JP2000164854A - Semiconductor device and method for manufacturing the same - Google Patents

Semiconductor device and method for manufacturing the same

Info

Publication number
JP2000164854A
JP2000164854A JP10338848A JP33884898A JP2000164854A JP 2000164854 A JP2000164854 A JP 2000164854A JP 10338848 A JP10338848 A JP 10338848A JP 33884898 A JP33884898 A JP 33884898A JP 2000164854 A JP2000164854 A JP 2000164854A
Authority
JP
Japan
Prior art keywords
region
semiconductor
channel region
gate electrode
semiconductor region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10338848A
Other languages
Japanese (ja)
Inventor
Takeshi Nobe
武 野辺
Shigeo Akiyama
茂夫 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP10338848A priority Critical patent/JP2000164854A/en
Publication of JP2000164854A publication Critical patent/JP2000164854A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device having a low threshold and high dielectric strength. SOLUTION: A semiconductor device comprises a first conductive-type semiconductor wafer 1 having an impurity concentration of a first prescribed concentration, a first second conductive-type semiconductive region 2, having an impurity concentration of the second prescribed concentration or lower and formed on one main surface of the semiconductor wafer 1, a second second conductive-type semiconductive region 3, having an impurity concentration higher than the second prescribed concentration and formed on one main surface of the semiconductor wafer 1, a third semiconductor region 4 having an impurity concentration higher than the second prescribed concentration and formed in the second semiconductor region 3, a channel region 7 formed between the first semiconductor region 2 and the second semiconductor region 3 so as to have its conductive type varied, a gate electrode 8 applied by voltage for changing the conductive type of the channel region 7, and a gate insulation film 9 for insulating the gate electrode 8 from the semiconductor wafer 1. The channel region 7 is constituted with surface concentration higher than that of the first prescribed concentration.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、横型絶縁ゲート型
電界効果半導体装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lateral insulated gate field effect semiconductor device.

【0002】[0002]

【従来の技術】この種の半導体装置として、図5に示す
ものが存在する。このものは、第1の所定濃度の不純物
濃度を有した第1の導電型の半導体基板A と、第2の所
定濃度の不純物濃度を有して半導体基板A の一主面に沿
って設けられた第2の導電型の第1の半導体領域B と、
第2の所定濃度よりも高濃度の不純物濃度を有して半導
体基板A の一主面に沿って設けられた第2の導電型の第
2の半導体領域C と、第2の所定濃度よりも高濃度の不
純物濃度を有して半導体基板A の一主面に沿って第2の
半導体領域C の内部に設けられた第3の半導体領域D
と、第1の半導体領域B と第2の半導体領域C との間で
導電型が変化し得るチャンネル領域E と、チャンネル領
域E の導電型を変化させるよう電圧が印加されるゲート
電極F と、ゲート電極F と半導体基板A 側との間を絶縁
するゲート絶縁膜G と、を備えている。
2. Description of the Related Art As this kind of semiconductor device, there is one shown in FIG. These are provided along a main surface of a semiconductor substrate A of a first conductivity type having an impurity concentration of a first predetermined concentration and a semiconductor substrate A having an impurity concentration of a second predetermined concentration. A first semiconductor region B of a second conductivity type,
A second conductive type second semiconductor region C provided along one main surface of the semiconductor substrate A with an impurity concentration higher than the second predetermined concentration; A third semiconductor region D having a high impurity concentration and provided inside the second semiconductor region C along one main surface of the semiconductor substrate A.
A channel region E whose conductivity type can change between the first semiconductor region B and the second semiconductor region C; a gate electrode F to which a voltage is applied so as to change the conductivity type of the channel region E; A gate insulating film G for insulating between the gate electrode F and the semiconductor substrate A side.

【0003】詳しくは、半導体基板A における第1及び
第2の半導体基板領域B,C の間の領域が、チャンネル領
域E となっている。この半導体装置は、半導体基板A の
不純物濃度を低くすることにより、チャンネル領域E の
表面濃度を低くすると、しきい値電圧が低くなる。
More specifically, a region between the first and second semiconductor substrate regions B and C on the semiconductor substrate A is a channel region E. In this semiconductor device, when the surface concentration of the channel region E is lowered by lowering the impurity concentration of the semiconductor substrate A, the threshold voltage is lowered.

【0004】また、このものの第1の半導体領域B は、
ドリフト領域と呼ばれ、第2の半導体領域C が、ドレイ
ン領域と呼ばれ、第3の半導体領域D が、ソース領域と
呼ばれている。
Further, the first semiconductor region B is
The second semiconductor region C 1 is called a drain region, and the third semiconductor region D 2 is called a source region.

【0005】[0005]

【発明が解決しようとする課題】上記した従来の半導体
装置にあっては、第1の半導体領域B の濃度を第1の所
定濃度とし、第1の所定濃度よりも高濃度の第2の半導
体領域C に比較して、低濃度とすることにより、ドレイ
ン領域とソース領域との間の耐圧を高くすることができ
る。
In the above-mentioned conventional semiconductor device, the concentration of the first semiconductor region B is set to a first predetermined concentration, and the second semiconductor region having a higher concentration than the first predetermined concentration is used. By making the concentration lower than that in the region C 2, the withstand voltage between the drain region and the source region can be increased.

【0006】しかしながら、このものは、しきい値電圧
を低くするために、チャンネル領域E の表面濃度を低く
すると、ドリフト領域からソース領域に向かって拡がる
空乏層が、ソ−ス領域に接触するまで拡がるようにな
り、このように空乏層がソ−ス領域に接触するようにな
ると、耐圧が低下する、いわゆるパンチスルーという現
象が発生してしまう。
However, when the surface concentration of the channel region E is reduced in order to lower the threshold voltage, the depletion layer extending from the drift region toward the source region is kept in contact with the source region. When the depletion layer comes into contact with the source region as described above, the withstand voltage is reduced, and a phenomenon called so-called punch-through occurs.

