JPS6349380B2 - - Google Patents

Info

Publication number
JPS6349380B2
JPS6349380B2 JP58112813A JP11281383A JPS6349380B2 JP S6349380 B2 JPS6349380 B2 JP S6349380B2 JP 58112813 A JP58112813 A JP 58112813A JP 11281383 A JP11281383 A JP 11281383A JP S6349380 B2 JPS6349380 B2 JP S6349380B2
Authority
JP
Japan
Prior art keywords
solder
weight
layer
lead frame
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58112813A
Other languages
Japanese (ja)
Other versions
JPS605550A (en
Inventor
Michihiko Inaba
Koichi Tejima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP11281383A priority Critical patent/JPS605550A/en
Publication of JPS605550A publication Critical patent/JPS605550A/en
Publication of JPS6349380B2 publication Critical patent/JPS6349380B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49579Lead-frames or other flat leads characterised by the materials of the lead frames or layers thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Die Bonding (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の目的] (産業上の利用分野) 本発明は電子部品に関し、さらに詳しくは、民
生用製品に用いられて好適な電子部品に関する。 (従来の技術) 民生用製品、例えば半導体素子は高出力、多機
能化が要求されており、しかもこれらは生産性が
よく低価格であることが条件とされている。 このような条件を充分満足させるために種々の
開発が進められている。この中では樹脂モールド
等が上記を満たす有力なものであるが、これらに
おいても次のような問題点があつてその解決が要
望されている。 すなわち、製造工程では避けて通れないマウン
ト工程、半導体素子とリード線とのボンデイグ工
程等があり、これに用いられるリード素子である
リードフレームは重要な部品である。このリード
フレームは、次のような過酷な条件を満足すれば
製造工程、価格及び特性等に極めて有利である。
すなわち、電気抵抗が小さいこと、表面酸化が少
ないこと、引張り強度が強いこと、延性が充分で
曲げ加工に対し強いこと、高温特性、例えば250
℃以上における機械的強度が充分であること、半
田とのぬれ性、耐候性が充分であること等であ
る。 このように種々の条件を全て満足するものはな
かなか得難いが、電気抵抗の小さい銅(Cu)基
合金がその中でも上記条件に近い特性を有するこ
とが知られている。このCuは導電率が高いこと、
加工が容易であること等上記条件には有利な金属
であるが、耐熱強度、耐酸化性、機械的強度等に
おいて不充分である。したがつて、上記条件を全
て満足する金属はないので、できるだけ多くの特
性を発揮する金属を主成分として選定し、これに
いくつかの添加成分を混合した合金を用いてい
る。しかしながら、例えばCuを主成分とし、こ
れにSn及びPを添加した合金は、強度的に不充
分であり、また、Snの代わりにFeを添加した合
金は、上記の要件を満足するまでに至つていな
い。 さらに、従来のCu基合金にあつては、これを
用いたIC用リードフレームにリード線等を固着
する際にSn半田を用いた場合、特に次の如き不
都合な現象が生じた。第1図は、リードフレーム
1をSn−Pb半田2で接合した場合における接合
部の走査型電子顕微鏡による拡大断面図である。
該図は、150℃における300時間経過後の組織図で
あり、IC作動中の熱等の付加による過酷な条件
が揃うことにより組織変化を生じ、半田を構成す
るSnがリードフレームのCuと結合していくつか
の層を形成する。第1層は、ε−Cu3Snからなる
a層、第2層はη−Cu6Sn5からなるb層、第3
層はPbのみ又は極めて高密度のPbからなるc層
である。この現象が著しい場合は、IC素子の半
田付けの信頼性を維持する上で好ましいものでは
ない。 諸現象を防止するには、金ボンデイグ性低下の
原因となるSnの添加量を下げ、かつこれに伴う
リードフレームの強度低下を防ぐため、Ni又は
Feを添加することが考えられる。しかしながら、
第2図に示したように、Ni又はFeを添加すると、
Ni及びFeとSnとが結合て、リードフレーム1と
半田2との接合面に約0.5μm厚以下のNi(Fe)−
Snからなる金属間化合物層3が形成される(使
用条件は前記と同様)。この金属間化合物層は、
ミクロ的に見て、Ni(Fe)とSnとの蜂巣状態を
呈している、該層3の形成は、リードフレーム1
と半田との接合強度を極度に低下せしめて両者の
剥離原因となるものであり、IC素子の信頼性を
低下させるため、致命的欠点となり得る。この現
象は、Snを含まない場合と比べ、Sn及びNi又は
Feが合金中に共存する場合に、上記金属記化合
物層の成長が著しく促進され、容易に剥離が起こ
つてしまう。 上記の如き剥離の原因は、次のように推定され
る。すなわち、リードフレームと半田との接合を
強固にするCu−Snの固溶状態部分が、Ni(Fe)−
Snの金属間化合物のバリア形成により低下し、
CuとSnの相互拡散が不充分となることにより剥
離が起こるものと考えられる。 以上のことから、Ni、Fe及びSnの添加量を下
げて、剥離を防止しなければならないが、Ni又
はFeを添加しない強度が向上せず、この場合に
Ni−Sn−Cu合金と同等の強度を得るためにはSn
を0.3%以上添加する必要がある。しかし、Snの
増量は、前記のように金ボンデイング性等に悪影
響を及ぼす。一方、Ni又はFeの増量は剥離を容
易に引き起こす原因となる。 (発明が解決しようとする問題点) 本発明は、上記の問題点を解決し、電子部品と
して要求される特性を充分に有し、かつ半田との
接合に伴う接合力の弱い金属間化合物の生成が極
めて少なく、接合力の優れた特性を有する電子部
品を提供することを目的とする。 [発明の構成] (問題点を解決するための手段及び作用) 本発明の電子部品は、主成分が銅で、第1添加
成分としてNi又はNi及びFeを0.05〜5重量%含
有し、第2添加成分としてSnを0.05〜4重量%含
有し、第3添加成分としてZnを0.1〜3重量%含
有する合金から形成されていることを特徴とす
る。 以下、本発明をさらに詳細に説明する。 本発明の電子部品としては、例えば、リードフ
レーム及びリード線が挙げられる。 該電子部品に用いられる合金の組成は、Ni又
はNi及びFeが0.05〜5重量%の範囲であ6、Sn
が0.05〜4重量%の範囲であり、Znが0.1〜3重
量%の範囲であり、残部がCuからなる。なお、
Niの一部をFeで置換する場合のFeの含有量は、
Ni及びFeの合計量中3重量%以下が好ましく、
2重量%以下がさらに好ましい。 合金の添加成分として用いるNi、Sn及びZn
は、上記条件に加えて、各成分に対するZnの重
量比が、次式; Zn1/20(Ni、Sn) で示される関係を満たすことが好ましい。Niの
一部をFeで置換する場合、次式; Zn1/20(Ni、Fe、Sn) で示される関係を満たすことが好ましい。 本発明の合成組成において、Ni又はNi及びFe
