JPS6334405A - Recirculating flow controller for feed pump - Google Patents

Recirculating flow controller for feed pump

Info

Publication number
JPS6334405A
JPS6334405A JP17563586A JP17563586A JPS6334405A JP S6334405 A JPS6334405 A JP S6334405A JP 17563586 A JP17563586 A JP 17563586A JP 17563586 A JP17563586 A JP 17563586A JP S6334405 A JPS6334405 A JP S6334405A
Authority
JP
Japan
Prior art keywords
water level
flow rate
rate
recirculation
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17563586A
Other languages
Japanese (ja)
Inventor
鈴木 米征
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17563586A priority Critical patent/JPS6334405A/en
Publication of JPS6334405A publication Critical patent/JPS6334405A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は発電プラントの給水制御方式に係わり、蒸気発
生器水位の安定を確保し得る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a water supply control system for a power generation plant, and is capable of ensuring stability of a steam generator water level.

)  〔発明の背景〕 従来の再循環流量制御装置(例えば特開昭57−875
03号公報)について第7図、第8図、第9図。
) [Background of the Invention] Conventional recirculation flow rate control devices (for example, Japanese Patent Application Laid-Open No. 57-875
Figures 7, 8, and 9 for the publication (No. 03 Publication).

第10図を用いて説明する。第7図は原子炉給水ポンプ
廻りシステム系統図である。復水系からの給水は復水配
管1を通りタービン駆動給水ポンプ6、並びにモータ駆
動給水ポンプ7により昇圧され給水配管12を通り原子
炉へ給水される。給水ポンプ廻りの系統について説明す
るとタービン駆動給水ポンプ6の出口配管から分岐に復
水器13に接続される。これは再循環系配管10及び再
循環流量調節弁8から構成されており、この再循環流量
調節弁8はタービン駆動給水ポンプの吸込流量計測2に
より、ポンプ規定流量を検知し、再循環弁を開閉する再
循環流量制御装置4から構成されている。モータ駆動給
水ポンプ7の再循環系はタービン駆動給水ポンプの場合
と対応しており、それぞれ、再循環系配管11.再循環
流量調節弁9、吸込流量計測3.再循環流量制御装置5
より構成されている。尚この給水ポンプ再循環系システ
ムは給水ポンプが、その通過流量が徐々に減少し規定温
度以上にならないように、つねに最少流量はポンプにと
っての最少冷却水量となる訳である。
This will be explained using FIG. Figure 7 is a system diagram of the reactor feed water pump system. Water supplied from the condensate system passes through a condensate pipe 1, is pressurized by a turbine-driven water supply pump 6 and a motor-driven water supply pump 7, and is supplied to the reactor through a water supply pipe 12. To explain the system around the water supply pump, the outlet piping of the turbine-driven water supply pump 6 is connected to a condenser 13 at a branch. This is composed of a recirculation system piping 10 and a recirculation flow rate control valve 8, and this recirculation flow rate control valve 8 detects the specified pump flow rate by measuring the suction flow rate 2 of the turbine-driven water supply pump, and then activates the recirculation valve. It consists of a recirculation flow rate control device 4 that opens and closes. The recirculation system of the motor-driven water pump 7 corresponds to that of the turbine-driven water pump, and the recirculation system piping 11. Recirculation flow rate control valve 9, suction flow rate measurement 3. Recirculation flow control device 5
It is composed of In this water pump recirculation system, the minimum flow rate is always the minimum amount of cooling water for the pump so that the flow rate passing through the water pump gradually decreases and does not exceed a specified temperature.