【0007】一方、このパンチスルー発生しないよう
に、第1及び第2の半導体領域B,C の間をあけて、チャ
ンネル領域E を長くすると、チャンネル抵抗が増大し
て、オン抵抗が大きくなってしまう。
On the other hand, if the channel region E is made longer by providing a gap between the first and second semiconductor regions B and C so as to prevent the occurrence of punch-through, the channel resistance increases and the on-resistance increases. I will.

【0008】本発明は、上記の点に着目してなされたも
ので、その目的とするところは、しきい値が低く耐圧の
高い半導体装置及びその製造方法を提供することにあ
る。
The present invention has been made in view of the above points, and an object of the present invention is to provide a semiconductor device having a low threshold voltage and a high withstand voltage, and a method of manufacturing the same.

【0009】[0009]

【課題を解決するための手段】上記した課題を解決する
ために、請求項1記載の発明は、第1の所定濃度の不純
物濃度を有した第1の導電型の半導体基板と、第2の所
定濃度以下の不純物濃度を有して半導体基板の一主面側
に設けられた第2の導電型の第1の半導体領域と、第2
の所定濃度よりも高濃度の不純物濃度を有して半導体基
板の一主面に沿って設けられた第2の導電型の第2の半
導体領域と、第2の所定濃度よりも高濃度の不純物濃度
を有して半導体基板の一主面に沿って第2の半導体領域
の内部に設けられた第3の半導体領域と、第1の半導体
領域と第2の半導体領域との間に位置して導電型が変化
し得るチャンネル領域と、チャンネル領域の導電型を変
化させるよう電圧が印加されるゲート電極と、ゲート電
極と第1の半導体領域及びチャンネル領域を含む半導体
基板側との間を絶縁するゲート絶縁膜と、を備えた半導
体装置において、前記チャンネル領域は、その表面濃度
が第1の所定濃度よりも高濃度である構成にしてある。
According to a first aspect of the present invention, there is provided a semiconductor device of a first conductivity type having a first predetermined impurity concentration, and a second conductive type semiconductor substrate having a first predetermined impurity concentration. A first semiconductor region of a second conductivity type provided on one main surface side of the semiconductor substrate and having an impurity concentration equal to or lower than a predetermined concentration;
A second semiconductor region of a second conductivity type provided along one main surface of the semiconductor substrate and having an impurity concentration higher than a predetermined concentration, and an impurity having a higher concentration than the second predetermined concentration. A third semiconductor region having a concentration and provided inside the second semiconductor region along one main surface of the semiconductor substrate; and a third semiconductor region located between the first semiconductor region and the second semiconductor region. A channel region whose conductivity type can be changed, a gate electrode to which a voltage is applied so as to change the conductivity type of the channel region, and insulation between the gate electrode and the semiconductor substrate including the first semiconductor region and the channel region And a gate insulating film, wherein the channel region has a surface concentration higher than a first predetermined concentration.

【0010】請求項2記載の発明は、請求項1記載の発
明において、前記第1の半導体領域は、前記チャンネル
領域を間に挟んで前記ゲート電極及び前記ゲート絶縁膜
のいずれにも重合する重合領域を有するものであって、
その重合領域は、前記第1の半導体領域の内部で相対的
に不純物濃度が低濃度である構成にしてある。
According to a second aspect of the present invention, in the first aspect of the present invention, the first semiconductor region is polymerized on both the gate electrode and the gate insulating film with the channel region interposed therebetween. Having an area,
The overlapping region has a structure in which the impurity concentration is relatively low inside the first semiconductor region.

【0011】請求項3記載の発明は、請求項2記載の発
明において、前記第1の半導体領域は、前記半導体基板
の一主面に沿って前記重合領域に隣接する隣接領域を有
するとともに、前記ゲート絶縁膜は、前記ゲート電極と
前記第1の半導体領域の隣接領域とを絶縁する隣接領域
絶縁部及び前記ゲート電極と前記チャンネル領域とを絶
縁するチャンネル領域絶縁部を有するものであって、隣
接領域絶縁部は、チャンネル領域絶縁部よりも厚い構成
にしてある。
According to a third aspect of the present invention, in the second aspect of the present invention, the first semiconductor region has an adjacent region adjacent to the overlap region along one principal surface of the semiconductor substrate, The gate insulating film includes an adjacent region insulating portion that insulates the gate electrode from an adjacent region of the first semiconductor region, and a channel region insulating portion that insulates the gate electrode from the channel region. The region insulating portion is configured to be thicker than the channel region insulating portion.

