JPS6344934A - メタノ−ル改質装置 - Google Patents

メタノ−ル改質装置

Info

Publication number
JPS6344934A
JPS6344934A JP61189044A JP18904486A JPS6344934A JP S6344934 A JPS6344934 A JP S6344934A JP 61189044 A JP61189044 A JP 61189044A JP 18904486 A JP18904486 A JP 18904486A JP S6344934 A JPS6344934 A JP S6344934A
Authority
JP
Japan
Prior art keywords
reforming
carrier gas
gas
reaction tube
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61189044A
Other languages
English (en)
Inventor
Hiroshi Yoshioka
浩 吉岡
Masatsuru Umemoto
梅本 真鶴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61189044A priority Critical patent/JPS6344934A/ja
Publication of JPS6344934A publication Critical patent/JPS6344934A/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Fuel Cell (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 【発明の属する技術分野】
この発明は例えば燃料電池発電プラントに絹込んで使用
するメタノール改質装置を対象に、メタノールの改質運
転に先立って改質触媒を還元操作する手段を備えたメタ
ノール改g装置に関する。
【従来技術とその問題点】
新しい発電装置として注目されている燃料電池は、小出
力でも高い効率が得られる点から、昨今では従来のエン
ジン発電機の利用分野であった小出力の移動用電源、非
常用電源、離島用電源等への展開が図られるようになっ
ている。 ところで燃料電池の燃料水素源としては、従来は天然ガ
ス等を原料として水蒸気改質により得られた水素が一般
に利用されているが、このような天然ガスを改質する場
合の改質反応温度は800〜900℃という高温であり
、かつ設備面でも脱硫装置、CO変成器等の付帯設備を
必要とするために移動用電源等に使用する小出力の燃料
電池発電プラントには不向きである。そこで昨今では改
質反広温度が例えばりん酸型燃料電池の運転温度に近い
200〜300℃程度であり、かつ設備的にも脱硫装置
、CO変成器等が不要で改質器本体のみで済むメタノー
ル改質器が注目され、その開発が進められている。 ここでメタノールを原料として水素リッチなガスに改質
するには、メタノールを水蒸気のスチーム存在下で改質
触媒との接触反応させることにより、次式の反応により
水素が得られることは周知の通りである。 CH30+1  →−H20−”GO!+3H211,
83Kcal /molまたこの場合に使用する改質触
媒としては、Cu −Zn系、Cu−Zn−Cr系、C
u−Zn−へ1系、Zn−Cr系等の触媒が知られてい
る。 ところでこれら改質触媒は使用前の段階では酸化物の状
態で改質器に充填されるが、前記した改質反応を行って
いる状態では触媒が還元された状態で改質反応に関与す
る。このために仮に触媒を酸化物の状態のまま使用して
改質運転を開始すると、触媒の還元反応により極めて高
い発熱が生じ、この結果として触媒自身がその使用限界
温度を超えて劣化し触媒機能を喪失したり、触媒を収容
した改質器、その配管系等に損傷を与えたりする恐れが
ある。このために通常は改質運転に入る以前の段階で前
段工程として改質触媒を還元操作し、しかる後に改質運
転に移行して改質原料を改質するようにしている。 次に従来一般に行われている改質触媒の還元操作法につ
いて述べる。第4図は燃料電池発電プラントのメタノー