並びにSnの添加量がそれぞれ0.05重量%未満の場
合には、電子部品の強度が不充分となり、リード
フレーム等にあつてはソケツトへの挿入困難及び
変形という不都合な事態を招来し、Ni又はNi及
びFeの混合物の添加量が5重量%を超え、又は
Snの添加量が4重量%を超えると導電率の低下
を招来し、熱伝導効果も不充分となる。また、
Znの添加量が0.1重量%未満の場合は、後述する
Ni(Ni及びFe)集中拡散軽減層がわずかしか形
成されず、Ni(Ni及びFe)−Snの拡散結合による
金属間化合物を生成してしまい、3重量%を超え
ると、金ボンデイング性を低下せしめてIC素子
の信頼性を損ない、歩留りが悪くなる。さらに
Znの添加量が多い場合は、半田付けの際にZnが
瞬時に半田内に拡散し、半田の表面が荒れたり、
接合力が低下する等の種々の問題が発生する。 本発明の電子部品は前記合金から次のようにし
て製造される。例えば、リードフレームの場合
は、常法にしたがい、前記合金からなるインゴツ
トを製造し、これを圧延後、コイル化し、プレス
又はエツチング加工を施すことにより得られる。 本発明の合金を用いた場合に前記問題点が解消
される理由を第3図に基づいて説明する。第3図
は、Cu−Ni−Sn−Zn合金のリードフレームを製
造し、該フレームの一部にSn−Pb半田を溶着後、
これを約150℃で300時間強制加熱した場合におけ
る接合部の拡大断面図であり、図中、4はNi集
中拡散軽減層である。すなわち、Sn−Pb半田で
接合した場合は、Ni−Snの金属間化合物層の形
成がほとんど起こらず、これに代わつてZn−Cu
固溶体のZn濃縮に伴なうNi集中拡散軽減層4が
形成されている。該層4は、Cuに分散している
Niと半田内のSnとの拡散結合を能率よく軽減も
しくは抑制する作用を有しているため、Cu内に
おけるNiの移動が制限され、Niの安定した分散
状態が長期にわたつて維持されることになる。し
たがつて、Ni−Sn金属間化合物の生成がほとん
ど起こらないため、界面における剥離現象が生じ
ることはない。なお、Niの一部をFeに置換した
場合にも、上記と同様にNi及びFeとSnとの拡散
結合が抑制される。 (実施例) 本発明のリードフレームを、以下の方法によつ
て9種類製造した。 表に示した各元素をそれぞれボールミル内に装
填したのち、Arガスを充填して撹拌混合した。
得られた複合体を脱気した容器に装填し、これを
加熱溶融後、熱押出してインゴツトを成形した。
次に、このインゴツトを熱間及び冷間圧延したの
ち、切断加工してコイルを得た。しかるのち、こ
のコイルをプレス加工してリードフレームを製造
した。なお、表中の試料番号1及び2のリードフ
レームは、Ni又はNi及びFeの添加量が0.05〜5
重量%の範囲、Snが0.05〜4重量%の範囲、Zn
が0.1〜3重量%の範囲にある合金を用いたもの
であり、試料番号3〜9のリードフレームは、上
記条件に加えてNi(Ni及びFe)及びSnに対する
重量比が、次式; Zn1/20[Ni(Ni及びFe)、Sn] で示される関係を満たす合金を用いたものであ
る。 一方、比較のために表に示した本発明以外の合
金組成からなるリードフレームを6種類製造し
た。 以上のリードフレーム試料にSn−Pb半田を溶
着し、表に示した試験を行つた。各試験項目にお
ける判定基準はほぼ次のとおりである。 半田付け性:目視観察により判定した。 ○−優 △−良 ×−不良 半田耐候性:約150℃で300時間強制加熱したの
ち、90℃の繰り返し曲げを3回行い、剥離の有
無で判定した。 ○−剥離せず △−2回で剥離 ×−1回で剥
離 機械的強度:マイクロビツカース硬度計により判
定した。 ○−130MHv以上 ×−130MHv以下 なお、一部の試料については数値で表示した。
単位はMHvである。 導電性:純銅からなるリードフレームの導電率を
100とした場合に、何パーセントの導電率を有
しているかにより判定した。 ○−30%以上 △−30〜20% ×−20%以下 Ni集中拡散軽減層:約150℃で300時間強制加熱
したのち、該層が生成しているか否かをXMA
法により判定した。 有−生成 無−生成せず 金属組成の均一性:100倍の光学顕微鏡写真によ
り判定した。 良−100倍の光学顕微鏡写真で偏析が無い。 悪−100倍の光学顕微鏡写真で偏析が有る。 以上の試験結果について、全てにわたり優れて
いるものを◎、ほぼ全てにわたり優れているもの
を○、不良とされる試験項目があるものを×とし
て評価した。 試験結果を表に一括して記載した。
[Object of the Invention] (Industrial Application Field) The present invention relates to electronic components, and more particularly to electronic components suitable for use in consumer products. (Prior Art) Consumer products, such as semiconductor devices, are required to have high output and multifunctionality, and are also required to have good productivity and low cost. Various developments are underway to fully satisfy these conditions. Among these, resin molds and the like are effective in meeting the above requirements, but these also have the following problems, and solutions to these problems are desired. That is, there are unavoidable mounting steps in the manufacturing process, bonding steps between semiconductor elements and lead wires, and the lead frame, which is the lead element used in these steps, is an important component. This lead frame is extremely advantageous in manufacturing process, price, characteristics, etc. if it satisfies the following severe conditions.
In other words, it has low electrical resistance, little surface oxidation, high tensile strength, sufficient ductility and resistance to bending, and high-temperature properties, such as 250
It must have sufficient mechanical strength at temperatures above .degree. C., sufficient wettability with solder, and sufficient weather resistance. Although it is difficult to obtain a material that satisfies all of these various conditions, it is known that copper (Cu)-based alloys with low electrical resistance have characteristics that are close to the above conditions. This Cu has high conductivity,