【0012】請求項4記載の発明の製造方法によれば、
第1の所定濃度の不純物濃度を有した第1の導電型の半
導体基板と、第2の所定濃度以下の不純物濃度を有して
半導体基板の一主面側に設けられた第2の導電型の第1
の半導体領域と、第2の所定濃度よりも高濃度の不純物
濃度を有して半導体基板の一主面に沿って設けられた第
2の導電型の第2の半導体領域と、第2の所定濃度より
も高濃度の不純物濃度を有して半導体基板の一主面に沿
って第2の半導体領域の内部に設けられた第3の半導体
領域と、第1の半導体領域と第2の半導体領域との間に
位置して導電型が変化し得るチャンネル領域と、チャン
ネル領域の導電型を変化させるよう電圧が印加されるゲ
ート電極と、ゲート電極と第1の半導体領域及びチャン
ネル領域を含む半導体基板側との間を絶縁するゲート絶
縁膜と、を備え、前記チャンネル領域は、その表面濃度
が第1の所定濃度よりも低濃度であるとともに、前記第
1の半導体領域は、前記ゲート電極及び前記ゲート絶縁
膜のいずれにも重合する重合領域を有し、その重合領域
は、前記第1の半導体領域の内部で相対的に不純物濃度
が低濃度であるとともに、前記第1の半導体領域は、前
記半導体基板の一主面に沿って前記重合領域に隣接する
隣接領域を有するとともに、前記ゲート絶縁膜は、前記
ゲート電極と前記第1の半導体領域の隣接領域とを絶縁
する隣接領域絶縁部及び前記ゲート電極と前記チャンネ
ル領域とを絶縁するチャンネル領域絶縁部を有するもの
であり、隣接領域絶縁部は、チャンネル領域絶縁部より
も厚い半導体装置を製造する半導体装置の製造方法であ
って、前記半導体基板の一主面に沿って前記第1の半導
体領域を形成し、前記第1の半導体領域を含めて前記半
導体基板上に前記ゲート絶縁膜となる絶縁層を形成し、
前記第1の半導体領域との重合部分を含めて絶縁層に開
口部を形成し、第2の導電型の不純物を開口部を通して
注入して前記チャンネル領域を形成し、前記チャンネル
領域を含めて前記半導体基板上に前記ゲート絶縁膜とな
る絶縁層を再度形成し、絶縁層に沿って前記ゲート電極
を形成するようにしてある。
According to the manufacturing method of the invention described in claim 4,
A semiconductor substrate of a first conductivity type having an impurity concentration of a first predetermined concentration, and a second conductivity type provided on one main surface side of the semiconductor substrate having an impurity concentration of a second predetermined concentration or less. First
A second conductive type second semiconductor region having an impurity concentration higher than the second predetermined concentration and provided along one main surface of the semiconductor substrate; A third semiconductor region having an impurity concentration higher than the concentration and provided inside the second semiconductor region along one main surface of the semiconductor substrate; a first semiconductor region and a second semiconductor region A channel region located between the channel region and the conductivity type, a gate electrode to which a voltage is applied to change the conductivity type of the channel region, a semiconductor substrate including the gate electrode, the first semiconductor region, and the channel region A gate insulating film that insulates between the gate electrode and the gate electrode. The channel region has a surface concentration lower than a first predetermined concentration, and the first semiconductor region includes the gate electrode and the gate electrode. Heavy on any of the gate insulating films A polymerization region having a relatively low impurity concentration inside the first semiconductor region, and the first semiconductor region extending along one principal surface of the semiconductor substrate. And the gate insulating film has an adjacent region insulating portion that insulates the gate electrode from the adjacent region of the first semiconductor region, and the gate electrode and the channel region. A method of manufacturing a semiconductor device for manufacturing a semiconductor device having a channel region insulating portion to be insulated, wherein the adjacent region insulating portion is thicker than the channel region insulating portion. Forming a first semiconductor region, forming an insulating layer serving as the gate insulating film on the semiconductor substrate including the first semiconductor region,
An opening is formed in the insulating layer including a portion where the first semiconductor region overlaps, an impurity of a second conductivity type is injected through the opening to form the channel region, and the channel region is formed including the channel region. An insulating layer serving as the gate insulating film is formed again on a semiconductor substrate, and the gate electrode is formed along the insulating layer.

【0013】[0013]

【発明の実施の形態】本発明の第1実施形態を図1に基
づいて以下に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to FIG.

【0014】1 は半導体基板で、第1の導電型(P型)
を有し、不純物濃度が第1の所定濃度となっている。こ
の半導体基板1 は、その一主面に沿って、第2の所定濃
度の不純物濃度を有した第2の導電型(N型)の第1の
半導体領域2 が設けられるとともに、第2の所定濃度よ
りも高濃度の不純物濃度を有した第2の導電型の第2の
半導体領域3 であるが設けられている。また、第1の半
導体領域2 の内部には、半導体基板1 の一主面に沿っ
て、第2の所定濃度よりも高濃度の不純物濃度を有した
第3の半導体領域4 が設けられている。
Reference numeral 1 denotes a semiconductor substrate having a first conductivity type (P type).
And the impurity concentration is the first predetermined concentration. This semiconductor substrate 1 is provided with a first semiconductor region 2 of a second conductivity type (N type) having an impurity concentration of a second predetermined concentration along one main surface thereof, and a second predetermined region. A second conductive type second semiconductor region 3 having an impurity concentration higher than the concentration is provided. A third semiconductor region 4 having an impurity concentration higher than a second predetermined concentration is provided along the main surface of the semiconductor substrate 1 inside the first semiconductor region 2. .

【0015】なお、第1の半導体領域2 は、ドリフト領
域と呼ばれている。また、第2の半導体領域3 は、前述
したように、第2の導電型(N型)の第1の半導体領域
2 であり、第1の導電型(P型)の半導体基板1 と電気
的に短絡されたソース領域となっている。第3の半導体
領域4 は、ドレイン領域となっている。
Incidentally, the first semiconductor region 2 is called a drift region. Further, as described above, the second semiconductor region 3 is the first semiconductor region of the second conductivity type (N type).
2, which is a source region electrically short-circuited to the semiconductor substrate 1 of the first conductivity type (P type). The third semiconductor region 4 is a drain region.

【0016】5 はソース電極で、ソース領域である第2
の半導体領域3 に接続されている。6 はドレイン電極
で、ドレイン領域である第3の半導体領域4 に接続され
ている。7 はチャンネル領域で、第1の半導体領域2 と
第2の半導体領域3 との間に位置し、導電型が変化す
る。このチャンネル領域7 は、その表面濃度が第1の所
定濃度よりも高濃度となっている。
Reference numeral 5 denotes a source electrode, which is a second source region.
To the semiconductor region 3. Reference numeral 6 denotes a drain electrode which is connected to the third semiconductor region 4 which is a drain region. A channel region 7 is located between the first semiconductor region 2 and the second semiconductor region 3 and has a different conductivity type. The channel region 7 has a surface density higher than the first predetermined density.

