JPS6338863B2 - - Google Patents

Info

Publication number
JPS6338863B2
JPS6338863B2 JP55179443A JP17944380A JPS6338863B2 JP S6338863 B2 JPS6338863 B2 JP S6338863B2 JP 55179443 A JP55179443 A JP 55179443A JP 17944380 A JP17944380 A JP 17944380A JP S6338863 B2 JPS6338863 B2 JP S6338863B2
Authority
JP
Japan
Prior art keywords
film
silicon
nitride film
polycrystalline silicon
selective oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55179443A
Other languages
Japanese (ja)
Other versions
JPS57102046A (en
Inventor
Takeshi Ishihara
Keiichi Kagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP55179443A priority Critical patent/JPS57102046A/en
Publication of JPS57102046A publication Critical patent/JPS57102046A/en
Priority to US06/466,142 priority patent/US4465705A/en
Publication of JPS6338863B2 publication Critical patent/JPS6338863B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/32Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76202Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Local Oxidation Of Silicon (AREA)
  • Element Separation (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【発明の詳細な説明】 本発明の目的は、多結晶シリコン膜を選択的に
酸化する際、バード・ヘツド、バード・ビークの
少ない、マスク・パターンに忠実な選択酸化の方
法を提供することにある。
DETAILED DESCRIPTION OF THE INVENTION An object of the present invention is to provide a method of selective oxidation that faithfully follows a mask pattern, with fewer bird heads and bird's beaks when selectively oxidizing a polycrystalline silicon film. be.

従来より、シリコン窒化膜を酸化マスクとして
シリコン基板表面の選択酸化をおこなうことは、
LOCOS構造もしくはISOPLANER構造において
広く用いられてきた。
Traditionally, selective oxidation of the silicon substrate surface using a silicon nitride film as an oxidation mask has been
It has been widely used in LOCOS or ISOPLANER structures.

しかし、近年、集積回路の密度が向上し、それ
にともなつて、パターンの微細化が進むにつれて
問題点が発生しつつある。以下に従来例のプロセ
スについて、図に従つて説明するとともに問題点
を列記する。第1図は、この製造工程を示すプロ
セス・フローである。図において、まず、シリコ
ン基板1に全面にシリコン窒化膜(Si3N4)2を
CVD法により形成する。次に、この上にフオ
ト・レジスト3を塗布し、選択酸化用フオト・マ
スクを用いて、レジスト・パターンを形成する。
次に、このレジストをマスクとして、シリコン窒
化膜2をエツチングし、レジスト・パターンを窒
化膜パターンに転写する。この状態を第1図aに
示す。この場合、シリコン基板1とシリコン窒化
膜2の間に薄い(〜500Å)酸化膜を形成してお
く場合もある。この後レジスト3を除去し、酸化
雰囲気中で加熱すると、シリコン窒化膜中は酸素
が拡散せず、酸化防止膜として作用するので、窒
化膜が除去された領域にのみ酸化膜4が成長す
る。次に、窒化膜を加熱したりン酸中で(〜150
℃)窒化膜を除去することにより選択酸化工程は
終了する。
However, in recent years, as the density of integrated circuits has increased and patterns have become finer, problems have been occurring. Below, the conventional process will be explained with reference to the drawings, and problems will be listed. FIG. 1 is a process flow showing this manufacturing process. In the figure, first, a silicon nitride film (Si 3 N 4 ) 2 is deposited on the entire surface of a silicon substrate 1.
Formed by CVD method. Next, a photoresist 3 is applied thereon, and a resist pattern is formed using a photomask for selective oxidation.
Next, using this resist as a mask, the silicon nitride film 2 is etched, and the resist pattern is transferred to the nitride film pattern. This state is shown in FIG. 1a. In this case, a thin (~500 Å) oxide film may be formed between the silicon substrate 1 and the silicon nitride film 2. Thereafter, when resist 3 is removed and heated in an oxidizing atmosphere, oxygen does not diffuse into the silicon nitride film and acts as an oxidation prevention film, so oxide film 4 grows only in the region where the nitride film has been removed. Next, the nitride film is heated or in phosphoric acid (~150
℃) The selective oxidation process is completed by removing the nitride film.

