JPS6351248B2 - - Google Patents

Info

Publication number
JPS6351248B2
JPS6351248B2 JP16490680A JP16490680A JPS6351248B2 JP S6351248 B2 JPS6351248 B2 JP S6351248B2 JP 16490680 A JP16490680 A JP 16490680A JP 16490680 A JP16490680 A JP 16490680A JP S6351248 B2 JPS6351248 B2 JP S6351248B2
Authority
JP
Japan
Prior art keywords
output
input point
capacitance
circuit
counter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16490680A
Other languages
Japanese (ja)
Other versions
JPS5788316A (en
Inventor
Tadashi Azegami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOKOKAWA DENKI KK
Original Assignee
YOKOKAWA DENKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOKOKAWA DENKI KK filed Critical YOKOKAWA DENKI KK
Priority to JP16490680A priority Critical patent/JPS5788316A/en
Publication of JPS5788316A publication Critical patent/JPS5788316A/en
Publication of JPS6351248B2 publication Critical patent/JPS6351248B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/241Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes
    • G01D5/2417Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes by varying separation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

【発明の詳細な説明】 本発明は、圧力・張力等の物理量変化に基ずく
物理的変位を、電気信号へ変換する容量式変位変
換装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a capacitive displacement converting device that converts physical displacement based on changes in physical quantities such as pressure and tension into electrical signals.

かゝる変位変換装置は、各種プロセスの流量ま
たは圧力等を容量式センサによつて検出し、電気
信号へ変換のうえ、遠隔の受信部等へ検出結果を
伝送する場合等に用いられる。ところで、一般に
使用されている容量式センサには、固定電極と可
動電極との間に介在する不変成分としての分布容
量および、固定電極ならびに可動電極とケースと
の間に介在する分布容量が存在し、これらの分布
容量により変換特性が非直線的となる問題を生じ
ている。
Such a displacement converter is used when detecting the flow rate or pressure of various processes using a capacitive sensor, converting it into an electrical signal, and transmitting the detection result to a remote receiving unit or the like. By the way, in commonly used capacitive sensors, there is a distributed capacitance as an invariant component that exists between a fixed electrode and a movable electrode, and a distributed capacitance that exists between a fixed electrode, a movable electrode, and a case. , these distributed capacitances cause a problem in which the conversion characteristics become non-linear.

そこで、この発明の出願人は、先にこの分布容
量が変換特性に与える影響を除去することができ
る「容量式変位変換装置」(特願昭55−101699号)
を出願している。以下、まずこの「容量式変位変
換装置」について説明する。
Therefore, the applicant of the present invention first proposed a "capacitive displacement converter" (Japanese Patent Application No. 101699/1982) that can eliminate the influence of this distributed capacitance on the conversion characteristics.
has been applied for. Hereinafter, first, this "capacitive displacement converter" will be explained.

第1図はこの「容量式変位変換装置」において
用いられる差動容量形センサの概念図であり、固
定電極SP1,SP2間に設けた可動電極MPが、検
出すべき物理的変位に応じた機械的変位にしたが
つて固定電極SP1,SP2間を移動するため、これ
らによつて形成される第1および第2静電容量
C1,C2が差動的に変化するものとなつている。
Figure 1 is a conceptual diagram of a differential capacitive sensor used in this "capacitive displacement transducer", in which a movable electrode MP provided between fixed electrodes SP 1 and SP 2 responds to the physical displacement to be detected. The first and second capacitances formed by fixed electrodes SP 1 and SP 2 move between fixed electrodes SP 1 and SP 2 according to the mechanical displacement caused by them.
C 1 and C 2 change differentially.

第2図は、分布容量の存在を考慮した第1図の
等価回路であり、固定電極SP1,SP2とケースと
の間の分布容量CSG1,CSG2が端子A,Bとアース
との間に介在すると共に、可動電極MPとケース
との間の分布容量CSG0が端子Cとアースとの間に
介在する一方、端子A−CおよびB−C間には第
1および第2静電容量C1,C2と並列な分布容量
CSP1,CSP2が存在するものとなつている。
Figure 2 is an equivalent circuit of Figure 1 that takes into consideration the existence of distributed capacitance, and the distributed capacitances C SG1 and C SG2 between the fixed electrodes SP 1 and SP 2 and the case are the same as those between the terminals A and B and the ground. A distributed capacitance C SG0 between the movable electrode MP and the case is interposed between the terminal C and the ground, while a first and second electrostatic capacitance is interposed between the terminals A-C and B-C. Distributed capacitance in parallel with capacitances C 1 and C 2
C SP1 and C SP2 exist.