ル改質装置を対象とした改質触媒の還元操作のフロー図
を示すものであり、1は燃料電池、2が改質器であり、
改質器2は燃焼ガス等の熱媒を流す炉内に改質触媒21
を充填した改質反応管22が内蔵配備されており、該改
質反応管22の入口側にはメタノール蒸発器31.メタ
ノールポンプ32を介してメタノール供給源との間に配
管したメタノール供給ライン3.および純水蒸発器41
゜純水ポンプ42を介して純水源にとの間に配管したス
チーム供給ライン4が接続され、かつ出口側が燃料電池
1の燃料極に接続配管されている。ここで改質運転時に
は改質反応管22を所定の温度に加熱した状態でメタノ
ール蒸気、スチームを混合して供給することにより、改
質触媒21との接触反応により改質原料であるメタノー
ルが水素リッチなガスに改質されて燃料電池1の燃料極
に供給されることは先述の通りである。 一方、かかる燃料電池発電プラントに対し、改質触媒の
還元を行う手段として改質器2の上流側に窒素ガス供給
ライン5および水素ガス供給ライン6が配管されている
。ここで改質運転に先立って改質触媒を還元操作するに
は、弁7を閉、弁8を開とし、まずキャリアガスとして
の窒素ガスを改質反応管22内に通流させながら改質反
応管22を昇温し、触媒層温度が175〜180°Cに
昇温した段階で水素ガスを1〜2%程度キャリアガスに
混入して供給し、この状態のまま約12時間程度キャリ
アガスとしての窒素ガスおよび水素ガスを流し続ける。 これにより例えばCu系の酸化物状態の触媒は次式の反
応により還元される。 CuO+H2=Cu+H20 なおこの還元反応は高い発熱を伴うことから、前記の還
元操作の過程では水素ガスを充分にキャリアガスである
窒素ガスで希釈し、触媒層温度が過度に上昇しないよう
に充分注意する。その後に触媒層を200〜210℃程
度に昇温し、さらに水素ガス濃度を高めた状態でも触媒
層温度が上昇しないことを確認して還元操作を完了する
。 ところで従来の還元方式では、前記したキャリアガスと
しての窒素ガスは改質反応管22を通過した後にそのま
ま系外に放出していた。このためにキャリアガスの消費
量が膨大な量となる。なお前記還元操作の条件を示すと
第1表の通りである。 第  1  表 なお上記の改質触媒の還元操作法は従来の化学プラント
等で既に確立している技術であるが、特に先記した小出
力め移動用電源等の燃料電池発電システムの改質器に適
用するには次記のような問題点が残る。すなわち離島用
電源、移動用電源等として発電プラントを現地に据付け
た後に前記した改質触媒の還元操作を行う場合には、多
量の窒素ガスを消費するためにキャリアガスの大容量補
給源が必要となり、その設置を含めて燃料電池発電プラ
ント設備が大形化する他、そのガス補給管理も厄介とな
る。
【発明の目的】
この発明は上記の点にかんがみなされたものであり、前
記した従来の触媒還元法による設備、並びにその管理上
の難点を解消し、還元操作の際に使用するキャリアガス
の使用量の低減化が図れるようにしたメタノール改質装
置、特にその改質触媒還元手段の回路構成を提供するこ
とを目的とする。
【発明の要点】
北記目的を達成するために、この発明は改質運転に先立
ち酸化物状態にある改質触媒を還元操作する手段として
、改質触媒を充填した改質反応管へ外部から改質触媒を
還元する水素ガス、およびそのキャリアガスを供給する
水素ガス供給ライン。 キャリアガス供給ラインと、改質反応管の出口から流出
したキャリアガスを再び入口側に還流させるキャリアガ
ス還流ラインとを備え、還元操作の過程で改質反応管に
流すキャリアガスの使用量を大幅に節減させて設備面、
キャリアガスの補給管理を含めてコストの低減化が図れ
るようにしたものである。
【発明の実施例】
第1図、第3図はそれぞれ燃料電池発電プラントのメタ
ノール改質装置を対象としたこの発明の異なる実施例の
系統図を示すものであり、第4図と同一機器には同じ符
号が付しである。まず第1図の実施例では、第4図に示
したギヤリアガスとしての窒素ガス供給うイン5.およ
び還元剤である水素ガスの供給ライン6に加えて、改質
反応管22の出口側と窒素ガス供給ライン5との間を結
んで窒素ガス還流ライン9が配管されている。なお10
、11は還流ライン9の分岐点に介装した開閉弁、12