Although it is a metal that is advantageous in meeting the above conditions such as ease of processing, it is insufficient in terms of heat resistance strength, oxidation resistance, mechanical strength, etc. Therefore, since there is no metal that satisfies all of the above conditions, an alloy is used in which a metal that exhibits as many properties as possible is selected as the main component, and a number of additional components are mixed with this metal. However, for example, alloys containing Cu as a main component with the addition of Sn and P have insufficient strength, and alloys containing Fe instead of Sn have not yet met the above requirements. It's not on. Furthermore, in the case of conventional Cu-based alloys, when Sn solder is used to secure lead wires and the like to IC lead frames using this alloy, the following disadvantageous phenomena occur particularly. FIG. 1 is an enlarged cross-sectional view of a joint portion taken by a scanning electron microscope when a lead frame 1 is joined with Sn--Pb solder 2. As shown in FIG.
This figure shows the structure after 300 hours at 150°C. Due to the harsh conditions such as the addition of heat during IC operation, the structure changes, and the Sn that makes up the solder combines with the Cu of the lead frame. to form several layers. The first layer is the a layer made of ε-Cu 3 Sn, the second layer is the b layer made of η-Cu 6 Sn 5 , and the third layer is the a layer made of ε-Cu 3 Sn.
The layer is a c layer consisting of only Pb or extremely dense Pb. If this phenomenon is significant, it is not preferable in terms of maintaining reliability of soldering of IC elements. In order to prevent various phenomena, it is necessary to reduce the amount of Sn added, which causes a decrease in gold bonding properties, and to prevent the accompanying decrease in strength of the lead frame.
It is possible to add Fe. however,
As shown in Figure 2, when Ni or Fe is added,
Ni, Fe, and Sn combine to form a Ni (Fe) layer with a thickness of about 0.5 μm or less on the joint surface between the lead frame 1 and the solder 2.
An intermetallic compound layer 3 made of Sn is formed (use conditions are the same as above). This intermetallic compound layer is
Microscopically, the formation of the layer 3, which exhibits a honeycomb state of Ni (Fe) and Sn, is caused by the formation of the layer 3 in the lead frame 1.
This extremely reduces the bonding strength between the solder and the solder, causing them to peel off, and can be a fatal flaw because it reduces the reliability of the IC element. This phenomenon is more pronounced when Sn and Ni or
When Fe coexists in the alloy, the growth of the metallurgical compound layer is significantly promoted and peeling easily occurs. The cause of the peeling as described above is estimated as follows. In other words, the Cu-Sn solid solution part that strengthens the bond between the lead frame and the solder is Ni(Fe)-
Decreased due to barrier formation of Sn intermetallic compounds,
It is thought that peeling occurs due to insufficient interdiffusion of Cu and Sn. From the above, it is necessary to reduce the amount of Ni, Fe, and Sn added to prevent peeling, but the strength without adding Ni or Fe does not improve, and in this case,
In order to obtain strength equivalent to Ni-Sn-Cu alloy, Sn