以上のように、シリコン窒化膜をマスクとして
シリコン基板表面を選択的に酸化する絶縁分離方
法が従来よりおこなわれているが、この場合、酸
化膜とシリコン面の境界領域では、必ずしも、一
様に酸化膜が形成されている訳ではない。詳細に
見ると第1図cのような構造を示している。同図
cにおいて、窒化膜2は、端面において、21の
ようにめくれあがり、その下部にもぐりこむよう
に酸化膜41が成長している。通常これは、バー
ド・ビークと呼ばれているものである。また、こ
のバード・ビークの上部には、バード・ヘツドと
呼ばれる突起状の酸化膜42が存在している。こ
れは酸素の拡散が等方的に起こること、シリコン
が酸化されると約2倍に体積が膨張することに起
因するもので、表面の一様性とパターン中のマス
クに対する忠実度をそこなつていて、選択酸化の
問題点となつている。
As described above, insulation isolation methods have been used in the past that selectively oxidize the silicon substrate surface using a silicon nitride film as a mask, but in this case, the boundary region between the oxide film and the silicon surface is not always uniformly It does not mean that an oxide film is formed. A closer look shows a structure as shown in Figure 1c. In FIG. 3C, the nitride film 2 is turned up at the end surface as shown in 21, and the oxide film 41 is grown to sneak under the nitride film 2. This is usually what is called a bird's beak. Further, above the bird's beak, there is a protruding oxide film 42 called a bird's head. This is due to the fact that oxygen diffusion occurs isotropically and the volume expands approximately twice when silicon is oxidized, which impairs the uniformity of the surface and the fidelity to the mask in the pattern. This is a problem with selective oxidation.

多結晶シリコン膜の選択酸化においても同様の
問題点が生じている。
Similar problems occur in selective oxidation of polycrystalline silicon films.

多結晶シリコン膜を選択酸化する必要性は、
MOS型電界効果トランジスタの多結晶シリコン
ゲート、もしくは多結晶シリコン配線パターンを
形成する工程で生じている。通常これらの、多結
晶シリコン・パターンの形成は、第2図aに示す
ように、多結晶シリコン膜13上にフオト・レジ
スト・パターン31,32を形成し、これをマス
クとして多結晶シリコン膜13をエツチングして
おこなつている。これを多結晶シリコン膜の選択
酸化でおこなう場合は、第2図bに示すように多
結晶シリコン膜13の上に窒化シリコン膜4を形
成し、この上にフオト・レジスト・パターン3
1,32を出したあと、このレジストをマスクと
して窒化シリコン膜4をエツチングし、さらにこ
の窒化シリコン膜をマスクとして多結晶シリコン
膜の酸化をおこなつて形成している。
The need to selectively oxidize polycrystalline silicon films is
This occurs during the process of forming a polycrystalline silicon gate of a MOS field effect transistor or a polycrystalline silicon wiring pattern. Normally, these polycrystalline silicon patterns are formed by forming photoresist patterns 31 and 32 on the polycrystalline silicon film 13, and using these as a mask, as shown in FIG. 2a, the polycrystalline silicon film 13 is This is done by etching. When performing this by selective oxidation of a polycrystalline silicon film, a silicon nitride film 4 is formed on the polycrystalline silicon film 13 as shown in FIG. 2b, and a photoresist pattern 3 is formed on this.
1 and 32, the silicon nitride film 4 is etched using this resist as a mask, and the polycrystalline silicon film is further oxidized using this silicon nitride film as a mask.

この場合でも、第1図のシリコンの選択酸化の
場合と同様に、窒化膜の端部の酸化膜との界面に
おいて、バード・ビーク・、バード・ヘツドが発
生し、問題を生じている。
In this case as well, as in the case of selective oxidation of silicon shown in FIG. 1, bird beaks and bird heads occur at the interface with the oxide film at the edge of the nitride film, causing problems.

本発明は、従来における上述のような問題を解
消し、多結晶シリコン膜を窒化シリコン膜を酸化
マスクとして、選択酸化する際、バード・ビー
ク、バード・ヘツドの小さい、酸化膜を形成する
方法を提供するものである。これは、パターン・
サイズ・マスクの設計基準が3〜4μm以下の微
細パターンを有するLSI、超LSIでは、パターン
の忠実度に大きな効果をもたらし、高精度のLSI
プロセスにおいて、極めて要望の高い技術であ
る。
The present invention solves the above-mentioned conventional problems and provides a method for forming an oxide film with small bird's beak and bird's head when selectively oxidizing a polycrystalline silicon film using a silicon nitride film as an oxidation mask. This is what we provide. This is a pattern
In LSI and VLSI, which have fine patterns with a size mask design standard of 3 to 4 μm or less, it has a large effect on pattern fidelity, and is highly accurate.
This is a highly desired technology in the process.