第3図は、差動容量式センサの一例を示す断面
図であり、ケースF中にリード線Lによつて支持
された固定電極SP1,SP2が設けてあると共に、
ガラス等の絶縁性封止材Iによつて基部が固定さ
れた可撓性の可動電極MPが設けてあり、その先
端部に印加される機械的変位力Pによつて可動電
極MPがたわむことにより、差動容量形センサを
構成する第1および第2静電容量C1,C2が差動
的に変化する。
FIG. 3 is a sectional view showing an example of a differential capacitance type sensor, in which fixed electrodes SP 1 and SP 2 supported by lead wires L are provided in a case F, and
A flexible movable electrode MP whose base is fixed by an insulating sealing material I such as glass is provided, and the movable electrode MP is deflected by a mechanical displacement force P applied to its tip. As a result, the first and second capacitances C 1 and C 2 configuring the differential capacitance type sensor vary differentially.

なお、この場合には、リード線Lの端部Ltと
可動電極MPの基部との間に不変静電容量が形成
され、これが第2図の分布容量CSP1,SSP2に相当
するものとなつている。
In this case, a constant capacitance is formed between the end Lt of the lead wire L and the base of the movable electrode MP, and this corresponds to the distributed capacitances C SP1 and S SP2 in Fig. 2. ing.

第4図は、この先願による「容量式変位変換装
置」の第1の実施例を示すブロツク図であり、端
子A〜Cには第2図および第3図の端子A〜Cが
接続されるものとなつており、まず、分布容量
CSP1,CSP2を無視のうえ動作の説明を行なう。
FIG. 4 is a block diagram showing a first embodiment of the "capacitive displacement converter" according to the earlier application, and terminals A to C of FIGS. 2 and 3 are connected to terminals A to C. First of all, distributed capacity
The operation will be explained while ignoring C SP1 and C SP2 .

すなわち、第1および第2静電容量C1,C2
端子A,Bを介して各個に出力が接続されている
反転出力の第1および第2ゲートG2A,G2B中の
G2Aが出力Aを“H”とし、電圧+Eを生じてい
るときには、その立上りにより第1静電容量C1
と分布容量CSG0とが直列に充電され、第1および
第2静電容量C1,C2の共通接続点すなち端子C
の電圧が急激に一定電圧へ達し、第5図Bのとお
りほゞ垂直に立上る。
That is, in the first and second gates G 2A and G 2B with inverted outputs whose outputs are respectively connected to the first and second capacitances C 1 and C 2 via terminals A and B ,
When G 2A makes output A “H” and generates voltage +E, the first capacitance C 1
and the distributed capacitance C SG0 are charged in series, and the common connection point of the first and second capacitances C 1 and C 2 , that is, the terminal C
The voltage suddenly reaches a constant voltage and rises almost vertically as shown in FIG. 5B.

なお、このとき充電の行なわれる等価回路は第
6図のとおりになるが、第1ゲートG2Aの出力イ
ンピーダンスが極めて小さいため分布容量CSG1
存在が無関係になると共に、分布容量CSG0と並列
に第2静電容量C2が挿入された形となつており、
端子Cの最大電圧は、第1静電容量C1と分布容
量CSG0および第2静電容量C2とのインピーダンス
比によつて決定される。
The equivalent circuit for charging at this time is as shown in Figure 6, but since the output impedance of the first gate G2A is extremely small, the existence of the distributed capacitance CSG1 becomes irrelevant, and the The second capacitance C 2 is inserted into the
The maximum voltage at terminal C is determined by the impedance ratio of the first capacitance C 1 to the distributed capacitance C SG0 and the second capacitance C 2 .

また、このとき、端子Cに入力の接続されたイ
ンバータG1の出力Cは“L”になつていると共
に、インバータG1の入出力間に定値電流制限回
路CCが接続されているため、分布容量CSG0およ
び第2静電容量C2の充電々荷は定値電流制限回
路CCおよびインバータG1の出力インピーダンス
を介して直ちに放電を開始するが、この放電電流
は定値電流制限回路CCにより一定電流値に規制
されることにより、直線的に出力Bが低下する。
Also, at this time, the output C of the inverter G1 whose input is connected to the terminal C is "L", and the constant value current limiting circuit CC is connected between the input and output of the inverter G1 , so the distribution The charges in the capacitor C SG0 and the second capacitor C 2 immediately start discharging via the constant value current limiting circuit CC and the output impedance of the inverter G 1 , but this discharge current is reduced to a constant current by the constant value current limiting circuit CC. By being regulated to this value, the output B decreases linearly.

なお、このときには、未だ出力Aが“H”であ
り(第5図参照)、第1静電容量C1の充電々流も
定値電流制限回路CCに通ずるため、定値電流制
限回路CCを通ずる電流に着目して考案すれば、
このときの等価回路は第7図のとおりになる。
Note that at this time, the output A is still "H" (see Figure 5), and the charging current of the first capacitor C1 also passes through the constant value current limiting circuit CC, so the current passing through the constant value current limiting circuit CC If you think about it,
The equivalent circuit at this time is as shown in FIG.

