JPS6350872B2 - - Google Patents

Info

Publication number
JPS6350872B2
JPS6350872B2 JP54160693A JP16069379A JPS6350872B2 JP S6350872 B2 JPS6350872 B2 JP S6350872B2 JP 54160693 A JP54160693 A JP 54160693A JP 16069379 A JP16069379 A JP 16069379A JP S6350872 B2 JPS6350872 B2 JP S6350872B2
Authority
JP
Japan
Prior art keywords
region
insulating film
drain
drain region
field plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54160693A
Other languages
Japanese (ja)
Other versions
JPS5683077A (en
Inventor
Kyotoshi Nakagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP16069379A priority Critical patent/JPS5683077A/en
Priority to DE3046749A priority patent/DE3046749C2/en
Publication of JPS5683077A publication Critical patent/JPS5683077A/en
Priority to US06/655,638 priority patent/US4614959A/en
Publication of JPS6350872B2 publication Critical patent/JPS6350872B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41775Source or drain electrodes for field effect devices characterised by the proximity or the relative position of the source or drain electrode and the gate electrode, e.g. the source or drain electrode separated from the gate electrode by side-walls or spreading around or above the gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs

Description

【発明の詳細な説明】 本発明は高耐圧MOS電界効果トランジスタ
(以下高耐圧MOSFETと略す)に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high voltage MOS field effect transistor (hereinafter abbreviated as high voltage MOSFET).

MOSFETの高耐圧化を図る一つの方法とし
て、ゲート電極端の電界集中を防ぐために、ドレ
イン領域の周辺にドレイン領域の一部として同一
導電型の高抵抗層を設ける方法が試みられてい
る。第1図はこの種の高耐圧MOSFETの断面図
を示したものである。図に於て1はP型基板で、
該基板1にN+ソース領域2及びN+ドレイン領域
3が夫々形成されているが、ソース領域2の周囲
には自己整合プロセスによつてMOSFETのゲー
トチヤネルのためのP+領域4が設けられ、また
ドレイン領域3の周囲にはゲート電極端の電界集
中を防ぐためにドレイン領域の一部として同一導
電型の高抵抗層5が設けられている。上記のよう
な不純物拡散がなされた基板1に対して、該基板
1の表面には、ソース領域2及びドレイン領域3
に夫々接続されたソース電極6及びドレイン電極
7がAl或いは多結晶Si等によつて設けられてい
るが、いずれの電極も各領域に電気的接続するだ
けでなく、導体が周辺基板上の絶縁膜8に延びた
フイールドプレート部6′,7′が一体的に設けら
れている。ソース電極6から延びたフイールドプ
レート6′はゲート電極端の電界を緩和する役目
を果たし、ドレイン電極7から延びたフイールド
プレート7′はドレインのN+−N-境界付近での
電界の集中を緩和する。図中9はチヤネル領域4
上に設けられたゲート電極である。
One method of increasing the withstand voltage of MOSFETs is to provide a high resistance layer of the same conductivity type as part of the drain region around the drain region in order to prevent electric field concentration at the end of the gate electrode. FIG. 1 shows a cross-sectional view of this type of high voltage MOSFET. In the figure, 1 is a P-type substrate,
An N + source region 2 and an N + drain region 3 are formed on the substrate 1, and a P + region 4 for a gate channel of the MOSFET is provided around the source region 2 by a self-alignment process. Further, around the drain region 3, a high resistance layer 5 of the same conductivity type is provided as a part of the drain region in order to prevent electric field concentration at the end of the gate electrode. A source region 2 and a drain region 3 are formed on the surface of the substrate 1 in which the impurity is diffused as described above.
A source electrode 6 and a drain electrode 7, which are connected to each other, are made of Al, polycrystalline Si, etc., but each electrode is not only electrically connected to each region, but also has a conductor connected to an insulating layer on the peripheral substrate. Field plate portions 6', 7' extending to the membrane 8 are integrally provided. A field plate 6' extending from the source electrode 6 serves to alleviate the electric field at the end of the gate electrode, and a field plate 7' extending from the drain electrode 7 alleviates the concentration of the electric field near the N + -N - boundary of the drain. do. 9 in the figure is channel area 4
This is the gate electrode provided above.

ここで上記各フイールドプレート6′,7′は互
いに延ばし過ぎると、フイールドプレート6′が
ドレイン領域3に及ぼす逆フイールドプレート効
果及びフイールドプレート7′のゲート電極端に
及ぼす逆フイールドプレート効果が顕著になり、
逆に耐圧を低下させる結果になる。
If the field plates 6' and 7' are extended too much, the reverse field plate effect that the field plate 6' has on the drain region 3 and the reverse field plate effect that the field plate 7' has on the end of the gate electrode becomes noticeable. ,
On the contrary, this results in a decrease in breakdown voltage.