本発明は、多結晶シリコン膜を選択酸化する
際、多結晶シリコン膜上に窒化シリコン膜を形成
し、フオト・エツチングを用いて前記窒化シリコ
ン膜の選択酸化用パターンを形成したのち、さら
にこの上に薄い多結晶シリコン膜を形成し、酸化
をおこなうものである。この構成によつて、窒化
膜パターンに忠実な選択酸化膜の形成を可能とす
るものである。
In the present invention, when selectively oxidizing a polycrystalline silicon film, a silicon nitride film is formed on the polycrystalline silicon film, and a pattern for selective oxidation of the silicon nitride film is formed using photo etching. In this method, a thin polycrystalline silicon film is formed and oxidized. This configuration makes it possible to form a selective oxide film faithful to the nitride film pattern.

以下に本発明の実施例について、図に従つて説
明する。第3図は、本発明による実施例のプロセ
スフローを示す。
Examples of the present invention will be described below with reference to the drawings. FIG. 3 shows a process flow of an embodiment according to the invention.

図に示すように、まず、シリコン基板1上にシ
リコンの選択酸化法によつてフイールド酸化膜2
1を〜8000Åの厚さに形成する。次にトランジス
タを形成すべき活性領域にゲート酸化膜22を〜
1000Åの厚さに、酸化形成する。この状態を第3
図aに示す。次にこの上から、多結晶シリコン膜
13を〜4000Åの厚さに、CVD法により堆積し、
さらに、この上に窒化シリコン膜4を〜1200Åの
厚さに積層堆積させる。
As shown in the figure, first, a field oxide film 2 is formed on a silicon substrate 1 by a silicon selective oxidation method.
1 to a thickness of ~8000 Å. Next, a gate oxide film 22 is deposited on the active region where a transistor is to be formed.
Oxide is formed to a thickness of 1000 Å. This state is the third
Shown in Figure a. Next, a polycrystalline silicon film 13 is deposited on top of this to a thickness of ~4000 Å using the CVD method.
Further, a silicon nitride film 4 is deposited thereon to a thickness of about 1200 Å.

次に、フオト・レジストを全面塗布し、多結晶
シリコン・パターンのフオト・マスクを用いてフ
オト・レジストに露光・現像し、レジスト・パタ
ーンを形成する。第3図bにこの状態を示す。図
において51はレジストパターンのゲート部分、
52は配線部分を示している。本工程において、
多結晶シリコン膜3と窒化シリコン膜4の間に、
薄い(〜500Å)酸化膜を形成しておく場合があ
る。
Next, a photoresist is applied to the entire surface, and the photoresist is exposed and developed using a polycrystalline silicon pattern photomask to form a resist pattern. This state is shown in FIG. 3b. In the figure, 51 is the gate part of the resist pattern;
Reference numeral 52 indicates a wiring portion. In this process,
Between the polycrystalline silicon film 3 and the silicon nitride film 4,
A thin (~500 Å) oxide film may be formed in advance.

次に、レジストパターン51,52をマスクと
して窒化シリコン膜4をCF4プラズマによるドラ
イ・エツチングを用いてエツチングし、レジス
ト・パターンを窒化シリコン膜パターンに転写す
る。次にレジストを除去したのち、この上に第2
の多結晶シリコン膜6を全面に〜500Å堆積する。
この状態を第3図cに示す。なおこの場合、窒化
シリコン膜4をドライエツチングしたのち、さら
に多結晶シリコン13を一部エツチングしておい
てもよい。これは、多結晶シリコンが酸化される
際、〜2倍に厚さが増加するが、酸化後、できる
だけ表面を平担にするため、あらかじめ、多結晶
シリコン膜を〜1/2の厚さにエツチングしておき、
2倍の厚さになつた時、酸化膜厚が多結晶シリコ
ン膜と略々同じになるよう調整するためである。
Next, the silicon nitride film 4 is etched using dry etching using CF 4 plasma using the resist patterns 51 and 52 as a mask, and the resist pattern is transferred to the silicon nitride film pattern. Next, after removing the resist, apply a second layer on top of this.
A polycrystalline silicon film 6 of ~500 Å is deposited over the entire surface.
This state is shown in FIG. 3c. In this case, after dry etching the silicon nitride film 4, a portion of the polycrystalline silicon 13 may be further etched. This is because when polycrystalline silicon is oxidized, the thickness increases by ~2 times, but in order to make the surface as flat as possible after oxidation, the polycrystalline silicon film is reduced to ~1/2 the thickness in advance. Etch it and
This is to adjust the thickness of the oxide film to be approximately the same as that of the polycrystalline silicon film when the thickness is doubled.