出力Bが、インバータG1の出力が反転するス
レシホールドレベルVTHまで低下すると、インバ
ータG1の出力Cが“H”へ転じ、これによつて
第1ゲートG2Aの出力Aは“L”となるため、分
布容量CSG0および第2静電容量C2の残留電荷が第
1静電容量C1を介して急速に放電し、出力Bが
垂直に低下した後、出力Cの“H”により、定値
電流制限回路CCを経て定電流によつて分布容量
CSG0および第2静電容量C2が充電されるものとな
り、出力Bが直線的に上昇する。
When the output B falls to the threshold level V TH at which the output of the inverter G 1 is inverted, the output C of the inverter G 1 changes to “H”, thereby causing the output A of the first gate G 2A to become “L”. ”, the residual charges in the distributed capacitance C SG0 and the second capacitance C 2 are rapidly discharged through the first capacitance C 1 , and after the output B drops vertically, the “H” of the output C ”, the distributed capacitance is increased by a constant current through the constant current limiter CC.
C SG0 and the second capacitance C 2 become charged, and the output B increases linearly.

出力BがスレシホールドレベルVTHに達する
と、インバータG1の出力Cが“L”へ転じ(第
5図参照)、これによつて第1ゲートG2Aの出力
Aは“H”となるため、再び第1ゲートG2Aから
の充電が行なわれ、以下、上記の動作を反復す
る。
When the output B reaches the threshold level VTH , the output C of the inverter G1 changes to "L" (see Figure 5), and the output A of the first gate G2A becomes "H". Therefore, charging is performed again from the first gate G2A , and the above operation is repeated.

一方、インバータG1の出力CはカウンタCTに
よつてカウントされており、一定数のカウントが
行なわれるとカウント出力nが“H”から“L”
へ転じ、再び一定数のカウントを行なうまでこの
状態を維持するため、これがインバータG3を介
して第2ゲートG2Bへ与えられることにより、第
2ゲートG2Bがオンになると共に第1ゲートG2A
はオフになり、今度は端子B−C間において上述
と同様の充放電が反復して行なわれ、カウント出
力nが再び“H”に転ずれば、第1ゲートG2A
オン、第2ゲートG2Bがオフとなつて、端子A−
C間の充放電が行なわれる。
On the other hand, the output C of the inverter G1 is counted by the counter CT, and when a certain number of counts is performed, the count output n changes from "H" to "L".
In order to maintain this state until a certain number of counts are performed again, this signal is applied to the second gate G2B via the inverter G3 , thereby turning on the second gate G2B and turning on the first gate G2B. 2A
is turned off, and the same charging and discharging as described above is performed repeatedly between terminals B and C. When the count output n turns to "H" again, the first gate G2A is turned on and the second gate G2A is turned on. G 2B is turned off and terminal A-
Charging and discharging between C is performed.

したがつて、第1および第2ゲートG2A,G2B
が交互にオンとなり、これに伴なつて端子A−C
間およびB−C間の充放電動作が反復される。
Therefore, the first and second gates G 2A , G 2B
are turned on alternately, and along with this, terminals A-C
The charging/discharging operation between the two points and between B and C is repeated.

この場合の第1ゲート、第2ゲートは、増幅手
段の同相出力を帰還手段を介して選択的に第1、
第2静電容量の一端へ接続する切換え手段を形成
している。従つてG1として非反転増幅器を用い
た場合は、第1、第2ゲートで形成される切換手
段は単純な切換えスイツチ回路で実現することも
可能である。
In this case, the first gate and the second gate selectively feed the in-phase output of the amplifying means to the first gate, the second gate, and the like through the feedback means.
A switching means connected to one end of the second capacitor is formed. Therefore, when a non-inverting amplifier is used as G1 , the switching means formed by the first and second gates can be realized by a simple changeover switch circuit.

第8図はこのような概念を示す実施例であり、
SWがカウンタCTの出力で制御される切換えス
イツチを示す。
FIG. 8 is an example showing such a concept,
SW indicates a changeover switch controlled by the output of counter CT.