は改質反応管22の入口、出口側を還流するガス中の水
素ガス量を検出するガス分析計である。 次に上記構成においてメタノールの改質運転に先立って
行う酸化物状態にある改質触媒の還元操作に付いて説明
すると、まず改質器2の炉内に熱媒を流して改質反応管
22を昇温した状態で弁8゜10を開いて窒素ガス源よ
りキャリアガスとしての窒素ガスを系内に送り込み、改
質反応管22→キヤリアガス還流ライン9を通じて窒素
ガスを循環させながら改質層温度を170〜180’c
に保つ。次にこの温度状態を維持しつつ水素ガス源より
還元剤としての水素ガスを1〜2モル%の割合で系内に
供給し、窒素ガスに乗せて改質反応管22内に導入する
。これにより先述したように改質触媒21の還元が開始
されるようになる。ここで触媒の還元反応が進行してい
る間は改質反応管22内に供給された水素ガスは全て還
元反応に消費されるので改質反応管22の出口から心才
窒素ガスのみが流出し、その窒素ガスは還流ライン9を
経て再循環通流される。そして改質触媒21が充分に還
元されると還元反応が行われなくなるので水素ガスが改
質反応管22の出口側に出現するようになる。したがっ
て還元操作の過程でガス分析計12により改質反応管2
2の入口および出口側を流れるガス中の水素ガス量を計
測監視することにより還元終了を確認することができ、
還元操作の終了により弁8,10を閉、弁7.11を開
にして次のメタノール改質運転に備える。なおこの還元
操作のプロセスおよびその過程での温度推移を第2図に
、また還元操作の条件を次記の第2表に示す。 第  2  表 第2表から明らかなように、還元操作期間中にキャリア
ガスとしての窒素ガスを循環送流することにより、キャ
リアガスとしての窒素ガス消費量は第4図に示した従来
の方式と比べて1/10に低減できることができた。 次に第3図に別な実施例を示す。第1図に示した実施例
ではキャリアガスとして窒素ガスを使用した例を示した
が、この実施例ではキャリアガスとして発電プラント内
の純水設備を利用し、純水を加熱して得たスチームをキ
ャリアガスとして水素ガスを送り込みながら改質触媒2
1の還元を行うものである。なお図中13が改質反応管
22の出I]側とスチーム供給ライン4のポンプ入口側
との間に接続配管したスチームの還流ライン、14は該
還流ライン13内に介装したスチーム凝縮用の冷却器で
ある。 かかる構成での改質触媒21の還元操作は、第1図の場
合と同様に熱媒により改質反応管22を加熱し、この状
態で純水をスチームに変えて改質反応管22に導入する
とともにその出口側でスチームを冷却器14により水に
戻した後に再びスチーム供給ライン4に戻して再循環さ
せ、ここで改質触媒層温度を170〜180℃に保持し
た状態で水素ガス供給ライン6より水素ガスを供給して
改質触媒を還元する。なお還元終了の確認は完配実施例
と同様にガス分析計12での水素ガス量の1測により行
う。 また実験により確認したところでは、還元操作期間中に
消費した純水量は300Kg/ rrr−触媒、であっ
た。
【発明の効果】
以上述べたようにこの発明によれば、改質運転に先立ち
酸化物状態にある改質触媒を還元操作する手段として、
改質触媒を充填した改質反応管へ外部から改質触媒を還
元する水素ガス、およびそのキャリアガスを供給する水
素ガス供給ライン。 キャリアガス供給ラインと、改質反応管の出口から流出
したキャリアガスを再び入口側に還流させるキャリアガ
ス還流ラインとを設け、改質触媒の還元操作中に供給し
たキャリアガスを改質反応管を出た後にそのまま系外に
放出することなく再び還流して再使用するようにしたこ
とにより、従来の方式と比べてキャリアガスの使用量を
大幅に節減することができ、したがって還元操作に必要
なガス貯蔵設備、キャリアガスの消費量等を含め、特に
移動用電源、離島用電源等の小出力燃料電池発電プラン
トに対して設備面、ランニングコスト面で有利なメタノ
ール改質装置を提供することができる。
【図面の簡単な説明】
第1図、第3図はそれぞれ燃料電池発電プラン1−を対
象としたこの発明の異なる実施例を示す還元操作手段の
系統図、第2図は第1図における触媒還元操作のプロセ
スおよびその過程の温度推移図、第4図は従来における
還元操作手段の系統図である。各図において、

