抵抗の増大を防止する
ための技術は、日経マグロウヒル社1985年9月号N
 I K K E IMICRODEVICES  p
、77等に記載さt’Mcいる。
Detailed Description of the Invention [Industrial Field of Application] The present invention is directed to MOsFETs (insulated gate field effect transistors) having high melting point metals, and particularly relates to technology for reducing contact resistance between the metal electrodes and wiring metals. [Prior art] In a semiconductor device, when electrical continuity is established between a lower electrode and an upper electrode (wiring) through a through-hole in an interlayer insulating film, a microelectrode is formed on the lower electrode surface of a miniaturized through-hole portion. Techniques for preventing an increase in contact resistance due to generated substances are described in Nikkei McGraw-Hill, September 1985 issue N.
I K K E IMICRODEVICES p
, 77 etc. t'Mc.

この場合、下層電極はAffl−8iであり、スルーホ
ール部でのSiの析出を防止するたぬに熱処理条件を変
えろものである。
In this case, the lower layer electrode is Affl-8i, and the heat treatment conditions are changed to prevent Si precipitation in the through hole portion.

ところで、MOsFETの微細化技術として、ソース・
ドレイン拡散のセルファライン(自己整合)技術が適用
でき、かつ、電極として低抵抗値を確保できる高融点金
属であるMo(モリブデン)をゲート電極とするMOs
FETが本発明者により開発されている。
By the way, as a miniaturization technology for MOsFET, source
MOs that use Mo (molybdenum), a high-melting point metal, as the gate electrode, to which self-alignment technology for drain diffusion can be applied, and which can ensure a low resistance value as an electrode.
A FET has been developed by the inventor.

このMOゲー)’tea(下部電極)に対して上部電極
としてのAJ3配線を接続する必要があり、SiO!系
の層間膜の透孔を通してAJ3を蒸着するが、その際に
Mo電極表面の酸化が問題となる。ここで本発明者によ
り検討されている電極部接続技術について述べる。なお
、この技術は必しも公知とされ姓技術ではない。
It is necessary to connect the AJ3 wiring as the upper electrode to the 'tea (lower electrode) of this MO game, and the SiO! AJ3 is vapor-deposited through the holes in the interlayer film of the system, but oxidation of the Mo electrode surface becomes a problem at that time. Here, we will describe the electrode connection technology that is being considered by the present inventor. Note that this technique is not necessarily a known technique and is not a surname technique.

以下、第6図乃至第9図をひ照し、詳細に説明する。Hereinafter, a detailed explanation will be given with reference to FIGS. 6 to 9.

tl)Si基板1上にゲート酸化膜2を熱生成し、その
上に金属Moの電極3を形成しセルファラインによりソ
ース・ドレインN4を形成(第6図)、(2)  パッ
シベーションとして5OG(スピン・オン・グラス)膜
5を約1000^の厚さに塗布(第7図)、(31ソノ
上KCVD法によ’)PSG(リン嗜シリケート・グラ
ス)膜6をデポジットする(第8図〕。
tl) A gate oxide film 2 is thermally generated on a Si substrate 1, a metal Mo electrode 3 is formed on it, and a source/drain N4 is formed by self-alignment (Fig. 6), (2) 5OG (spin・Apply a film 5 (on glass) to a thickness of about 1000 mm (Fig. 7), and deposit a PSG (phosphorous silicate glass) film 6 (by KCVD method on 31 pieces) (Fig. 8). .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記プロセスにおいて、5o(4布(tKベークにより
水分等を蒸発除去させるがそのベーク時の水分PSGデ
ポジットまでのSOG&2吸湿、PSGデポジット温度
(430C)での5OGH分離ガスとしての水蒸気及び
PSGデポジットガスとしてS iN4.P Hs 、
Otガスを用いるこのO,ガスによる酸性雰囲気の影響
により、金属電極が酸化し、酸化膜7が形成される(第
9図)。さらに、PSGSボデポジット後ンシファイ処
11(9001:)により、PSG膜がふたとなり、さ
らに金属dL極の酸化が促進される。
In the above process, moisture etc. are evaporated and removed by 5o (4 cloth (tK baking), but the moisture during baking is SOG & 2 moisture absorption up to the PSG deposit, 5OGH at the PSG deposit temperature (430C) is used as water vapor as a separated gas and as a PSG deposit gas. S iN4.P Hs,
The metal electrode is oxidized by the influence of the acidic atmosphere caused by the O gas, and an oxide film 7 is formed (FIG. 9). Furthermore, the PSG film serves as a lid by the post-PSGS body deposition process 11 (9001:), which further promotes oxidation of the metal dL electrode.