こゝで、スレシホールドレベルVTHを基準とし
た分布容量CSG0の端子電圧変化e1は、第6図の関
係から分布容量CSG0と第2静電容量C2との合成容
量をCtとすれば、次式によつて示される。
Here, the terminal voltage change e 1 of the distributed capacitance C SG0 with reference to the threshold level V TH is the combined capacitance of the distributed capacitance C SG0 and the second capacitance C 2 from the relationship shown in Figure 6. Then, it is shown by the following equation.

e1=C1/C1+Ct・E ……(1) また、端子電圧変化e1がスレシホールドレベル
VTHまで減少するのに必要とする時間t1は、定値
電流制限回路CCによつて規制される一定値の放
電々流をiとすれば、第7図の関係から次式のも
のとする。
e 1 = C 1 / C 1 + Ct・E ...(1) Also, the terminal voltage change e 1 is the threshold level
The time t1 required for the voltage to decrease to V TH is given by the following formula based on the relationship shown in Figure 7, where i is the discharge current of a constant value regulated by the constant value current limiting circuit CC. .

i・t1=e1(C1+Ct) ……(2) (1)、(2)式からt1を求めると、 t1=C1・E/i ……(3) なお、充放電が反復される中に分布容量CSG0
は、スレシホールドレベルVTHに応じた電荷が基
準電位として定められ、これを中心として充放電
が行なわれるため、充電側の端子電圧変化e1と放
電側の端子電圧変化e2とは等しくなり、この端子
電圧変化e2分の充電を定値電流制限回路CCによ
る一定値の電流iによつて行なうことにより、充
電所要時間t2もt1と等しくなつて次式が成立す
る。
i・t 1 = e 1 (C 1 +Ct) ...(2) Calculating t 1 from equations (1) and (2), t 1 = C 1・E/i ...(3) Note that charging and discharging While this is repeated, a charge corresponding to the threshold level V TH is determined as a reference potential in the distributed capacitance C SG0 , and since charging and discharging are performed around this, the terminal voltage change e 1 on the charging side The terminal voltage change e2 on the discharging side is equal to the terminal voltage change e2, and by charging for 2 minutes using the constant current i from the constant current limiter CC, the required charging time t2 is also equal to t1 . They are equal, and the following formula holds true.

t1=t2 ……(4) これらの関係は、端子B−C間の充放電におい
ても同様であり、この場合には、第6図、第7図
の第1静電容量C1と第2静電容量C2とを入替え
た状態となり、(3)式は次式のものとなる。
t 1 = t 2 ...(4) These relationships are the same for charging and discharging between terminals B and C, and in this case, the first capacitance C 1 and This results in a state in which the second capacitance C 2 is exchanged, and equation (3) becomes the following equation.

t1=C2・E/i ……(5) したがつて、カウンタCTのカウント出力nか
ら得られるパルス信号の“H”期間は第1静電容
量C1に、“L”期間は第2静電容量C2に対応した
ものとなり、これを抵抗器R3とコンデンサC3
の積分回路により平均化すれば、パルス信号のデ
ユーテイ比が求められるため、C1/(C1+C2
の演算結果となり、これが変換出力Eoとしての
電気信号になる。
t1 = C2・E/i...(5) Therefore, the "H" period of the pulse signal obtained from the count output n of the counter CT is applied to the first capacitance C1 , and the "L" period is applied to the first capacitance. 2 corresponding to the electrostatic capacitance C 2 , and by averaging this using an integrating circuit consisting of the resistor R 3 and the capacitor C 3 , the duty ratio of the pulse signal can be obtained, so C 1 / (C 1 + C 2 )
This is the calculation result, which becomes the electrical signal as the conversion output Eo.

第9図および第10図は、分布容量CSP1,CSP2
の存在を考慮した場合の第6図および第7図と同
様な等価回路であり、第9図および第10図につ
き、(1)〜(3)式と同様に考察すれば次式が得られ
る。
Figures 9 and 10 show distributed capacitances C SP1 and C SP2
This is an equivalent circuit similar to Figures 6 and 7 when considering the existence of .

e1=(C1+CSP1)E/C1+CSP1+CSG0
C2+CCP+CCP・(−E)/C1+CSP1+CSG0+C2+CCP
…(6) i・t1=e1(CCP+CSP1+C1+C2+CSG0)……(7) ただし、CCPは第4図において定値電流制限回
路CCと並列に接続した補償用コンデンサであり、
これを分布容量CSP1と等しい容量値とすれば、第
9図の充電状態において分布容量CSP1に対する補
償充電が補償用コンデンサCCPによつて行なわれ
るため、出力Cに与える分布容量CSP1の影響が排
除される。
e 1 = (C 1 +C SP1 )E/C 1 +C SP1 +C SG0 +
C 2 +C CP +C CP・(-E)/C 1 +C SP1 +C SG0 +C 2 +C CP
…(6) i・t 1 = e 1 (C CP +C SP1 +C 1 +C 2 +C SG0 )……(7) However, C CP is the compensation capacitor connected in parallel with the constant current limiter circuit CC in Fig. 4. and
If this is set to the same capacitance value as the distributed capacitance C SP1 , the compensation capacitor C CP performs compensatory charging for the distributed capacitance C SP1 in the charging state shown in FIG. influence is eliminated.