Claims (1)

  1. 【特許請求の範囲】 1)メタノールを改質原料とし、水蒸気の存在下で改質
    触媒との接触反応によりメタノールを改質するメタノー
    ル改質装置において、改質運転に先立ち酸化物状態にあ
    る改質触媒を還元操作する手段として、改質触媒を充填
    した改質反応管へ外部から改質触媒を還元する水素ガス
    、およびそのキャリアガスを供給する水素ガス供給ライ
    ン、キャリアガス供給ラインと、改質反応管の出口から
    流出したキャリアガスを再び入口側に還流させるキャリ
    アガス還流ラインとを設けたことを特徴とするメタノー
    ル改質装置。 2)特許請求の範囲第1項記載のメタノール改質装置に
    おいて、キャリアガスが窒素ガスであることを特徴とす
    るメタノール改質装置。 3)特許請求の範囲第1項記載のメタノール改質装置に
    おいて、キャリアガスが純水より得たスチームであるこ
    とを特徴とするメタノール改質装置。
JP61189044A 1986-08-12 1986-08-12 メタノ−ル改質装置 Pending JPS6344934A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61189044A JPS6344934A (ja) 1986-08-12 1986-08-12 メタノ−ル改質装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61189044A JPS6344934A (ja) 1986-08-12 1986-08-12 メタノ−ル改質装置

Publications (1)

Publication Number Publication Date
JPS6344934A true JPS6344934A (ja) 1988-02-25

Family

ID=16234351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61189044A Pending JPS6344934A (ja) 1986-08-12 1986-08-12 メタノ−ル改質装置

Country Status (1)

Country Link
JP (1) JPS6344934A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02132771A (ja) * 1988-11-11 1990-05-22 Yamaha Motor Co Ltd 燃料電池
EP0884273A1 (de) * 1997-06-13 1998-12-16 dbb fuel cell engines GmbH Verfahren zum Betrieb einer Methanolreformierungsanlage
WO2003033400A1 (en) * 2001-10-15 2003-04-24 Ballard Generation Systems Inc. Fuel processing system and method of purging a fuel processing system
EP1198020A3 (en) * 2000-10-12 2009-06-03 Nissan Motor Co., Ltd. Fuel cell drive system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02132771A (ja) * 1988-11-11 1990-05-22 Yamaha Motor Co Ltd 燃料電池
EP0884273A1 (de) * 1997-06-13 1998-12-16 dbb fuel cell engines GmbH Verfahren zum Betrieb einer Methanolreformierungsanlage
EP1198020A3 (en) * 2000-10-12 2009-06-03 Nissan Motor Co., Ltd. Fuel cell drive system
WO2003033400A1 (en) * 2001-10-15 2003-04-24 Ballard Generation Systems Inc. Fuel processing system and method of purging a fuel processing system

Similar Documents

Publication Publication Date Title
US6926748B2 (en) Staged lean combustion for rapid start of a fuel processor
US6485853B1 (en) Fuel cell system having thermally integrated, isothermal co-cleansing subsystem
JP2005506659A (ja) 有機燃料から作られた不活性ガスで燃料電池システムをパージする方法
JP4493257B2 (ja) 燃料改質システム
US20060143983A1 (en) Apparatus for producing hydrogen gas and fuel cell system using the same
AU2010224316A1 (en) Autothermal reforming in a fuel processor utilizing non-pyrophoric shift catalyst
JP4311762B2 (ja) 高温燃料電池設備の運転方法及び高温燃料電池設備
US20020122965A1 (en) Down-sized water-gas-shift reactor
JP2006054171A (ja) 固体酸化物形燃料電池システム
JP3743118B2 (ja) 燃料電池発電システム
JPH07230816A (ja) 内部改質型固体電解質燃料電池システム
JP2002241106A (ja) 酸化剤注入の制御方法
JP3071158B2 (ja) 燃料電池発電装置
JP4882215B2 (ja) 脱硫用改質リサイクルガスの供給システムを備えた燃料電池発電装置
JPH08133702A (ja) 一酸化炭素除去装置および方法
JPS6344934A (ja) メタノ−ル改質装置
KR20050107821A (ko) 연료 처리장치 하위시스템을 위한 운영 상태
US20040177554A1 (en) WGS reactor incorporated with catalyzed heat exchanger for WGS reactor volume reduction
JPH07230819A (ja) 自己熱交換型断熱プレリフォーマを有する内部改質型固体電解質燃料電池システム
JP2005294207A (ja) 燃料電池システム
EP1058328A2 (en) Water-gas shift reactor warm-up
JPH02188406A (ja) 一酸化炭素転化器
JP2002293510A (ja) 一酸化炭素転化器
JP2003288936A (ja) 燃料電池発電装置とその運転方法
JP2003236393A (ja) 触媒還元方法