第8図は従来における再循環流量制御装置の構成図であ
る。本図において、給水ポンプ吸込流量を計測する流量
トランスミッタ16の出力は電流電圧変換器17.流量
開閉演算器18を介して再循環流量調節弁8の開閉タイ
ミングを決定する流\量スイッチ19,20、および自
動/手動調節器21に接続されている。再循環流量調節
弁8の開度設定用信号設定器22.23は流量スイッチ
19.20により動作して設定信号を出力し、信号切換
器24で選択されて変化率制限器26と信号切換器27
に加えられる。変化率制限器26は再循環流量調節弁8
の開閉変化率を定めるもので、この変化率は信号設定器
25により決定される。
FIG. 8 is a block diagram of a conventional recirculation flow rate control device. In this figure, the output of a flow rate transmitter 16 that measures the water pump suction flow rate is converted to a current-voltage converter 17. It is connected via a flow rate opening/closing calculator 18 to flow rate switches 19 and 20 that determine the opening/closing timing of the recirculation flow rate control valve 8, and an automatic/manual regulator 21. The signal setter 22.23 for setting the opening of the recirculation flow rate control valve 8 is operated by the flow rate switch 19.20 and outputs a setting signal, which is selected by the signal switch 24 and then connected to the rate of change limiter 26 and the signal switch. 27
added to. The rate of change limiter 26 is the recirculation flow rate control valve 8
The switching rate is determined by the signal setting device 25.

信号切換器27によって連続的変化か瞬時的変化かが選
択され、次いて手動/自動の信号切換器29、電圧電流
変換器31.電空変換器32を介して給水ポンプの再循
環流量調節弁8が制御される。アナログメモリ30は手
動操作時の制御信号を出力する。
Continuous change or instantaneous change is selected by signal switch 27, then manual/automatic signal switch 29, voltage-current converter 31. Via the electro-pneumatic converter 32, the recirculation flow regulating valve 8 of the water pump is controlled. Analog memory 30 outputs control signals during manual operation.

第10図は流量調節弁の開閉時の時間に対する弁開度の
状態を示すものである0本図に示すようにポンプ吸込流
量が所定の流量になれば流量節弁はa→b−DCのよう
に開き、又閉動作する時はd→c−4)) −46のよ
うになる。ここでa→bは調節弁の微少開度における弁
摩耗を防止するため瞬間的に開動作(又は閉動作)させ
、b→Cは変化率αによって規定され、一定変化率で調
節弁は開動作(閉動作)する、尚この変化率αは第8図
における変化率制限器26と信号設定器25により決定
される。
Figure 10 shows the state of the valve opening with respect to the time when the flow rate control valve is opened and closed. When it opens and closes like this, d→c-4)) -46. Here, a → b is an instantaneous opening operation (or closing operation) to prevent valve wear at minute openings of the control valve, and b → C is defined by the rate of change α, and the control valve opens at a constant rate of change. The rate of change α for operation (closing operation) is determined by the rate of change limiter 26 and signal setter 25 in FIG.