したがつて、(6)、(7)式から次式が成立する。 Therefore, the following equation holds from equations (6) and (7).

t1=(C1+CSP1−CCP)E/i ……(8) ここで、CSP1=CCPのため、(8)式は、 t1=C1・E/i ……(9) となり、(3)、(5)式と同様の結果が得られる。 t 1 = (C 1 + C SP1 − C CP ) E/i ...(8) Here, since C SP1 = C CP , equation (8) is, t 1 = C 1・E/i ...(9 ), and the same results as equations (3) and (5) are obtained.

なお、センサの構造上、CSP1≒CSP2の関係が得
られるため、同一の補償用コンデンサCCPにより
目的を達することができる。
Note that, due to the structure of the sensor, the relationship C SP1 ≒ C SP2 is obtained, so the purpose can be achieved using the same compensation capacitor C CP .

すなわち、分布容量CSG1,CSG2,CSG0等の影響
が完全に排除されると共に、補償用コンデンサ
CCPを付加すれば分布容量CSP1,CSP2の影響も排除
されるため、簡単な回路構成により分布容量
CSG1,CSG2,CSG0,CSP1,CSP2等の影響が無い直線
的な変換特性を得ることができる。
In other words, the influence of distributed capacitances C SG1 , C SG2 , C SG0 etc. is completely eliminated, and the compensation capacitor
By adding C CP , the influence of distributed capacitances C SP1 and C SP2 can be eliminated, so the distributed capacitance can be reduced with a simple circuit configuration.
It is possible to obtain linear conversion characteristics without the influence of C SG1 , C SG2 , C SG0 , C SP1 , C SP2, etc.

なお、上記実施例において、検出すべき物理的
変位に応じて容量が変化する単一容量形センサ
を、第1および第2の静電容量C1,C2のいずれ
か一方として用い、他方に固定の基準静電容量を
用いても同様の目的を達成することができる。
In the above embodiment, a single capacitance type sensor whose capacitance changes depending on the physical displacement to be detected is used as one of the first and second capacitances C 1 and C 2 , and the other capacitance is A similar objective can be achieved using a fixed reference capacitance.

次に、この先願になる「容量式変位変換装置」
の第2の実施例について説明する。第11図は、
この第2の実施例の構成を示す回路図であり、差
動容量形センサDS乃至抵抗器R3A,R3Bおよびコ
ンデンサC3A,C3Bによる積分回路は第4図と同様
であるが、定値電流制限回路CCとして具体的回
路構成が示されている。
Next, the "capacitive displacement converter" which is the earlier patent application.
A second example will be described. Figure 11 shows
4 is a circuit diagram showing the configuration of this second embodiment, and the integrating circuit including the differential capacitance sensor DS, resistors R 3A , R 3B and capacitors C 3A , C 3B is the same as that in FIG. 4, but with a fixed value. A specific circuit configuration is shown as the current limiting circuit CC.

また、積分回路の出力は、差動増幅器Aを主体
とする2線式の出力部OTへ与えられており、差
動増幅器Aにおいて、反転入力へ与えられた積分
回路の出力電圧と、抵抗器R4,R5および抵抗器
R6を介したポテンシヨメータRV1により設定さ
れる非反転入力の基準電圧との差が増幅され、こ
の出力によつてFET(電界効果トランジスタ)・
Q7を制御し、2線式線路が接続される線路端子
LT1,LT2間の電流値を決定している。
In addition, the output of the integrating circuit is given to a two-wire output section OT mainly composed of differential amplifier A, and in differential amplifier A, the output voltage of the integrating circuit given to the inverting input and the resistor R 4 , R 5 and resistor
The difference with the reference voltage at the non-inverting input, set by potentiometer RV 1 via R 6 , is amplified and this output is used to connect the FET (field effect transistor)
Line terminal that controls Q 7 and connects the 2-wire line
The current value between LT 1 and LT 2 is determined.

ただし、FET・Q7および定電圧ダイオードZD
を通ずる電流は、帰還用のポテンシヨメータRV2
にも通じ、これに生ずる電圧を負帰還として抵抗
器R5を介したうえ、差動増幅器Aの非反転入力
へ与えているため、同増幅器Aの両入力間電圧が
ほぼ零となる点で、線路端子LT1,LT2間の電流
が平衡し、これによつて線路端子LT1,LT2間の
電流値が安定化される。
However, FET Q 7 and constant voltage diode ZD
The current through the feedback potentiometer RV 2
The resulting voltage is passed through resistor R5 as negative feedback and is applied to the non-inverting input of differential amplifier A, so the voltage between both inputs of differential amplifier A becomes almost zero. , the current between the line terminals LT 1 and LT 2 is balanced, thereby stabilizing the current value between the line terminals LT 1 and LT 2 .