このように金′g4′#!L極が酸化されろと、この上
に接続したA!配線8とのコンタクト抵抗が大きくなり
、したがってゲート抵抗が大きくなり、へ10SFET
の特性に影響を与えることになる。
Like this gold'g4'#! A connected above this so that the L pole would be oxidized! The contact resistance with the wiring 8 becomes large, and therefore the gate resistance becomes large, and the 10SFET
This will affect the characteristics of

本発明は上記した問題点を克服するためになされたもの
であり、その目的は酸化され易〜・金属電極と他の金属
電極とのコンタクト抵抗の低減を図り、M OS F 
E Tの性能を向上することにある。
The present invention has been made to overcome the above-mentioned problems, and its purpose is to reduce the contact resistance between metal electrodes and other metal electrodes that are easily oxidized, and to reduce the contact resistance between metal electrodes and other metal electrodes.
The purpose is to improve the performance of ET.

本発明の前記ならびにそのほかの目的と新規な特徴は本
明細書の記述及び絵付図面からあきらかになろう。
The above and other objects and novel features of the present invention will become apparent from the description of the present specification and the illustrated drawings.

〔問題点を解決するための手段〕[Means for solving problems]

本愚において開示されろ発明のうち代表的なものの概公
な簡単に説明すれば下記のとおりである。
A brief general description of representative inventions disclosed in this publication is as follows.

すなわち、半導体基体の表面に金属電極を形成し、この
金具11也を覆うように比較的低温条件で半導体窒化膜
を形成し、この半導体窒化膜の上に半導体酸化物を主体
とする保獲絶縁膜を形成するものである。
That is, a metal electrode is formed on the surface of the semiconductor substrate, a semiconductor nitride film is formed under relatively low temperature conditions so as to cover the metal fitting 11, and a protective insulation film mainly composed of semiconductor oxide is formed on the semiconductor nitride film. It forms a film.

〔作用〕[Effect]

上記手段によれば、低温度で生成される窒化膜の存在に
よってその後の熱処理で金属電極表面が酸化されるのを
阻止し、これと接続する他の配線との接触抵抗の増大を
防ぎ、前記目的を達成するものである。
According to the above means, the presence of the nitride film generated at a low temperature prevents the surface of the metal electrode from being oxidized during subsequent heat treatment, prevents an increase in contact resistance with other wiring connected to the metal electrode, and It accomplishes its purpose.

〔実施例〕〔Example〕

第1図乃至第5図は本発明の一実施例を示すものであり
て、MOゲートMO3FETの製造プロセスを示す工程
断面図である。
FIGS. 1 to 5 show one embodiment of the present invention, and are process cross-sectional views showing the manufacturing process of an MO gate MO3FET.

以下、図面にそって各工程順に説明する。Hereinafter, each process will be explained in order according to the drawings.

(llsi基板1を用意し、ゲート酸化膜(Sin、)
2を熱生成し、その上にMoを約450 ofの厚さに
スパッタし、ホトレジストを用いてパターニングするこ
とにより金s41!極3を形成する。このあと上記電極
3をマスクとして不純物をイオン打込みし、アニールす
ることにより、ソース・ドレイン領域4を自己整合的に
形成する(第1図)。
(Prepare the llsi substrate 1, and deposit the gate oxide film (Sin)
Gold s41!2 was thermally generated, sputtered Mo on it to a thickness of about 450 mm, and patterned using photoresist. Forms pole 3. Thereafter, impurity ions are implanted using the electrode 3 as a mask, and annealing is performed to form source/drain regions 4 in a self-aligned manner (FIG. 1).

(21金属電極形成後、バッジベージ1ン膜としてプラ
ズマ放電を利用して反応生成したS iN(シリコン窒
化物)を1000〜2000Aの厚さに形成する(第2
図)。このSiNの形成温度は約2600である。この
プラズマSiN以外に、自身はO2を有せず、高温熱処
理において分解ガスを出すことなく、外からの取り込み
を完全に排除できる別の物質の被膜でもよい。
(After forming the metal electrode 21, SiN (silicon nitride) produced by reaction using plasma discharge is formed to a thickness of 1000 to 2000 Å as a badge base 1 film.
figure). The formation temperature of this SiN is about 2600℃. In addition to this plasma SiN, a coating of another substance that does not itself contain O2, does not emit decomposition gas during high-temperature heat treatment, and can completely eliminate intake from the outside may be used.