第9図は従来技術により第10のような調節弁制御方式
で実行した場合の原子炉水位の変動模擬図である。第9
図においてプラント負荷が減少し再循環流量調節弁a−
+b−+cのように開動作し、一方プラント負荷が増加
した場合には再循環流量調節弁はd −46−4fのよ
うに閉動作したことを示す。この場合の調節弁開閉動作
の変化率はαとなっている。I100MWクラス原子力
発電プラントでは再循環流量調節弁の容は原子炉給水ポ
ンプの25%であり、その容量はタービン駆動給水ポン
プの場合約1000T/Hである。このような大容量再
循環流量調節弁a−4b→Cのように開動作すると原子
炉水位は(イ)→(ロ)→(ハ)のようになり原子炉水
位低警報が発生し、又再循環流量調節弁がd −) e
 −4fのように閉動作すると原子炉水位は(ニ)→(
ホ)→(へ)のようになり原子炉水位高警報が発生する
。I100MWクラス原子カプラントでは原子炉水位高
(低)警報体は通常水位±ioamであり一方調節弁の
全開→全閉(又は全閉→全開)までの時間は当初3分間
と設定した。然し乍う原子炉水位の(ロ)点又は−(ホ
)点は通常水位から約±15〜20c!lも低下(又は
上昇)シ原子炉水位高(又は原子炉水位低)の警報が発
生した。原子力発電所においては警報の発生は出来る丈
無くするように努力しなければならず、上記の警報発生
も無くすよう種々努力がなされた。まず再循環調節弁の
全開→全閉(又は全閉→全開)までの時間につき当初の
3分間がら4分、5分、5.5分、6分、6.5分と除
々に大きくしその都度実機プラントの中で試験し、最終
的に7分間と設定することで、調整完了することができ
た。この時間設定は第8図における変化率制限器26と
信号発生器25により設定した。又これ等の時間を設定
!!111する温程では大きな労力と時間を要したこと
は言うまでもない。
FIG. 9 is a simulated diagram of fluctuations in the reactor water level when a control valve control method such as No. 10 is executed according to the prior art. 9th
In the figure, the plant load decreases and the recirculation flow control valve a-
+b-+c indicates that the recirculation flow control valve is open, and when the plant load increases, the recirculation flow rate control valve is closed as indicated by d-46-4f. In this case, the rate of change in the opening/closing operation of the control valve is α. In I100 MW class nuclear power plants, the capacity of the recirculation flow control valve is 25% of that of the reactor feed water pump, and its capacity is approximately 1000 T/H in the case of a turbine-driven feed water pump. When the large-capacity recirculation flow rate control valve a-4b → C opens, the reactor water level changes as shown in (a) → (b) → (c), and a low reactor water level alarm occurs. The recirculation flow control valve is d -) e
When the reactor is closed like -4f, the water level of the reactor is (d)→(
e) → (e), and a reactor water level high alarm is generated. In the I100MW class nuclear coupler plant, the reactor water level high (low) alarm is normal water level ±ioam, and the time from fully open to fully closed (or fully closed to fully open) of the control valve was initially set to 3 minutes. However, the reactor water level at point (b) or - (e) is about ±15~20c from the normal water level! l also decreased (or increased), and a reactor water level high (or reactor water level low) alarm occurred. At nuclear power plants, efforts must be made to minimize the occurrence of alarms, and various efforts have been made to eliminate the occurrence of the above-mentioned alarms. First, the time it takes for the recirculation control valve to fully open → fully close (or fully close → fully open) is increased from the initial 3 minutes to 4 minutes, 5 minutes, 5.5 minutes, 6 minutes, and 6.5 minutes. By testing each time in the actual plant and finally setting it to 7 minutes, we were able to complete the adjustment. This time setting was made by the rate of change limiter 26 and signal generator 25 shown in FIG. Also set these times! ! Needless to say, it took a lot of effort and time to reach a temperature of 111 degrees.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上記した従来技術の制御方式の欠点をな
くし、制御方式も簡便で合理的(経済的)な設計を行う
にある。
An object of the present invention is to eliminate the drawbacks of the conventional control methods described above, and to design a control method that is simple and rational (economical).

〔発明の概要〕[Summary of the invention]

本発明は従来においては再循環流量調節弁の開(又は閉
)レートが固定的なものとなっていたが、本発明では最
も良い初期設定の開(又は閉)レートについて、原子炉
水位変化率を計算し、最も妥当な開(又は閉)レートを
修正しようとするものであり、更に原子炉水位警報に多
少余裕を見た水位まで到達した場合は、原子炉水位が回
復するまで調節弁開度を一担保持し、その後開動作(又
は閉動作)を再開しようとするものである。
In the present invention, the opening (or closing) rate of the recirculation flow rate control valve was conventionally fixed, but in the present invention, the best initial setting opening (or closing) rate is determined based on the reactor water level change rate. The system calculates the most appropriate opening (or closing) rate, and if the reactor water level reaches a level with some margin for alarm, the control valve is opened until the reactor water level recovers. The opening operation (or closing operation) is attempted to be resumed after the opening operation (or closing operation) is resumed.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を説明する。第1図は本発明によ
る制御機能を有する制御ブロックである。
An embodiment of the present invention will be described below. FIG. 1 shows a control block having a control function according to the present invention.