It is necessary to add 0.3% or more. However, increasing the amount of Sn adversely affects gold bonding properties, etc., as described above. On the other hand, increasing the amount of Ni or Fe easily causes peeling. (Problems to be Solved by the Invention) The present invention solves the above-mentioned problems, has sufficient characteristics required as an electronic component, and is an intermetallic compound that has a weak bonding force when bonded with solder. It is an object of the present invention to provide an electronic component with extremely little generation and excellent bonding strength. [Structure of the Invention] (Means and Effects for Solving Problems) The electronic component of the present invention has copper as its main component, contains 0.05 to 5% by weight of Ni or Ni and Fe as the first additive component, and contains 0.05 to 5% by weight of Ni or Ni and Fe as the first additive component. It is characterized by being formed from an alloy containing 0.05 to 4% by weight of Sn as a second additive component and 0.1 to 3% by weight of Zn as a third additive component. The present invention will be explained in more detail below. Examples of the electronic component of the present invention include a lead frame and a lead wire. The composition of the alloy used for the electronic component is Ni or Ni and Fe in the range of 0.05 to 5% by weight6, Sn
Zn is in the range of 0.05 to 4% by weight, Zn is in the range of 0.1 to 3% by weight, and the balance is Cu. In addition,
When part of Ni is replaced with Fe, the Fe content is:
The total amount of Ni and Fe is preferably 3% by weight or less,
More preferably, it is 2% by weight or less. Ni, Sn and Zn used as additives in alloys
In addition to the above conditions, it is preferable that the weight ratio of Zn to each component satisfies the relationship expressed by the following formula: Zn1/20 (Ni, Sn). When replacing part of Ni with Fe, it is preferable to satisfy the relationship expressed by the following formula: Zn1/20 (Ni, Fe, Sn). In the synthetic composition of the present invention, Ni or Ni and Fe
If the amount of Sn added is less than 0.05% by weight, the strength of the electronic component will be insufficient, leading to problems such as difficulty in inserting lead frames into sockets and deformation. and the amount of the mixture of Fe exceeds 5% by weight, or
When the amount of Sn added exceeds 4% by weight, the electrical conductivity decreases and the heat conduction effect becomes insufficient. Also,
If the amount of Zn added is less than 0.1% by weight, the details will be explained later.
Only a small amount of Ni (Ni and Fe) concentration diffusion mitigation layer is formed, and an intermetallic compound is generated due to Ni (Ni and Fe)-Sn diffusion bonding, and if it exceeds 3% by weight, gold bonding properties deteriorate. At the very least, it impairs the reliability of the IC element and lowers the yield. moreover
If a large amount of Zn is added, Zn will instantly diffuse into the solder during soldering, causing the solder surface to become rough or
Various problems occur, such as a decrease in bonding strength. The electronic component of the present invention is manufactured from the above alloy in the following manner. For example, in the case of a lead frame, it can be obtained by manufacturing an ingot made of the above-mentioned alloy, rolling it, forming it into a coil, and subjecting it to pressing or etching. The reason why the above problems are solved when the alloy of the present invention is used will be explained based on FIG. 3. Figure 3 shows that after manufacturing a lead frame of Cu-Ni-Sn-Zn alloy and welding Sn-Pb solder to a part of the frame,