(3)このあと、SOGを塗布法により形成し、ゲート
逼極上面で100OA程度の厚さのSOG膜5をゲート
側面段部を埋めるように形成し、ベークする(第3図)
(3) After this, SOG is formed by a coating method, and an SOG film 5 with a thickness of about 100 OA is formed on the upper surface of the gate electrode so as to fill the step on the side of the gate, and then baked (Fig. 3).
.

(41この上にCVD(気相化学堆積)法によるPSG
膜6を900OA程度の厚さにデポジット丁る。次いで
900Cで7ニールし、PSGをデンシファイする(第
4図)。
(41 On top of this, PSG is applied by CVD (chemical vapor deposition) method.
The film 6 is deposited to a thickness of about 900 OA. Then, the PSG was densified by 7 anneals at 900C (Figure 4).

(5)  このあと、ウェット法(弗酸)及びドライ法
によりコンタクト孔(スルーホール)をあケ1.すを蒸
着し、パターニングすることにより、上部Aノミ極(配
線)8を形成する(第5図)。
(5) After this, contact holes (through holes) are drilled using a wet method (hydrofluoric acid) and a dry method. The upper A chisel electrode (wiring) 8 is formed by vapor depositing and patterning (FIG. 5).

上記したプロセスにおいて、工程(41でPSG膜形成
時にSOG膜からの脱離ガス及び酸化性雰囲気をプラズ
マSiNが在ることにより遮断する。
In the above process, the presence of plasma SiN blocks the desorption gas from the SOG film and the oxidizing atmosphere during the formation of the PSG film in step (41).

又、そのあとのデンシファイのための900Cでアニー
ルする際に、そのときの高温でのSOGからの脱離ガス
によるMOの酸化をSiN膜で阻止することになる。
Further, when annealing is performed at 900C for subsequent densification, the SiN film prevents oxidation of MO due to the gas desorbed from SOG at the high temperature at that time.

このようにプラズマSiNによ−てSOG塗布・ベータ
時パッジベージ1ン時及びその後の熱処理による金5l
it極の酸化を防止できることにより、Ai電極とのコ
ンタクト抵抗増大の不良をなくし、したがってバルク抵
抗の増大をなくし、MOSFETの性能を向上できる。
In this way, 5L of gold was obtained by plasma SiN at the time of SOG coating and beta padding and subsequent heat treatment.
By being able to prevent the oxidation of the IT electrode, it is possible to eliminate the defect of increased contact resistance with the Ai electrode, thereby eliminating the increase in bulk resistance, and improve the performance of the MOSFET.

以上本発明者によってなされた発明を実施例にもとづき
具体的に説明したが、本発明は上記実施例に限定されろ
ものではなく、その要旨を逸脱しな〜・範囲で種々変更
可能であることはいうまでもない。
Although the invention made by the present inventor has been specifically explained above based on examples, the present invention is not limited to the above examples, and can be modified in various ways without departing from the gist thereof. Needless to say.

たとえば、金属電極としてはM o以外に、M 。For example, as a metal electrode, M in addition to M.

シリサイド、W(タングステン)、Wシリサイド等を使
用したMOSFET、MO3−ICに応用し、同様の効
果が得られる。
Similar effects can be obtained when applied to MOSFETs and MO3-ICs using silicide, W (tungsten), W silicide, etc.

〔発明の効果〕〔Effect of the invention〕

本願において開示されろ発明のうち代表的なものによっ
て得られる効果を簡単に説明すれは、下記のとおりであ
る。
A brief explanation of the effects obtained by typical inventions disclosed in this application is as follows.