【0017】8 はゲート電極で、チャンネル領域7 の導
電型を変化させるよう、電圧が印加される。このゲート
電極8 は、半導体基板1 の一主面上に設けられたゲート
絶縁膜9 によって、第1の半導体領域2 及びチャンネル
領域7 を含む半導体基板1 側との間が絶縁されている。
10は中間絶縁膜で、ソース電極5 及びドレイン電極6と
の間を絶縁する。
Reference numeral 8 denotes a gate electrode to which a voltage is applied so as to change the conductivity type of the channel region 7. The gate electrode 8 is insulated from the semiconductor substrate 1 side including the first semiconductor region 2 and the channel region 7 by a gate insulating film 9 provided on one main surface of the semiconductor substrate 1.
An intermediate insulating film 10 insulates between the source electrode 5 and the drain electrode 6.

【0018】かかる半導体装置にあっては、しきい値を
低くするために、半導体基板1 の第1の所定濃度を低く
しても、表面濃度が第1の所定濃度よりも高濃度である
チャンネル領域7 では、第1の半導体領域2 から第2の
半導体領域3 に向かって拡がる空乏層は、表面部分のみ
拡がりにくいので、パンチスルーが発生しにくくなっ
て、耐圧が低下しなくなる。
In such a semiconductor device, in order to lower the threshold value, even if the first predetermined concentration of the semiconductor substrate 1 is lowered, a channel whose surface concentration is higher than the first predetermined concentration. In the region 7, since the depletion layer extending from the first semiconductor region 2 to the second semiconductor region 3 hardly spreads only at the surface portion, punch-through hardly occurs and the breakdown voltage does not decrease.

【0019】また、半導体基板1 の不純物濃度とチャン
ネル領域7 の表面濃度とを異なる値にすることにより、
任意のしきい値を設定することができる。
By setting the impurity concentration of the semiconductor substrate 1 and the surface concentration of the channel region 7 to different values,
Any threshold can be set.

【0020】次に、本発明の第2実施形態を図2に基づ
いて以下に説明する。なお、第1実施形態と実質的に同
一の機能を有する部分には同一の符号を付し、第1実施
形態と異なるところのみ記す。本実施形態は、基本的に
は第1実施形態と同様であるが、第1の半導体領域2 の
内部で相対的に不純物濃度が低濃度の領域を有すること
が異なっている。
Next, a second embodiment of the present invention will be described below with reference to FIG. Note that portions having substantially the same functions as those of the first embodiment are denoted by the same reference numerals, and only the differences from the first embodiment will be described. This embodiment is basically the same as the first embodiment, except that the first semiconductor region 2 has a region with a relatively low impurity concentration inside.

【0021】詳しくは、第1の半導体領域2 は、チャン
ネル領域7 を間に挟んでゲート電極8 及びゲート絶縁膜
9 のいずれにも重合する重合領域11を有している。この
重合領域11は、第1の半導体領域2 の内部で相対的に不
純物濃度が低濃度となっている。
More specifically, the first semiconductor region 2 includes a gate electrode 8 and a gate insulating film with a channel region 7 interposed therebetween.
9 has a polymerization region 11 for polymerization. The overlapping region 11 has a relatively low impurity concentration inside the first semiconductor region 2.

【0022】かかる半導体装置にあっては、第1実施形
態の効果に加えて、第1の半導体領域2 における重合領
域11では、第1の半導体領域2 の内部で相対的に不純物
濃度が低濃度なのであるから、ゲート電極8 の直下で互
いに接する半導体基板1 と第1の半導体領域2 との界面
から第3の半導体領域4 に向かって空乏層が拡がり易く
なり、耐圧を高くすることができる。
In such a semiconductor device, in addition to the effect of the first embodiment, in the overlapping region 11 in the first semiconductor region 2, the impurity concentration in the first semiconductor region 2 is relatively low. Therefore, the depletion layer easily spreads toward the third semiconductor region 4 from the interface between the semiconductor substrate 1 and the first semiconductor region 2 which are in contact with each other immediately below the gate electrode 8, and the breakdown voltage can be increased.

【0023】次に、本発明の第3実施形態を図3及び図
4に基づいて以下に説明する。なお、第2実施形態と実
質的に同一の機能を有する部分には同一の符号を付し、
第2実施形態と異なるところのみ記す。本実施形態は、
基本的には第2実施形態と同様であるが、ゲート絶縁膜
9 は、厚みの厚い部分及び薄い部分を有し、それらの厚
い部分及び薄い部分でもって、ゲート電極8 と第1の半
導体領域2 及びチャンネル領域7 を含む半導体基板1 側
との間が絶縁されている点が異なっている。
Next, a third embodiment of the present invention will be described below with reference to FIGS. Parts having substantially the same functions as in the second embodiment are denoted by the same reference numerals,
Only different points from the second embodiment will be described. In this embodiment,
Basically the same as the second embodiment, except that the gate insulating film
9 has a thick portion and a thin portion, and the thick portion and the thin portion insulate the gate electrode 8 from the semiconductor substrate 1 including the first semiconductor region 2 and the channel region 7. Is different.

【0024】詳しくは、第1の半導体領域2 は、半導体
基板1 の一主面に沿って重合領域11に隣接する隣接領域
12を有している。また、ゲート絶縁膜9 は、ゲート電極
8 と第1の半導体領域2 の隣接領域12とを絶縁する隣接
領域絶縁部9a及びゲート電極8 とチャンネル領域7 とを
絶縁するチャンネル領域絶縁部9bを有しており、隣接領
域絶縁部9aが、チャンネル領域絶縁部9bよりも厚くなっ
ている。
More specifically, the first semiconductor region 2 is formed in an adjacent region adjacent to the overlap region 11 along one main surface of the semiconductor substrate 1.
Has 12 In addition, the gate insulating film 9 is
8 and an adjacent region insulating portion 9a for insulating the adjacent region 12 of the first semiconductor region 2 and a channel region insulating portion 9b for insulating the gate electrode 8 and the channel region 7 from each other. Is thicker than the channel region insulating portion 9b.