次に図cの状態で、全体を酸化雰囲気中で熱処
理し多結晶シリコンを全部酸化する。もちろんこ
の時、窒化シリコンにおおわれた領域は酸化され
ず、選択酸化がおこなわれる。次に、窒化シリコ
ン膜上の、多結晶シリコンが酸化膜となつた領域
をエツチングし、窒化膜を露出させる。この時同
時に、窒化膜がない領域の酸化膜も同じ厚さだけ
エツチングされ、その分だけ酸化膜の厚さが減少
する。次に、この窒化シリコン膜を熱リン酸(〜
160℃)中でエツチングすることにより選択酸化
が完成する。この状態を第3図dに示す。
Next, in the state shown in Figure c, the entire structure is heat treated in an oxidizing atmosphere to completely oxidize the polycrystalline silicon. Of course, at this time, the region covered with silicon nitride is not oxidized, but selective oxidation is performed. Next, the region on the silicon nitride film where the polycrystalline silicon has become an oxide film is etched to expose the nitride film. At this time, the oxide film in the area where the nitride film is not present is also etched to the same thickness, and the thickness of the oxide film is reduced by that amount. Next, this silicon nitride film was heated with hot phosphoric acid (~
Selective oxidation is completed by etching at 160°C. This state is shown in FIG. 3d.

以後、通常の工程を通すことにより、高精度の
MOS集積回路が形成される。
After that, high precision is achieved by passing through the normal process.
A MOS integrated circuit is formed.

本工程のように、通常の選択酸化の場合は、自
由空間にさらされている窒化膜が、酸化により端
部でめくれあがるように変形する場合と異なり、
窒化膜上に形成された多結晶シリコン膜の酸化膜
によつて、変形が防止され、かつ酸素の横方向へ
の拡散が防止されるために、酸化膜のバード・ヘ
ツド、バード・ビークが小さく、パターン精度の
良好な多結晶シリコン膜の選択酸化が実施できる
ようになつた。この結果ゲート長1〜2μmの極
めて短チヤネルのMOS型トランジスタの形成が
可能となり、超LSIのプロセスに大きな貢献をし
ている。
In the case of normal selective oxidation like this process, unlike the case where the nitride film exposed to free space is deformed by oxidation so that it curls up at the end,
The oxide film of the polycrystalline silicon film formed on the nitride film prevents deformation and lateral diffusion of oxygen, so the bird head and bird beak of the oxide film are small. , selective oxidation of polycrystalline silicon films with good pattern accuracy has become possible. As a result, it has become possible to form extremely short channel MOS transistors with gate lengths of 1 to 2 μm, making a major contribution to the VLSI process.

以上のように本発明によると窒化膜パターンに
忠実な多結晶シリコンの選択酸化が可能となつ
た。
As described above, according to the present invention, it has become possible to selectively oxidize polycrystalline silicon faithful to the nitride film pattern.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a,b,cは従来の選択酸化法において
バード・ビーク、バード・ヘツドが形成されてい
る状態を示す断面図、第2図a,bは同じく従来
の選択酸化法における多結晶シリコンパターンの
形成過程を示す断面図、第3図a,b,c,dは
本発明の一実施例における多結晶シリコンの選択
酸化プロセスを示す断面図である。 1……シリコン基板、3……レジスト、4……
窒化シリコン膜、6,13……多結晶シリコン
膜、21……フイールド酸化膜、31,32……
レジストパターン。
Figures 1a, b, and c are cross-sectional views showing the formation of bird's beak and bird's head in the conventional selective oxidation method, and Figures 2a and b are cross-sectional views of polycrystalline silicon in the conventional selective oxidation method. FIGS. 3A, 3B, 3D, and 3D are sectional views showing the process of forming a pattern. 1...Silicon substrate, 3...Resist, 4...
Silicon nitride film, 6, 13... Polycrystalline silicon film, 21... Field oxide film, 31, 32...
resist pattern.