This is an enlarged cross-sectional view of the bonded portion when this was forcibly heated at about 150° C. for 300 hours, and in the figure, 4 is the Ni concentrated diffusion reduction layer. In other words, when joining with Sn-Pb solder, almost no Ni-Sn intermetallic compound layer is formed, and instead, Zn-Cu
A Ni concentrated diffusion mitigation layer 4 is formed as a result of Zn concentration in the solid solution. The layer 4 is dispersed in Cu
Since it has the effect of efficiently reducing or suppressing the diffusion bond between Ni and Sn in the solder, the movement of Ni in Cu is restricted and a stable dispersion state of Ni is maintained over a long period of time. become. Therefore, since almost no Ni-Sn intermetallic compound is generated, no peeling phenomenon occurs at the interface. Note that even when part of Ni is replaced with Fe, the diffusion bond between Ni and Fe and Sn is suppressed in the same way as above. (Example) Nine types of lead frames of the present invention were manufactured by the following method. After each element shown in the table was loaded into a ball mill, Ar gas was filled and mixed by stirring.
The obtained composite was loaded into a deaerated container, heated and melted, and then hot extruded to form an ingot.
Next, this ingot was hot- and cold-rolled, and then cut to obtain a coil. Afterwards, this coil was pressed to produce a lead frame. In addition, the lead frames of sample numbers 1 and 2 in the table have an added amount of Ni or Ni and Fe of 0.05 to 5.
Weight% range, Sn range from 0.05 to 4% by weight, Zn
is in the range of 0.1 to 3% by weight, and in addition to the above conditions, the lead frames of sample numbers 3 to 9 have a weight ratio of Ni (Ni and Fe) and Sn of the following formula; Zn1 /20 [Ni (Ni and Fe), Sn] An alloy that satisfies the relationship shown is used. On the other hand, for comparison, six types of lead frames having alloy compositions other than those of the present invention shown in the table were manufactured. Sn--Pb solder was welded to the above lead frame sample, and the tests shown in the table were conducted. The criteria for each test item are approximately as follows. Solderability: Determined by visual observation. ○-Excellent △-Good ×-Poor Solder weather resistance: After forced heating at about 150°C for 300 hours, repeated bending at 90°C was performed three times, and judgment was made based on the presence or absence of peeling. ◯ - No peeling △ - Peeling after 2 times x - Peeling after 1 time Mechanical strength: Determined using a micro-Vickers hardness meter. ○ -130MHv or more × -130MHv or less Some samples are expressed in numerical values.
The unit is MHv. Conductivity: The conductivity of a lead frame made of pure copper
Judgment was made based on what percentage of conductivity it has when it is set to 100. ○ -30% or more △ -30 to 20% × -20% or less Ni concentrated diffusion reduction layer: After forced heating at approximately 150℃ for 300 hours, check whether the layer is formed or not using XMA
Judgment was made according to the law. Presence of formation No formation of metal composition Uniformity of metal composition: Determined by optical micrograph at 100x magnification. Good - 100x optical micrograph shows no segregation. Bad - Segregation is seen in the 100x optical micrograph. Regarding the above test results, those that were excellent in all areas were evaluated as ◎, those that were excellent in almost all areas were evaluated as ○, and those that were found to be poor in some test items were evaluated as ×. The test results are summarized in the table.