すなわち、パフシペーシlン処理以前に金属電極をプラ
ズマSiNで覆うことにより、上記処理による酸化を阻
止し、コンタクト抵抗不良を防止できろ。
In other words, by covering the metal electrode with plasma SiN before the puff coating treatment, oxidation caused by the above treatment can be inhibited and contact resistance defects can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第5図は本発明の一実施例を示すMO8FE
Tプロセスの工程断面図である。 第6図乃至第9図はこれまでのMO3FETプロセスの
工程断面図である。 1・・・Si基板、2・・・ゲート酸化膜、3・・・金
属電極、4・・・ソース・ドレイン、5・・・S OG
m、6・・・PSG膜、7・・・α化膜、8・・・人1
電他、9・・・プラズマSiN膜。 代理人 弁理士 小 川 勝 男 第  1  図 第  2  図 第  3  二 4− ンー′2 ド−イ〉 タープ・−72’でSノυ1ギ
FIG. 1 to FIG. 5 are MO8FE showing one embodiment of the present invention.
It is a process sectional view of T process. FIGS. 6 to 9 are cross-sectional views of the conventional MO3FET process. DESCRIPTION OF SYMBOLS 1... Si substrate, 2... Gate oxide film, 3... Metal electrode, 4... Source/drain, 5... SOG
m, 6...PSG film, 7...gelatinized film, 8...person 1
Den et al., 9...Plasma SiN film. Agent Patent Attorney Katsuo Ogawa Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1、半導体基体の表面上に金属からなる電極が形成され
、この電極を覆って保護絶縁膜が形成された半導体装置
であって、上記金属電極と保護絶縁膜との間に比較的低
温度で形成した半導体窒化膜を介在させたことを特徴と
する半導体装置。 2、特許請求の範囲第1項に記載の半導体装置において
、上記電極はモリブデンからなる。 3、半導体基体の上に金属からなる電極を形成し、上記
金属電極の上に保護絶縁膜を形成する以前にプラズマ法
により半導体窒化膜を生成することを特徴とする半導体
装置の製造方法。
[Scope of Claims] 1. A semiconductor device in which an electrode made of metal is formed on the surface of a semiconductor substrate, and a protective insulating film is formed covering this electrode, the semiconductor device comprising: between the metal electrode and the protective insulating film; A semiconductor device characterized in that a semiconductor nitride film formed at a relatively low temperature is interposed in the semiconductor device. 2. In the semiconductor device according to claim 1, the electrode is made of molybdenum. 3. A method for manufacturing a semiconductor device, characterized in that an electrode made of metal is formed on a semiconductor substrate, and a semiconductor nitride film is generated by a plasma method before forming a protective insulating film on the metal electrode.
JP19545086A 1986-08-22 1986-08-22 Semiconductor device and manufacture thereof Pending JPS6352476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19545086A JPS6352476A (en) 1986-08-22 1986-08-22 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19545086A JPS6352476A (en) 1986-08-22 1986-08-22 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6352476A true JPS6352476A (en) 1988-03-05

Family

ID=16341267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19545086A Pending JPS6352476A (en) 1986-08-22 1986-08-22 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6352476A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5880519A (en) * 1997-05-15 1999-03-09 Vlsi Technology, Inc. Moisture barrier gap fill structure and method for making the same
KR100268300B1 (en) * 1996-09-30 2000-10-16 구본준 Thin-film transistor with double-gate insulation film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100268300B1 (en) * 1996-09-30 2000-10-16 구본준 Thin-film transistor with double-gate insulation film
US5880519A (en) * 1997-05-15 1999-03-09 Vlsi Technology, Inc. Moisture barrier gap fill structure and method for making the same

Similar Documents

Publication Publication Date Title
US4392150A (en) MOS Integrated circuit having refractory metal or metal silicide interconnect layer
JPH0373533A (en) Selective silicified formation using titanium nitride protective layer
JPS6173370A (en) Semiconductor device and method of producing same
JP3626773B2 (en) Conductive layer of semiconductor device, MOSFET, and manufacturing method thereof
JPS6352476A (en) Semiconductor device and manufacture thereof
JPH0371768B2 (en)
JPH09252131A (en) Manufacturing method for semiconductor device
JPH09191078A (en) Manufacture of semiconductor device
JPS62235739A (en) Manufacture of semiconductor device
JP2587103B2 (en) Method for manufacturing semiconductor device
JPH0677162A (en) Semiconductor device and its manufacture
JPS59161072A (en) Semiconductor device
JPH01207972A (en) Mos type semiconductor device
JPH11145425A (en) Manufacture of semiconductor element and semiconductor device
JP2822463B2 (en) Method of forming multilayer wiring
JPS62118525A (en) Manufacture of semiconductor device
JP3238804B2 (en) Method for manufacturing semiconductor device
JPH03278576A (en) Manufacture of mos transistor
JPH02237073A (en) Manufacture of semiconductor device
JPH07111969B2 (en) Method for manufacturing semiconductor device
JPH07107933B2 (en) Method of forming polycide pattern
JPH03133129A (en) Manufacture of semiconductor device
JPS62190849A (en) Semiconductor device and manufacture thereof
JPH0254524A (en) Manufacture of semiconductor device
JPH0377661B2 (en)