また上記構造のMOSFETは、両側から延びて
きたフイールドプレート6′,7′間に、Al或い
は多結晶Siのような導体で被覆されない高抵抗層
5の領域が生じることになり、該導体被覆されな
い高抵抗層5の領域は外部電荷の影響を受けてオ
ン耐圧、ドレイン電流、及びRON等の電気的特性
が変動する欠点があつた。
Further, in the MOSFET having the above structure, there is a region of the high resistance layer 5 that is not covered with a conductor such as Al or polycrystalline Si between the field plates 6' and 7' extending from both sides, and the area is not covered with the conductor. The region of the high-resistance layer 5 has a disadvantage in that electrical characteristics such as on-breakdown voltage, drain current, and R ON vary due to the influence of external charges.

本発明は上記従来の高耐圧MOSFETにおける
欠点を除去し、耐圧特性にすぐれ且つ信頼性の高
いMOSFETを提供するもので、図面を用いて実
施例を詳細に説明する。
The present invention eliminates the drawbacks of the conventional high voltage MOSFETs mentioned above and provides a MOSFET with excellent voltage resistance characteristics and high reliability.Examples will be described in detail with reference to the drawings.

第2図aにおいてP-基板1には前記従来
MOSFETと同様にソース領域2、ドレイン領域
3、P+チヤネル領域4及びN-高抵抗層5が形成
され、ソース領域2にはソース電極6が、ドレイ
ン領域3にはドレイン電極7が電気的接続され、
その他の基板表面は絶縁膜8で被覆されている。
尚9はチヤネル領域4上に設けられた所定膜厚の
ゲート酸化膜上に形成されたゲート電極である。
ここで上記従来の欠点を除去するために、ソース
電極側から延ばしたフイールドプレートとドレイ
ン電極側から延ばしたフイールドプレートは互い
に延ばし過ぎないで、しかも第1図のAのような
導体被覆されない領域が形成されないようにする
ため高抵抗層領域上の中央部付近で上記両フイー
ルドプレートが絶縁層を介して一部重なり合うよ
うに設けられている。即ち第2図aに示した実施
例はソース電極側から延ばしたフイールドプレー
トとしてソース電極と一体的に設けられたフイー
ルドプレート6′が形成され、ドレイン電極側か
ら延ばしたフイールドプレートとして被覆導体1
1が、フイールドプレート6′,7′面に対して
基板表面に近い絶縁層中に設けられ、ゲート電極
9を作成する工程を利用して同時に形成され、ド
レイン領域3に接続された導体の延長として設け
られている。第2図b及びcも同様に被覆導体1
2,103が基板表面に近い絶縁膜中に形成され
るが、ドレイン或いはソース電極の延長部として
設けられるものではなく、領域Aを被う島状に被
覆導体102,103が形成され、該被覆導体をソ
ース或いはドレインのフイールドプレート6′,
7′を作成する工程でソース或いはドレインに電
気的接続させて形成される。第3図に示す実施例
はフイールドプレート面上に更に絶縁膜8′を被
着し、該絶縁膜8′上に上記領域Aをほぼ被う面
積に被覆導体104が設けられ、ソース電極6に
電気的接続されている。該被覆導体104はドレ
イン電極7側に電気的接続されても実施し得る。
また第4図はドレイン電極7に接続された配線1
1を更に延長させて領域Aを充分被う形状に設
け、被覆導体105を配線と一体的に形成したも
のである。
In Figure 2a, the P - board 1 has the conventional
Similar to a MOSFET, a source region 2, a drain region 3, a P + channel region 4 and an N - high resistance layer 5 are formed, and a source electrode 6 is electrically connected to the source region 2, and a drain electrode 7 is electrically connected to the drain region 3. is,
The other substrate surfaces are covered with an insulating film 8.
Note that 9 is a gate electrode formed on a gate oxide film of a predetermined thickness provided on the channel region 4.
In order to eliminate the above-mentioned drawbacks of the conventional method, the field plate extending from the source electrode side and the field plate extending from the drain electrode side should not be extended too far from each other, and in addition, the area where the conductor is not covered, as shown in A in Fig. 1, should be avoided. In order to prevent this from occurring, both field plates are provided so as to partially overlap each other with an insulating layer in between near the center of the high-resistance layer region. That is, in the embodiment shown in FIG. 2a, a field plate 6' integrally provided with the source electrode is formed as a field plate extending from the source electrode side, and a covered conductor 1 is formed as a field plate extending from the drain electrode side.
0 1 is provided in the insulating layer close to the substrate surface with respect to the field plates 6' and 7', and is formed simultaneously using the process of creating the gate electrode 9, and is connected to the drain region 3. It is set up as an extension. Similarly, in Fig. 2 b and c, the coated conductor 1
0 2 and 10 3 are formed in the insulating film near the substrate surface, but they are not provided as extensions of the drain or source electrodes, but covered conductors 10 2 and 10 3 are formed in the form of islands covering region A. The coated conductor is connected to the source or drain field plate 6',
In the step of forming 7', it is electrically connected to the source or drain. In the embodiment shown in FIG. 3, an insulating film 8' is further deposited on the field plate surface, and a covered conductor 104 is provided on the insulating film 8' in an area that almost covers the area A. electrically connected to. The covered conductor 10 4 may be electrically connected to the drain electrode 7 side.
Also, FIG. 4 shows the wiring 1 connected to the drain electrode 7.
1 is further extended to sufficiently cover area A, and coated conductor 105 is formed integrally with the wiring.