なお、線路端子LT1,LT2には、2線式線路を
介し、受信部からの電源電圧が印加されており、
これを定電圧ダイオードZDによつて安定化のう
え、各部の電源電圧VDDとして供給している。
Note that the power supply voltage from the receiving section is applied to the line terminals LT 1 and LT 2 via a two-wire line.
This is stabilized by a constant voltage diode ZD and then supplied as the power supply voltage V DD to each part.

このほか、線路端子LT1,LT2間の線路電流
は、工業計測の分野で規定されている変化範囲4
〜20mAの統一信号となつており、差動容量形セ
ンサDSの平衡状態で線路電流が4mAの基準電
流となる様ポテンシヨメータRV1によつて調整さ
れると共に、変化範囲はポテンシヨメータRV2
より調整されるが、抵抗器R4〜R6による加算回
路を介して、各ポテンシヨメータRV1,RV2から
の電圧が差動増幅器Aへ与えられるため、基準電
流と変化範囲との調整が相互の干渉なしに行なわ
れる。
In addition, the line current between line terminals LT 1 and LT 2 is within the change range 4 specified in the field of industrial measurement.
It is a unified signal of ~20 mA, and is adjusted by potentiometer RV 1 so that the line current becomes a reference current of 4 mA in the balanced state of differential capacitance sensor DS, and the range of change is adjusted by potentiometer RV 1. 2 , but since the voltage from each potentiometer RV 1 and RV 2 is applied to the differential amplifier A via the adding circuit made up of resistors R 4 to R 6 , the difference between the reference current and the range of change is Coordination takes place without mutual interference.

以上が、この発明の出願人の先願になる「容量
式変位変換装置」の詳細である。
The above are the details of the "capacitive displacement converter" which is the earlier application of the applicant of the present invention.

ところで、上述した「容量式変位変換装置」は
未だ次の様な欠点を有している。すなわち、第4
図あるいは第11図におけるゲートG2A,G2B
は、信号の伝播遅れが必ず存在する。このため、
分布容量補償用コンデンサCCPを挿入した場合、
静電容量C1,C2の正帰還に先んじてコンデンサ
CCPによる負帰還がかかり、この結果、インバー
タG1の出力に第12図に示す様な歪が生じてし
まう。そして、この現象は特に発振周波数が高い
ときに問題となる。
However, the above-mentioned "capacitive displacement converter" still has the following drawbacks. That is, the fourth
There is always a signal propagation delay in the gates G 2A and G 2B in the figure or in FIG. 11. For this reason,
When a distributed capacitance compensation capacitor C CP is inserted,
Capacitors are connected prior to positive feedback of capacitances C 1 and C 2
Negative feedback is applied by CCP , and as a result, distortion as shown in FIG. 12 occurs in the output of inverter G1 . This phenomenon becomes a problem especially when the oscillation frequency is high.

この発明は上述した先願発明の欠点を除去すべ
くなされたもので、分布容量補償用コンデンサ
CCPに直列に遅延手段を介挿し、これにより、イ
ンバータG1の出力に生じる歪を除去するように
したものである。
This invention was made in order to eliminate the drawbacks of the earlier invention mentioned above, and is a capacitor for distributed capacitance compensation.
A delay means is inserted in series with CCP , thereby eliminating distortion occurring in the output of inverter G1 .

以下、図面を参照しこの発明の実施例について
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

第13図はこの発明の要部を示す回路図であ
る。この図において、分布容量補償用コンデンサ
CCPに直列に遅延手段Dが介挿され、そして、コ
ンデンサCCPに接続されている端子Taおよび遅延
手段Dに接続されている端子Tbが各々第4図あ
るいは第11図に示す定値電流制限回路CCの両
端子に接続される。この場合、遅延手段Dとして
は、例えば第14図に示す抵抗Ra、コンデンサ
Caからなる遅延回路、あるいは第15図に示す
バツフアアンプA等が用いられる。また、この遅
延手段Dの遅延時間は、第4図あるいは第11図
におけるゲートG2A,G2Bによる信号の遅れ時間
より大であればよい。なお、第8図に示す構成に
おいては、インバータG2に遅延機能をもたせる
ようにすればよい。
FIG. 13 is a circuit diagram showing the main part of the present invention. In this diagram, the distributed capacitance compensation capacitor
A delay means D is inserted in series with C CP , and the terminal Ta connected to the capacitor C CP and the terminal Tb connected to the delay means D are set to constant current limits as shown in FIG. 4 or FIG. 11, respectively. Connected to both terminals of circuit CC. In this case, as the delay means D, for example, a resistor Ra and a capacitor shown in FIG.
A delay circuit made of Ca or a buffer amplifier A shown in FIG. 15 is used. Further, the delay time of this delay means D may be longer than the signal delay time caused by the gates G 2A and G 2B in FIG. 4 or FIG. 11. In the configuration shown in FIG. 8, inverter G2 may be provided with a delay function.