【0025】次に、図4(a) 乃至(e) に基づいて、この
ものの製造手順を以下に説明する。まず、同図(a) に示
すように、第1の導電型(P型)の半導体基板1 の一主
面に沿って、ゲート絶縁膜9 となる絶縁膜20を形成す
る。
Next, referring to FIGS. 4 (a) to 4 (e), the manufacturing procedure of the device will be described below. First, as shown in FIG. 1A, an insulating film 20 serving as a gate insulating film 9 is formed along one main surface of a semiconductor substrate 1 of a first conductivity type (P type).

【0026】その後、この絶縁膜に第1の開口部(図示
せず)を形成し、この第1の開口部を通して、第2の導
電型(N型)の不純物を注入して拡散させることによ
り、半導体基板1 の一主面に沿って、第1の半導体領域
2 を形成し、さらに、この第1の半導体領域2 を含めて
半導体基板1 上に、同図(b) に示すように、ゲート絶縁
膜9 となる絶縁層20を再度形成する。なお、第1の開口
部が形成された部分に形成された絶縁層20は、第1の開
口部が形成されなかった部分に形成された絶縁層20より
も、厚みが薄くなっている。
Thereafter, a first opening (not shown) is formed in the insulating film, and a second conductivity type (N-type) impurity is implanted and diffused through the first opening. A first semiconductor region along one main surface of the semiconductor substrate 1
2 is formed, and an insulating layer 20 serving as a gate insulating film 9 is formed again on the semiconductor substrate 1 including the first semiconductor region 2 as shown in FIG. Note that the thickness of the insulating layer 20 formed in the portion where the first opening is formed is smaller than the thickness of the insulating layer 20 formed in the portion where the first opening is not formed.

【0027】その後、同図(c) に示すように、前述した
薄い絶縁膜20に第2の開口部30a を形成するとともに、
薄い絶縁膜20にも亘って厚い絶縁膜20に第3の開口部30
b を形成し、この第3の開口部30b を通して、第1の導
電型(P型)の不純物を矢示するように注入して、半導
体基板1 の一主面に沿って、チャネル領域7 を形成す
る。
Thereafter, as shown in FIG. 2C, a second opening 30a is formed in the thin insulating film 20 described above.
The third opening 30 is formed in the thick insulating film 20 over the thin insulating film 20.
b is formed, and impurities of the first conductivity type (P type) are implanted through the third opening 30b as shown by arrows, and a channel region 7 is formed along one main surface of the semiconductor substrate 1. Form.

【0028】その後、チャンネル領域7 を含めて半導体
基板1 上にゲート絶縁膜9 となる絶縁層20を再度形成し
てから、同図(d) に示すように、絶縁層20に沿って、ゲ
ート電極8 を階段状に形成し、さらに、第2の導電型
(N型)の第2の半導体領域3であるソース領域と第2
の導電型(N型)の第3の半導体領域4 であるドレイン
領域とを形成する。
After that, an insulating layer 20 to be a gate insulating film 9 is formed again on the semiconductor substrate 1 including the channel region 7, and then the gate is formed along the insulating layer 20 as shown in FIG. The electrode 8 is formed in a step shape, and further, a source region which is the second semiconductor region 3 of the second conductivity type (N type) and a second
And a drain region which is a third semiconductor region 4 of the conductivity type (N type).

【0029】最後に、中間絶縁膜10となる絶縁膜20を半
導体基板1 上に形成し、さらに、金属電極接続用のコン
タクト穴40を2箇所に形成してから、この2箇所のコン
タクト穴に40ドレイン電極6 及びソース電極5 を形成す
る。
Finally, an insulating film 20 serving as the intermediate insulating film 10 is formed on the semiconductor substrate 1, and further, contact holes 40 for connecting metal electrodes are formed at two places. 40 A drain electrode 6 and a source electrode 5 are formed.

【0030】かかる半導体装置にあっては、第2実施形
態の効果に加えて、ゲート電極9 は、ゲート絶縁膜9 の
うちチャンネル領域絶縁部9bよりも厚い隣接領域絶縁部
9aによって、第1の半導体領域2 との間が絶縁されてい
るから、電界が半導体基板1の一主面に沿う方向に広が
るようになり、第1の半導体領域2 内の電界強度が減少
され、一段と耐圧を高くすることができる。
In this semiconductor device, in addition to the effects of the second embodiment, the gate electrode 9 is formed of the adjacent region insulating portion of the gate insulating film 9 which is thicker than the channel region insulating portion 9b.
9a insulates the first semiconductor region 2 from the first semiconductor region 2, so that the electric field spreads in a direction along one main surface of the semiconductor substrate 1, and the electric field intensity in the first semiconductor region 2 is reduced. The withstand voltage can be further increased.

【0031】また、上記した製造方法によると、チャン
ネル領域7 上に形成されてチャンネル領域絶縁部9bとな
る絶縁層20は、第3の開口部30c が一度形成された部分
に再度形成された絶縁層20であるから、重合領域11に隣
接する隣接領域12とゲート電極9 との間を絶縁する隣接
領域絶縁部9aとなる絶縁層20よりも薄くなり、隣接領域
絶縁部9aをチャンネル領域絶縁部9bよりも確実に厚くす
ることができるので、半導体基板1 の一主面に直交する
方向から見て、隣接領域絶縁部9aとチャンネル領域絶縁
部9aとの界面とチャンネル領域9 の境界面とを揃えるこ
とができ、電界が半導体基板1 の一主面に沿う方向に拡
がるようになって、第1の半導体領域2内の電界強度が
減少され、一段と耐圧を高くすることができるという効
果を確実に奏することができる。
Further, according to the above-described manufacturing method, the insulating layer 20 formed on the channel region 7 and serving as the channel region insulating portion 9b is formed on the portion where the third opening 30c is formed once. Since it is the layer 20, it is thinner than the insulating layer 20 that becomes the adjacent region insulating portion 9a that insulates between the adjacent region 12 adjacent to the overlapping region 11 and the gate electrode 9, and the adjacent region insulating portion 9a becomes 9b, the interface between the adjacent region insulating portion 9a and the channel region insulating portion 9a and the boundary surface between the channel region 9 can be seen from the direction orthogonal to one main surface of the semiconductor substrate 1. The electric field spreads in a direction along one main surface of the semiconductor substrate 1, and the electric field intensity in the first semiconductor region 2 is reduced, so that the effect that the withstand voltage can be further increased can be ensured. Can be played.