第5図は本発明による被覆導体が設けられた高
耐圧MOSFETと被覆導体を具備していない前述
の従来MOSFETとの高温バイアス条件下におけ
るRONの時間的変化を示す。曲線は本発明によ
るMOSFETの、曲線は従来のMOSFETにお
ける変化を示し、図から明らかなように、従来
MOSFETは時間と共に急速に変化しているが本
発明MOSFETはほとんど変動せず安定した特性
を示す。尚試験時の温度は100℃、VDS=200V及
びVGS=OVである。
FIG. 5 shows the temporal change in R ON under high temperature bias conditions for a high voltage MOSFET provided with a coated conductor according to the present invention and the aforementioned conventional MOSFET not provided with a coated conductor. The curve shows the change in the MOSFET according to the present invention, and the curve shows the change in the conventional MOSFET.
Although MOSFETs change rapidly over time, the MOSFET of the present invention hardly changes and exhibits stable characteristics. The temperature during the test was 100°C, V DS = 200 V, and V GS = OV.

以上本発明によれば、ソース及びドレイン電極
と夫々一体的にフイールドプレートを形成するこ
とにより、ドレイン側のゲート電極端での電界集
中及びドレイン領域と高抵抗層との境界付近での
電界集中を緩和できる上、ドレイン電極と一体的
なフイールドプレートは、それにより覆われた高
抵抗層との間で蓄積層を発生させ、実質的に前記
フイールドプレートで覆われない高抵抗層より高
い不純物濃度領域と同等の動作を行わせることが
でき、高抵抗層に濃度勾配を形成したものと同等
の効果が得られ、電界集中が和らぐ。更に、被覆
導体の端部が上記両フイールドプレートと重なつ
ているため、高抵抗層領域上が導体で完全に被覆
されて外部電荷の影響を受けることが極めて少な
くなる。したがつて、特性変動のない信頼性のよ
い高耐圧MOSFETが得られる。
As described above, according to the present invention, by forming field plates integrally with the source and drain electrodes, electric field concentration at the end of the gate electrode on the drain side and near the boundary between the drain region and the high resistance layer can be reduced. In addition to being able to relax, the field plate integral with the drain electrode generates an accumulation layer between it and the high resistance layer covered by it, substantially resulting in a higher impurity concentration region than the high resistance layer not covered by said field plate. It is possible to perform the same operation as that of the high-resistance layer, and the same effect as that of forming a concentration gradient in the high-resistance layer can be obtained, and the electric field concentration is alleviated. Furthermore, since the ends of the covered conductor overlap with both of the field plates, the high-resistance layer region is completely covered with the conductor, so that it is extremely unlikely to be affected by external charges. Therefore, a highly reliable high voltage MOSFET with no characteristic fluctuations can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来装置の断面図、第2図aは本発明
による高耐圧MOSFETの断面図、第2図b,
c、第3図、第4図は本発明による他の実施例の
高耐圧MOSFETの断面図、第5図は従来装置と
本発明による高耐圧MOSFETとのRONの特性を
比較した図である。 1:P-基板、2:ソース領域、3:ドレイン
領域、4:P+チヤネル領域、5:高抵抗層領域、
6:ソース電極、7:ドレイン電極、6′,7′:
フイールドプレート、8:絶縁膜、9:ゲート電
極、101,102:被覆導体。
Fig. 1 is a sectional view of a conventional device, Fig. 2a is a sectional view of a high voltage MOSFET according to the present invention, Fig. 2b,
c, Figures 3 and 4 are cross-sectional views of high voltage MOSFETs according to other embodiments of the present invention, and Figure 5 is a diagram comparing the R ON characteristics of a conventional device and a high voltage MOSFET according to the present invention. . 1: P - substrate, 2: source region, 3: drain region, 4: P + channel region, 5: high resistance layer region,
6: Source electrode, 7: Drain electrode, 6', 7':
Field plate, 8: Insulating film, 9: Gate electrode, 10 1 , 10 2 : Covered conductor.