以上説明したように、この発明によれば分布容
量補償用コンデンサCCPと遅延手段Dとを直列接
続し、これを定値電流制限回路CCに並列に接続
したので分布容量補償用コンデンサCCPによる負
帰還が静電容量C1,C2による正帰還より先にな
ることがなく、これにより、インバータG1の出
力に生じる歪を除去することができる。
As explained above, according to the present invention, the distributed capacitance compensating capacitor C CP and the delay means D are connected in series, and this is connected in parallel to the constant value current limiting circuit CC . The feedback does not precede the positive feedback due to the capacitances C 1 and C 2 , thereby making it possible to eliminate distortion occurring in the output of the inverter G 1 .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は差動容量形センサの概念図、第2図は
同センサの等価回路、第3図は同センサの具体的
構成を示す断面図、第4図はこの発明の前提とな
る容量式変位変換装置の構成を示す回路図、第5
図は同容量式変位変換装置の動作を説明するため
の波形図、第6図、第7図は各々同容量式変位変
換装置における分布容量CSG0、静電容量C1,C2
充電時および放電時の等価回路、第8図は同容量
式変位変換装置の別の構成例を示す回路図、第9
図および第10図は各々、同容量式変位変換装置
において並列分布容量CSP1を考慮した場合の第6
図および第7図と同様な等価回路、第11図はこ
の発明の前提となる他の容量式変位変換装置の構
成を示す回路図、第12図は第4図または第11
図に示す容量式変位変換装置におけるインバータ
G1の出力波形を示す図、第13図はこの発明に
よる容量式変位変換装置の要部の構成を示す回路
図、第14図および第15図は各々第12図にお
ける遅延手段Dの具体的回路例を示す回路図であ
る。 C1……第1静電容量、C2……第2静電容量、
G1……インバータ、CC……定値電流制限回路、
CCP……分布容量補償用コンデンサ、D……遅延
手段、CT……カウンタ、G2A……第1ゲート、
G2B……第2ゲート、R3,R3A,R3B……抵抗、
C3,C3A,C3B……コンデンサ、OT……出力部。
Fig. 1 is a conceptual diagram of a differential capacitance type sensor, Fig. 2 is an equivalent circuit of the sensor, Fig. 3 is a sectional view showing the specific configuration of the sensor, and Fig. 4 is a capacitance type sensor, which is the premise of this invention. Circuit diagram showing the configuration of the displacement converter, No. 5
The figure is a waveform diagram for explaining the operation of the same capacitive displacement converter, and Figures 6 and 7 are respectively when charging the distributed capacitance C SG0 and electrostatic capacitance C 1 and C 2 in the same capacitive displacement converter. 8 is a circuit diagram showing another configuration example of the same capacitive displacement converter, and 9 is an equivalent circuit during discharge.
Figures 1 and 10 respectively show the sixth case when parallel distributed capacitance C SP1 is considered in the same capacitive displacement converter.
11 is a circuit diagram showing the configuration of another capacitive displacement converter which is the premise of this invention, and FIG. 12 is a circuit diagram similar to that shown in FIG. 4 or 11.
Inverter in the capacitive displacement converter shown in the figure
FIG. 13 is a circuit diagram showing the configuration of the main part of the capacitive displacement converter according to the present invention, and FIGS. 14 and 15 are specific examples of the delay means D in FIG. 12. FIG. 2 is a circuit diagram showing an example of the circuit. C1 ...first capacitance, C2 ...second capacitance,
G 1 ...Inverter, CC...Constant current limit circuit,
C CP ... Distributed capacitance compensation capacitor, D ... Delay means, CT ... Counter, G 2A ... First gate,
G 2B ... second gate, R 3 , R 3A , R 3B ... resistance,
C 3 , C 3A , C 3B ... Capacitor, OT ... Output section.