【0032】なお、第1乃至第3実施形態では、いずれ
も第1の導電型がP型で、第2の導電型がN型である
が、第1の導電型がN型で、第2の導電型がP型であっ
ても、同様の効果を奏することができる。
In the first to third embodiments, the first conductivity type is P-type and the second conductivity type is N-type, but the first conductivity type is N-type and the second conductivity type is N-type. The same effect can be obtained even if the conductivity type is P-type.

【0033】[0033]

【発明の効果】請求項1記載の発明は、しきい値を低く
するために、半導体基板の第1の所定濃度を低くして
も、表面濃度が第1の所定濃度よりも高濃度であるチャ
ンネル領域では、第1の半導体領域から第2の半導体領
域に向かって拡がる空乏層は、表面部分のみ拡がりにく
いので、パンチスルーが発生しにくくなり、耐圧が低下
しなくなる。
According to the first aspect of the present invention, the surface concentration is higher than the first predetermined concentration even if the first predetermined concentration of the semiconductor substrate is reduced in order to lower the threshold value. In the channel region, the depletion layer extending from the first semiconductor region to the second semiconductor region is difficult to expand only in the surface portion, so that punch-through hardly occurs and the breakdown voltage does not decrease.

【0034】請求項2記載の発明は、請求項1記載の発
明の効果に加えて、第1の半導体領域における重合領域
では、第1の半導体領域の内部で相対的に不純物濃度が
低濃度なのであるから、絶縁ゲートの直下で互いに接す
る半導体基板と第1の半導体領域との界面から第3の半
導体領域に向かって空乏層が拡がり易くなり、耐圧を高
くすることができる。
According to a second aspect of the present invention, in addition to the effect of the first aspect of the present invention, the overlapped region in the first semiconductor region has a relatively low impurity concentration inside the first semiconductor region. Therefore, the depletion layer easily spreads from the interface between the semiconductor substrate and the first semiconductor region, which are in contact with each other immediately below the insulated gate, toward the third semiconductor region, and the breakdown voltage can be increased.

【0035】請求項3記載の発明は、請求項2記載の発
明の効果に加えて、ゲート電極は、ゲート絶縁膜のうち
チャンネル領域絶縁部よりも厚い隣接領域絶縁部によっ
て、第1の半導体領域との間が絶縁されているから、電
界が半導体基板の一主面に沿う方向に広がるようにな
り、第1の半導体領域内の電界強度が減少され、一段と
耐圧を高くすることができる。
According to a third aspect of the present invention, in addition to the effect of the second aspect of the present invention, the gate electrode is formed in the first semiconductor region by the adjacent region insulating portion of the gate insulating film which is thicker than the channel region insulating portion. Are insulated from each other, the electric field spreads in a direction along one main surface of the semiconductor substrate, the electric field intensity in the first semiconductor region is reduced, and the withstand voltage can be further increased.

【0036】請求項4記載の発明の製造方法によると、
チャンネル領域上に形成されてチャンネル領域絶縁部と
なる絶縁層は、開口部が一度形成された部分に再度形成
された絶縁層であるから、重合領域に隣接する隣接領域
とゲート電極との間を絶縁する隣接領域絶縁部となる絶
縁層よりも薄くなり、隣接領域絶縁部をチャンネル領域
絶縁部よりも確実に厚くすることができるので、半導体
基板の一主面に直交する方向から見て、隣接領域絶縁部
とチャンネル領域絶縁部との界面とチャンネル領域の境
界面とを揃えることができ、電界が半導体基板の一主面
に沿う方向に拡がるようになって、第1の半導体領域内
の電界強度が減少され、一段と耐圧を高くすることがで
きるという効果を確実に奏することができる。
According to the manufacturing method of the fourth aspect,
Since the insulating layer formed on the channel region and serving as the channel region insulating portion is an insulating layer formed again in the portion where the opening is formed once, the insulating layer between the adjacent region adjacent to the overlapping region and the gate electrode is formed. It is thinner than the insulating layer serving as the adjacent region insulating portion to be insulated, and the adjacent region insulating portion can be surely made thicker than the channel region insulating portion. The interface between the region insulating portion and the channel region insulating portion and the boundary surface of the channel region can be aligned, and the electric field spreads in a direction along one main surface of the semiconductor substrate, so that the electric field in the first semiconductor region can be increased. The strength can be reduced, and the effect that the withstand voltage can be further increased can be reliably achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態の断面図である。FIG. 1 is a sectional view of a first embodiment of the present invention.

【図2】本発明の第2実施形態の断面図である。FIG. 2 is a sectional view of a second embodiment of the present invention.

【図3】本発明の第3実施形態の断面図である。FIG. 3 is a sectional view of a third embodiment of the present invention.

【図4】同上の製造手順を示す断面図である。FIG. 4 is a sectional view showing a manufacturing procedure of the above.