Claims (1)

【特許請求の範囲】 1 半導体基板に形成されたドレイン領域を囲ん
で、ドレイン領域と同一導電型の高抵抗領域が形
成された高耐圧MOS電界効果トランジスタにお
いて、 ソース領域から半導体基板の絶縁膜上に延びて
上記高抵抗領域の境界上を覆うフイールドプレー
トと、 ドレイン領域から半導体基板の絶縁膜上に延び
てドレイン領域と高抵抗領域との境界上を覆うフ
イールドプレートと、 上記両フイールドプレート間の絶縁膜を覆い、
且つ端部が絶縁層を介して上記両フイールドプレ
ートと重なり、一方のフイールドプレートに電気
的に接続された被覆導体とを備えてなり、該被覆
導体と絶縁膜上のフイールドプレートとで上記高
抵抗領域上の絶縁膜をほぼ被つてなることを特徴
とする高耐圧MOS電界効果トランジスタ。
[Scope of Claims] 1. In a high-voltage MOS field effect transistor in which a high-resistance region of the same conductivity type as the drain region is formed surrounding a drain region formed on a semiconductor substrate, a source region is formed on an insulating film of a semiconductor substrate. a field plate extending from the drain region to cover the boundary of the high resistance region; a field plate extending from the drain region to the insulating film of the semiconductor substrate and covering the boundary between the drain region and the high resistance region; cover the insulating film,
and a coated conductor whose end portion overlaps both of the field plates through an insulating layer and is electrically connected to one of the field plates, and the coated conductor and the field plate on the insulating film have the high resistance. A high-voltage MOS field-effect transistor characterized by almost covering an insulating film on a region.
JP16069379A 1979-12-10 1979-12-10 High tension mos field-effect transistor Granted JPS5683077A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP16069379A JPS5683077A (en) 1979-12-10 1979-12-10 High tension mos field-effect transistor
DE3046749A DE3046749C2 (en) 1979-12-10 1980-12-10 MOS transistor for high operating voltages
US06/655,638 US4614959A (en) 1979-12-10 1984-09-28 Improved high voltage MOS transistor with field plate layers for preventing reverse field plate effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16069379A JPS5683077A (en) 1979-12-10 1979-12-10 High tension mos field-effect transistor

Publications (2)

Publication Number Publication Date
JPS5683077A JPS5683077A (en) 1981-07-07
JPS6350872B2 true JPS6350872B2 (en) 1988-10-12

Family

ID=15720418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16069379A Granted JPS5683077A (en) 1979-12-10 1979-12-10 High tension mos field-effect transistor

Country Status (1)

Country Link
JP (1) JPS5683077A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0460251B1 (en) * 1990-06-05 1998-11-18 Siemens Aktiengesellschaft Method of fabricating a power-MISFET
US5918137A (en) * 1998-04-27 1999-06-29 Spectrian, Inc. MOS transistor with shield coplanar with gate electrode

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53980A (en) * 1977-07-13 1978-01-07 Hitachi Ltd Field-effect transistor of high dielectric strength

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53980A (en) * 1977-07-13 1978-01-07 Hitachi Ltd Field-effect transistor of high dielectric strength

Also Published As

Publication number Publication date
JPS5683077A (en) 1981-07-07

Similar Documents

Publication Publication Date Title
JP2781504B2 (en) Semiconductor device having improved breakdown voltage characteristics
JPH0216021B2 (en)
JPS61256U (en) Planar MOS transistor
JPH0319712B2 (en)
US5089871A (en) Increased voltage mos semiconductor device
JPH07202205A (en) Semiconductor element that has high surface breakdown voltage
JPS60171771A (en) Insulated gate semiconductor device
JPS6350871B2 (en)
US4584593A (en) Insulated-gate field-effect transistor (IGFET) with charge carrier injection
JPH0828502B2 (en) Bidirectional power vertical MOS device and method of manufacturing the same
JPS6350872B2 (en)
JP3402043B2 (en) Field effect transistor
US5270566A (en) Insulated gate semiconductor device
JP3137840B2 (en) Semiconductor device
JPS59121979A (en) High dielectric strength insulated gate type semiconductor device
JPH01111378A (en) Vertical mosfet
JPS622705B2 (en)
JPS622706B2 (en)
JPH07183309A (en) Semiconductor device
JPS5942467B2 (en) Hand tie souchi
JP3233002B2 (en) Field effect transistor
JP2000164854A (en) Semiconductor device and method for manufacturing the same
JPH07254707A (en) Semiconductor device
JPS5858747A (en) Metal oxide semiconductor type semiconductor integrated circuit
JPH02102575A (en) Semiconductor device