【表】 [発明の効果] 以上の説明から明らかなように、本発明の合金
は、Sn半田用電子部品に用いた場合に好適な結
果が得られる。すらわち、上記の如く、Ni(Ni及
びFe)−Sn結合に基づく界面での剥離現象の解消
に伴い、耐半田性及び半田耐候性が向上してい
る。また、Cu内にNi(Ni及びFe)を最大に添加
することが可能となるため、電子部品の強度をそ
れだけ増大できるという効果がある。さらにCu
内におけるNi(Ni及びFe)の集中拡散が抑制さ
れるため、安定した分散状態が得られ、接合部分
における機械的強度の部分的低下が回避される。
また、これらの元素添加によつても、なおCuに
基づく高導電率及び加工容易性等の諸特性を維持
している。
[Table] [Effects of the Invention] As is clear from the above description, the alloy of the present invention provides suitable results when used in electronic components for Sn soldering. Moreover, as mentioned above, the solder resistance and solder weather resistance are improved due to the elimination of the peeling phenomenon at the interface based on the Ni (Ni and Fe)-Sn bond. Furthermore, since it is possible to add the maximum amount of Ni (Ni and Fe) into Cu, there is an effect that the strength of electronic components can be increased accordingly. Furthermore, Cu
Since the concentrated diffusion of Ni (Ni and Fe) within the joint is suppressed, a stable dispersion state is obtained and a partial decrease in mechanical strength at the bonded portion is avoided.
Furthermore, even with the addition of these elements, various properties such as high electrical conductivity and ease of processing based on Cu are still maintained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のリードフレームとPb−Sn半田
との接合部について、経時変化後の組織状態を示
した拡大断面図、第2図はリードフレームの合金
組成としてNi(Ni及びFe)を増量させた場合の
接合部の組織状態を示した拡大断面図、第3図は
本発明のリードフレームとSn−Pb半田との接合
部について、経時変化後の組織状態を示した拡大
断面図である。 1:リードフレーム、2:Sn−Pb半田、a:
ε−Cu3Sn層、b:η−Cu6Sn5層、c:Pb層、
3:Ni(Ni及びFe)−Sn金属間化合物層、4:Ni
(Ni及びFe)集中拡散軽減層。
Figure 1 is an enlarged cross-sectional view of the joint between a conventional lead frame and Pb-Sn solder, showing the structure after changes over time. Figure 2 shows an increase in the amount of Ni (Ni and Fe) in the alloy composition of the lead frame. FIG. 3 is an enlarged sectional view showing the structure of the joint between the lead frame and Sn-Pb solder of the present invention after changes over time. . 1: Lead frame, 2: Sn-Pb solder, a:
ε-Cu 3 Sn layer, b: η-Cu 6 Sn 5 layer, c: Pb layer,
3: Ni (Ni and Fe)-Sn intermetallic compound layer, 4: Ni
(Ni and Fe) concentrated diffusion mitigation layer.