【図5】従来例の断面図である。FIG. 5 is a sectional view of a conventional example.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 第1の半導体領域 3 第2の半導体領域 4 第3の半導体領域 7 チャンネル領域 8 ゲート電極 9 ゲート絶縁膜 9a 隣接領域絶縁部 9b チャンネル領域絶縁部 10 重合領域 11 隣接領域 Reference Signs List 1 semiconductor substrate 2 first semiconductor region 3 second semiconductor region 4 third semiconductor region 7 channel region 8 gate electrode 9 gate insulating film 9a adjacent region insulating portion 9b channel region insulating portion 10 overlapping region 11 adjacent region

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 第1の所定濃度の不純物濃度を有した第
1の導電型の半導体基板と、第2の所定濃度以下の不純
物濃度を有して半導体基板の一主面側に設けられた第2
の導電型の第1の半導体領域と、第2の所定濃度よりも
高濃度の不純物濃度を有して半導体基板の一主面に沿っ
て設けられた第2の導電型の第2の半導体領域と、第2
の所定濃度よりも高濃度の不純物濃度を有して半導体基
板の一主面に沿って第2の半導体領域の内部に設けられ
た第3の半導体領域と、第1の半導体領域と第2の半導
体領域との間に位置して導電型が変化し得るチャンネル
領域と、チャンネル領域の導電型を変化させるよう電圧
が印加されるゲート電極と、ゲート電極と第1の半導体
領域及びチャンネル領域を含む半導体基板側との間を絶
縁するゲート絶縁膜と、を備えた半導体装置において、 前記チャンネル領域は、その表面濃度が第1の所定濃度
よりも高濃度であることを特徴とする半導体装置。
A semiconductor substrate of a first conductivity type having an impurity concentration of a first predetermined concentration, and a semiconductor substrate having an impurity concentration of a second predetermined concentration or less are provided on one main surface side of the semiconductor substrate. Second
And a second conductive type second semiconductor region having an impurity concentration higher than the second predetermined concentration and provided along one main surface of the semiconductor substrate. And the second
A third semiconductor region having an impurity concentration higher than a predetermined concentration and provided inside the second semiconductor region along one main surface of the semiconductor substrate; a first semiconductor region and a second semiconductor region; A channel region located between the semiconductor region and having a variable conductivity type, a gate electrode to which a voltage is applied to change the conductivity type of the channel region, a gate electrode, the first semiconductor region, and the channel region; A semiconductor device comprising: a gate insulating film that insulates a channel region from a semiconductor substrate; wherein the channel region has a surface concentration higher than a first predetermined concentration.
【請求項2】 前記第1の半導体領域は、前記チャンネ
ル領域を間に挟んで前記ゲート電極及び前記ゲート絶縁
膜のいずれにも重合する重合領域を有するものであっ
て、その重合領域は、前記第1の半導体領域の内部で相
対的に不純物濃度が低濃度であることを特徴とする請求
項1記載の半導体領域。
2. The semiconductor device according to claim 1, wherein the first semiconductor region has a polymerized region that is polymerized on both the gate electrode and the gate insulating film with the channel region interposed therebetween. 2. The semiconductor region according to claim 1, wherein the impurity concentration is relatively low inside the first semiconductor region.
【請求項3】 前記第1の半導体領域は、前記半導体基
板の一主面に沿って前記重合領域に隣接する隣接領域を
有するとともに、前記ゲート絶縁膜は、前記ゲート電極
と前記第1の半導体領域の隣接領域とを絶縁する隣接領
域絶縁部及び前記ゲート電極と前記チャンネル領域とを
絶縁するチャンネル領域絶縁部を有するものであって、
隣接領域絶縁部は、チャンネル領域絶縁部よりも厚いこ
とを特徴とする請求項1記載の半導体装置。
3. The semiconductor device according to claim 1, wherein the first semiconductor region has an adjacent region adjacent to the overlap region along one main surface of the semiconductor substrate, and the gate insulating film includes the gate electrode and the first semiconductor. It has an adjacent region insulating portion insulating the adjacent region of the region and a channel region insulating portion insulating the gate electrode and the channel region,
2. The semiconductor device according to claim 1, wherein the adjacent region insulating portion is thicker than the channel region insulating portion.
【請求項4】 第1の所定濃度の不純物濃度を有した第
1の導電型の半導体基板と、第2の所定濃度以下の不純
物濃度を有して半導体基板の一主面側に設けられた第2
の導電型の第1の半導体領域と、第2の所定濃度よりも
高濃度の不純物濃度を有して半導体基板の一主面に沿っ
て設けられた第2の導電型の第2の半導体領域と、第2
の所定濃度よりも高濃度の不純物濃度を有して半導体基
板の一主面に沿って第2の半導体領域の内部に設けられ
た第3の半導体領域と、第1の半導体領域と第2の半導
体領域との間に位置して導電型が変化し得るチャンネル
領域と、チャンネル領域の導電型を変化させるよう電圧
が印加されるゲート電極と、ゲート電極と第1の半導体
領域及びチャンネル領域を含む半導体基板側との間を絶
縁するゲート絶縁膜と、を備え、前記チャンネル領域
は、その表面濃度が第1の所定濃度よりも低濃度である
とともに、前記第1の半導体領域は、前記ゲート電極及
び前記ゲート絶縁膜のいずれにも重合する重合領域を有
し、その重合領域は、前記第1の半導体領域の内部で相
対的に不純物濃度が低濃度であるとともに、前記第1の
半導体領域は、前記半導体基板の一主面に沿って前記重
合領域に隣接する隣接領域を有するとともに、前記ゲー
ト絶縁膜は、前記ゲート電極と前記第1の半導体領域の
隣接領域とを絶縁する隣接領域絶縁部及び前記ゲート電
極と前記チャンネル領域とを絶縁するチャンネル領域絶
縁部を有するものであり、隣接領域絶縁部は、チャンネ
ル領域絶縁部よりも厚い半導体装置を製造する半導体装
置の製造方法であって、前記半導体基板の一主面に沿っ
て前記第1の半導体領域を形成し、前記第1の半導体領
域を含めて前記半導体基板上に前記ゲート絶縁膜となる
絶縁層を形成し、前記第1の半導体領域との重合部分を
含めて絶縁層に開口部を形成し、第2の導電型の不純物
を開口部を通して注入して前記チャンネル領域を形成
し、前記チャンネル領域を含めて前記半導体基板上に前
記ゲート絶縁膜となる絶縁層を再度形成し、絶縁層に沿
って前記ゲート電極を形成することを特徴とする半導体
装置の製造方法。
4. A semiconductor substrate of a first conductivity type having an impurity concentration of a first predetermined concentration, and provided on one main surface side of the semiconductor substrate having an impurity concentration of a second predetermined concentration or less. Second
And a second conductive type second semiconductor region having an impurity concentration higher than the second predetermined concentration and provided along one main surface of the semiconductor substrate. And the second
A third semiconductor region having an impurity concentration higher than a predetermined concentration and provided inside the second semiconductor region along one main surface of the semiconductor substrate; a first semiconductor region and a second semiconductor region; A channel region located between the semiconductor region and having a variable conductivity type, a gate electrode to which a voltage is applied to change the conductivity type of the channel region, a gate electrode, the first semiconductor region, and the channel region; A gate insulating film that insulates the channel region from the semiconductor substrate side, wherein the channel region has a surface concentration lower than a first predetermined concentration, and the first semiconductor region includes the gate electrode. And a polymerization region that polymerizes in both of the gate insulating films, the polymerization region has a relatively low impurity concentration inside the first semiconductor region, and the first semiconductor region And said An adjacent region that is adjacent to the overlap region along one main surface of the conductive substrate, the gate insulating film is an adjacent region insulating unit that insulates the gate electrode from an adjacent region of the first semiconductor region, and A method of manufacturing a semiconductor device, comprising: a channel region insulating portion that insulates a gate electrode from the channel region, wherein the adjacent region insulating portion manufactures a semiconductor device that is thicker than the channel region insulating portion. Forming the first semiconductor region along one main surface of the first semiconductor region; forming an insulating layer serving as the gate insulating film on the semiconductor substrate including the first semiconductor region; An opening is formed in the insulating layer including the superposed portion of the second region, an impurity of the second conductivity type is injected through the opening to form the channel region, and the half including the channel region is formed. The method of manufacturing a semiconductor device body on a substrate serving as the gate insulating film an insulating layer is formed again, and forming the gate electrode along the insulating layer.
JP10338848A 1998-11-30 1998-11-30 Semiconductor device and method for manufacturing the same Pending JP2000164854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10338848A JP2000164854A (en) 1998-11-30 1998-11-30 Semiconductor device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10338848A JP2000164854A (en) 1998-11-30 1998-11-30 Semiconductor device and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2000164854A true JP2000164854A (en) 2000-06-16