Claims (1)

【特許請求の範囲】 1 検出すべき物理的変化に応じて少くとも一方
が変化し、夫々の一端が共通接続された第1およ
び第2静電容量と、上記共通接続点がその入力点
に接続された増幅手段と、上記入力点の信号とは
逆相の上記増幅手段の出力と上記入力点間に接続
された定値電流制限回路と、該定値電流制限回路
と並列に接続される直列接続された分布容量補償
用コンデンサおよび遅延手段と、上記増幅手段の
出力信号を一定数カウントするカウンタと、該カ
ウンタのカウント出力によつて上記入力点と同相
の上記増幅手段の出力を帰還手段を介して上記第
1および第2の静電容量の夫々の他端に選択的に
接続する切換え手段とを具備した容量式変位変換
装置。 2 検出すべき物理的変化に応じて少く共一方が
変化し、夫々の一端が共通接続された第1および
第2静電容量と、上記共通接続点がその入力点に
接続された増幅手段と、上記入力点の信号とは逆
相の上記増幅手段の出力と上記入力点間に接続さ
れた定値電流制限回路と、該定値電流制限回路と
並列に接続される直列接続された分布容量補償用
コンデンサおよび遅延手段と、上記増幅手段の出
力信号を一定数カウントするカウンタと、該カウ
ンタのカウント出力によつて上記入力点と同相の
上記増幅手段の出力を帰還手段を介して上記第1
および第2の静電容量の夫々の他端に選択的に接
続する切換え手段と、上記カウンタのカウント出
力から得られるパルス信号を平均化する積分回路
と、該積分回路の出力を2線式線路に通ずる電流
値へ交換する出力部とを具備した容量式変位変換
装置。
[Claims] 1. First and second capacitances, at least one of which changes in response to a physical change to be detected, and one end of each of which is commonly connected, and the common connection point is connected to the input point thereof. a constant value current limiting circuit connected between the output of the amplifying means and the input point having an opposite phase to the signal at the input point; and a series connection connected in parallel with the constant value current limiting circuit. a distributed capacitance compensating capacitor and delay means, a counter for counting a fixed number of output signals of the amplifying means, and an output of the amplifying means that is in phase with the input point based on the count output of the counter, via a feedback means. and switching means selectively connected to the other ends of each of the first and second capacitances. 2. first and second capacitors, each of which changes slightly in response to a physical change to be detected, each of which has one end connected in common; and an amplification means with the common connection point connected to its input point. , a constant value current limiting circuit connected between the output of the amplifying means having an opposite phase to the signal at the input point and the input point, and a distributed capacitance compensation circuit connected in series with the constant value current limiting circuit and connected in parallel with the constant value current limiting circuit. a capacitor, a delay means, a counter for counting a fixed number of output signals of the amplifying means, and an output of the amplifying means that is in phase with the input point based on the count output of the counter, and feeding the output of the amplifying means that is in phase with the input point to the first
and a switching means selectively connected to the other end of each of the second capacitors, an integrating circuit for averaging pulse signals obtained from the count outputs of the counter, and an integrating circuit for connecting the output of the integrating circuit to a two-wire line. A capacitive displacement converter equipped with an output section that converts the current value into a current value.
JP16490680A 1980-11-22 1980-11-22 Capacitive displacement converter Granted JPS5788316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16490680A JPS5788316A (en) 1980-11-22 1980-11-22 Capacitive displacement converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16490680A JPS5788316A (en) 1980-11-22 1980-11-22 Capacitive displacement converter

Publications (2)

Publication Number Publication Date
JPS5788316A JPS5788316A (en) 1982-06-02
JPS6351248B2 true JPS6351248B2 (en) 1988-10-13

Family

ID=15802106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16490680A Granted JPS5788316A (en) 1980-11-22 1980-11-22 Capacitive displacement converter

Country Status (1)

Country Link
JP (1) JPS5788316A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0507964B1 (en) * 1990-10-31 1998-09-09 Shintom Co., Ltd Electronic volume device

Also Published As

Publication number Publication date
JPS5788316A (en) 1982-06-02

Similar Documents

Publication Publication Date Title
US4387601A (en) Capacitance type displacement conversion device
US3237116A (en) Amplifiers and corrective circuits therefor
US4201084A (en) Vortex flow meter
US3130329A (en) Measuring system
JPH08327677A (en) Detection circuit and detection method for capacitive sensor
US4603308A (en) Temperature stable oscillator
JPS6351248B2 (en)
JPH0130085B2 (en)
JPH06180336A (en) Capacitance type physical quantity detecting device
GB1258176A (en)
JPS6356925B2 (en)
JPS6356926B2 (en)
JPH0128323B2 (en)
JPH0130084B2 (en)
JPH0374324B2 (en)
JPH0115919B2 (en)
JP3036680B2 (en) Signal processing circuit for sensors using change in capacitance
JPS62182619A (en) Capacity type converter
JP2651187B2 (en) Charge level detection circuit
JPH0354398B2 (en)
JP2542245B2 (en) Voltage output circuit
JPH0412813B2 (en)
JPH0431328B2 (en)
JPH0427218Y2 (en)
RU2042934C1 (en) Device for measuring non-electric values