Claims (1)

【特許請求の範囲】 1 主成分が銅で、第1添加成分としてNi又は
Ni及びFeを0.05〜5重量%含有し、第2添加成
分としてSnを0.05〜4重量%含有し、第3添加成
分としてZnを0.1〜3重量%含有する合金から形
成されていることを特徴とする電子部品。 2 Ni又はNi及びFe並びにSnに対するZnの重量
比が、次式; Zn1/20[Ni(Ni及びFe)Sn] で示される関係を有する特許請求の範囲第1項記
載の電子部品。
[Claims] 1 The main component is copper, and the first additive component is Ni or
It is characterized by being formed from an alloy containing 0.05 to 5% by weight of Ni and Fe, 0.05 to 4% by weight of Sn as a second additive component, and 0.1 to 3% by weight of Zn as a third additive component. and electronic components. 2. The electronic component according to claim 1, wherein the weight ratio of Zn to Ni or Ni and Fe and Sn has a relationship represented by the following formula: Zn1/20[Ni(Ni and Fe)Sn].
JP11281383A 1983-06-24 1983-06-24 Electronic parts Granted JPS605550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11281383A JPS605550A (en) 1983-06-24 1983-06-24 Electronic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11281383A JPS605550A (en) 1983-06-24 1983-06-24 Electronic parts