Family

ID=18321990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10338848A Pending JP2000164854A (en) 1998-11-30 1998-11-30 Semiconductor device and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2000164854A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012120899A1 (en) * 2011-03-09 2012-09-13 旭化成エレクトロニクス株式会社 Semiconductor device and method for manufacturing semiconductor device
JP2013149677A (en) * 2012-01-17 2013-08-01 Fujitsu Semiconductor Ltd Semiconductor device and manufacturing method of the same
CN112640125A (en) * 2018-10-10 2021-04-09 三垦电气株式会社 Semiconductor device and method for manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012120899A1 (en) * 2011-03-09 2012-09-13 旭化成エレクトロニクス株式会社 Semiconductor device and method for manufacturing semiconductor device
JP5651232B2 (en) * 2011-03-09 2015-01-07 旭化成エレクトロニクス株式会社 Manufacturing method of semiconductor device
US9048252B2 (en) 2011-03-09 2015-06-02 Asahi Kasei Microdevices Corporation Semiconductor device and method for manufacturing semiconductor device
KR101571615B1 (en) 2011-03-09 2015-11-24 아사히 가세이 일렉트로닉스 가부시끼가이샤 Semiconductor device and method for manufacturing semiconductor device
JP2013149677A (en) * 2012-01-17 2013-08-01 Fujitsu Semiconductor Ltd Semiconductor device and manufacturing method of the same
CN112640125A (en) * 2018-10-10 2021-04-09 三垦电气株式会社 Semiconductor device and method for manufacturing the same
CN112640125B (en) * 2018-10-10 2024-03-19 三垦电气株式会社 Semiconductor device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US6037627A (en) MOS semiconductor device
JP3721172B2 (en) Semiconductor device
US8030730B2 (en) Semiconductor device and manufacturing method thereof
US9614073B2 (en) Semiconductor device, and manufacturing method for same
US6246101B1 (en) Isolation structure and semiconductor device including the isolation structure
JPH11103056A (en) Semiconductor device including lateral mos element
JPH08167711A (en) Insulated gate semiconductor device and manufacture thereof
US20070138551A1 (en) High voltage semiconductor device and method for fabricating the same
US10340147B2 (en) Semiconductor device with equipotential ring contact at curved portion of equipotential ring electrode and method of manufacturing the same
JP4839225B2 (en) SOI semiconductor device with high dielectric strength
JP2590863B2 (en) Conduction modulation type MOSFET
US6486512B2 (en) Power semiconductor device having high breakdown voltage and method for fabricating the same
JP2000260990A (en) High-voltage element and its manufacture
JP2000164854A (en) Semiconductor device and method for manufacturing the same
JPS6350871B2 (en)
JP3329973B2 (en) Semiconductor device and manufacturing method thereof
JPS63194367A (en) Semiconductor device
JP4576805B2 (en) Insulated gate semiconductor device and manufacturing method thereof
JPH07249737A (en) Planar semiconductor and its fabrication
KR100401278B1 (en) Mos field effect transistor with an auxiliary electrode
JP3312683B2 (en) MOS type semiconductor device and manufacturing method thereof
JP2004152806A (en) Insulated gate type semiconductor element and method for manufacturing the same
JPH01111378A (en) Vertical mosfet
JPS622706B2 (en)
KR100498406B1 (en) Power mos device having trench gate and fabricating method therefor