Claims (1)

【特許請求の範囲】 1 第1のシリコン膜を形成する工程、上記第1
のシリコン膜上にシリコン窒化膜を形成し、シリ
コン窒化膜による選択酸化用パターンを形成する
工程、第2のシリコン膜を上記第1のシリコン膜
および上記シリコン窒化膜上の全面に形成する工
程、上記第2のシリコン膜および、選択酸化用パ
ターン形成においてシリコン窒化膜の除去された
領域の上記第1のシリコン膜を酸化する工程、上
記第2のシリコン膜が酸化されて形成された酸化
膜を除去する工程、上記シリコン窒化膜を除去す
る工程の各工程を順次行なつて前記第1のシリコ
ン膜を選択的に酸化することを特徴とする選択酸
化方法。 2 特許請求の範囲第1項の記載において、第1
のシリコン膜がシリコン多結晶膜であることを特
徴とする選択酸化方法。 3 特許請求の範囲第1項の記載において、シリ
コン窒化膜と第1のシリコン膜の間に、薄いシリ
コン酸化膜を形成することを特徴とする選択酸化
方法。
[Claims] 1. A step of forming a first silicon film;
forming a silicon nitride film on the silicon film and forming a selective oxidation pattern using the silicon nitride film; forming a second silicon film on the entire surface of the first silicon film and the silicon nitride film; oxidizing the second silicon film and the first silicon film in the area where the silicon nitride film was removed in selective oxidation pattern formation; A selective oxidation method characterized in that the first silicon film is selectively oxidized by sequentially performing the steps of removing the silicon nitride film and removing the silicon nitride film. 2 In the statement of claim 1, the first
A selective oxidation method characterized in that the silicon film is a silicon polycrystalline film. 3. The selective oxidation method according to claim 1, characterized in that a thin silicon oxide film is formed between the silicon nitride film and the first silicon film.
JP55179443A 1980-05-19 1980-12-17 Selective oxidation Granted JPS57102046A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP55179443A JPS57102046A (en) 1980-12-17 1980-12-17 Selective oxidation
US06/466,142 US4465705A (en) 1980-05-19 1983-02-14 Method of making semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55179443A JPS57102046A (en) 1980-12-17 1980-12-17 Selective oxidation

Publications (2)

Publication Number Publication Date
JPS57102046A JPS57102046A (en) 1982-06-24
JPS6338863B2 true JPS6338863B2 (en) 1988-08-02

Family

ID=16065946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55179443A Granted JPS57102046A (en) 1980-05-19 1980-12-17 Selective oxidation

Country Status (1)

Country Link
JP (1) JPS57102046A (en)

Also Published As

Publication number Publication date
JPS57102046A (en) 1982-06-24

Similar Documents

Publication Publication Date Title
JPS6228578B2 (en)
JPS59139643A (en) Semiconductor device and manufacture thereof
JPS59135743A (en) Semiconductor device and manufacture thereof
JPS59165434A (en) Manufacture of semiconductor device
JPS6338863B2 (en)
JPS6242382B2 (en)
EP0120614A1 (en) Method of manufacturing a semiconductor device having isolation regions
JPH06326091A (en) Formation method for field oxide film in semiconductor element
JPS5844735A (en) Manufacture of semiconductor device
JPH0413854B2 (en)
JPH06163528A (en) Fabrication of semiconductor device
JPS5992547A (en) Isolation process
JPH05206263A (en) Manufacture of semiconductor device
JP3058943B2 (en) Method for manufacturing semiconductor device
JPH0338733B2 (en)
JPH05218193A (en) Manufacture of semiconductor device
JP3042804B2 (en) Element isolation method and semiconductor device
JPS6227746B2 (en)
JPS6142425B2 (en)
JPH02142117A (en) Manufacture of semiconductor integrated circuit
JPS6141136B2 (en)
KR100418299B1 (en) Method for forming field oxide layer of semiconductor device
JPH0210729A (en) Formation of field insulating film
JPS60136329A (en) Manufacture of semiconductor device
JPH0521423A (en) Manufacture of semiconductor device