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP31226487A Division JPS63158859A (en) 1987-12-11 1987-12-11 Electronic part

Publications (2)

Publication Number Publication Date
JPS605550A JPS605550A (en) 1985-01-12
JPS6349380B2 true JPS6349380B2 (en) 1988-10-04

Family

ID=14596170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11281383A Granted JPS605550A (en) 1983-06-24 1983-06-24 Electronic parts

Country Status (1)

Country Link
JP (1) JPS605550A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6299429A (en) * 1985-10-25 1987-05-08 Kobe Steel Ltd Material for lead frame having superior suitability to shearing work
JPS63158859A (en) * 1987-12-11 1988-07-01 Toshiba Corp Electronic part
JP2013258355A (en) * 2012-06-14 2013-12-26 Denso Corp Electronic device
JP5594324B2 (en) * 2012-06-22 2014-09-24 株式会社村田製作所 Manufacturing method of electronic component module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5654376A (en) * 1979-10-11 1981-05-14 Hitachi Medical Corp Scanning type scintillation camera
JPS575836A (en) * 1980-06-16 1982-01-12 Nippon Mining Co Ltd High strength copper alloy having excellent heat resistance for use as conductive material
JPS5768061A (en) * 1980-10-15 1982-04-26 Furukawa Electric Co Ltd:The Lead material for semiconductor device
JPS5793555A (en) * 1980-12-02 1982-06-10 Tamagawa Kikai Kinzoku Kk Lead material for semiconductor
JPS59153853A (en) * 1983-02-21 1984-09-01 Hitachi Metals Ltd Matrial for lead frame

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5654376A (en) * 1979-10-11 1981-05-14 Hitachi Medical Corp Scanning type scintillation camera
JPS575836A (en) * 1980-06-16 1982-01-12 Nippon Mining Co Ltd High strength copper alloy having excellent heat resistance for use as conductive material
JPS5768061A (en) * 1980-10-15 1982-04-26 Furukawa Electric Co Ltd:The Lead material for semiconductor device
JPS5793555A (en) * 1980-12-02 1982-06-10 Tamagawa Kikai Kinzoku Kk Lead material for semiconductor
JPS59153853A (en) * 1983-02-21 1984-09-01 Hitachi Metals Ltd Matrial for lead frame

Also Published As

Publication number Publication date
JPS605550A (en) 1985-01-12

Similar Documents

Publication Publication Date Title
EP3062956B1 (en) Lead-free, silver-free solder alloys
Suganuma et al. High-temperature lead-free solders: properties and possibilities
JP2885773B2 (en) Lead-free alloy for soldering
JP4453612B2 (en) Lead-free solder alloy
US6156132A (en) Solder alloys
JPH11350188A (en) Material for electric and electronic parts, its production, and electric and electronic parts lising the same
WO2014024715A1 (en) High-temperature lead-free solder alloy
KR20130077873A (en) Bonding method, bonding structure, electronic device, manufacturing method for electronic device, and electronic component
KR20140098815A (en) Bonding method, bond structure, and manufacturing method for same
JP5614507B2 (en) Sn-Cu lead-free solder alloy
JP5206779B2 (en) Pb-free solder alloy based on Zn
JPH11350189A (en) Material for electrical and electronic parts, its production and electrical and electronic parts using the material
JP2005503926A (en) Improved composition, method and device suitable for high temperature lead-free solders
JP5227427B2 (en) Bonding structure and bonding material
KR100595037B1 (en) Soldering Filler Metal, Assembly Method for Semiconductor Device Using Same, and Semiconductor Device
JPS6349380B2 (en)
JP5861465B2 (en) Pb-free Bi solder alloy containing Mg
JP6887183B1 (en) Solder alloys and molded solders
JP5640915B2 (en) Lead-free solder alloy
JP5093260B2 (en) Pb-free solder alloy
JPH0366813B2 (en)
JPS6251503B2 (en)
JP4745878B2 (en) Solder film and soldering method using the same
JP2007533457A (en) Doped alloys for electrical interconnections, manufacturing methods and uses thereof
JP6887184B1 (en) Laminated body and manufacturing method of laminated body