常時計測される原子炉水位51の計測信号は、制御演算
部50に入力されている。制御演算部は本発明の主要部
を構成するものであり、その制御機)能については第2
図、第3図、第4図、第511!lにより説明する。プ
ラント負荷が減少し、ポンプの吸込流量が徐々に減して
、再循環弁開流を検出(第8図19)し、その信号(第
1図19)が制御演算部50に入力される。第2図に於
いて再循環弁開動作開始流廿を検出(1)すれば、その
時点における原子炉位を検出する。そしてその原子炉水
位を初期水位L1とする(2)1次に原子炉水位低警報
水位十βh=Lxとする(3)、これは再循環流量調整
弁が開動作すれば、原子炉位当然低下することになり、
1100MWフラス原子力発電プラン+では原子炉水位
低警報値は通常水位−101である。従って本調節が動
作して水位低下しても警報が発生しないようにβlの余
裕を見るものでありこのβ1はI100MWJX子カプ
ラントでは概収3〜5alが妥当である0次に現在の炉
水位L1とL2の差Lr−Lz=La (4)を計算し
再循環弁全閉から全開までの時間として初期設定Tz(
5)とする。このT1はプラント試運転調整期間中に数
回の試験を行うことにより、プラントとして最も妥当な
数値が決定されるものである。
A measurement signal of the reactor water level 51 that is constantly measured is input to the control calculation section 50. The control calculation section constitutes the main part of the present invention, and its control function is described in Section 2.
Figure, Figure 3, Figure 4, Figure 511! This will be explained by l. As the plant load decreases, the suction flow rate of the pump gradually decreases, and the opening of the recirculation valve is detected (FIG. 8, 19), and its signal (FIG. 1, 19) is input to the control calculation unit 50. In FIG. 2, if the start flow of the recirculation valve opening operation is detected (1), the reactor position at that time is detected. Then, set the reactor water level as the initial water level L1 (2) First, set the reactor water level low warning water level 1 βh = Lx (3). will decrease,
In the 1100 MW Frass nuclear power generation plan +, the reactor water level low alarm value is normally water level -101. Therefore, in order to prevent an alarm from occurring even if this adjustment operates and the water level drops, a margin of βl is taken into consideration.This β1 is approximately 3 to 5al for an I100MWJX child plant. Calculate the difference Lr-Lz=La (4) between L2 and L2, and use the initial setting Tz (
5). This T1 is determined to be the most appropriate value for the plant by conducting several tests during the plant trial operation adjustment period.

このTlはI100MWクラス原子カプラントでは置数
3〜8分である0次に水位似形許容変化率=az(6)
計算し設定する。このβ1はこれから再循環流量調節弁
が開動作していく過程で変化する水位本化率と比較する
元となる値となる。
This Tl is a number of 3 to 8 minutes for I100MW class atomic couplets. 0th order water level similarity permissible change rate = az (6)
Calculate and set. This β1 becomes a value to be compared with the water level normalization rate which changes in the process of opening the recirculation flow rate control valve.

ここまでの計算・設定が行われれば再循環流量調節弁は
β1に相当する弁開レートγlで動作開始の許可が出て
(7)、弁は動作開始する。次に調節弁、開動作開始と
共に原子炉給水の一部は再循環系配管(第7図10.1
1)を通り復水器(第7図13)に落水するので原子炉
水位は低下始める。
Once the calculations and settings up to this point have been performed, the recirculation flow rate control valve is permitted to start operating at the valve opening rate γl corresponding to β1 (7), and the valve starts operating. Next, as the control valve begins to open, a portion of the reactor supply water is removed from the recirculation system piping (Figure 7, 10.1).
1) and falls into the condenser (Fig. 7, 13), so the reactor water level begins to fall.

従って現在の水位と、直前に計測した水位から水位低下
変化率計算α′1を行い(8)、次に再循環弁開レート
の修正が必要かどうか(9)の判定を行う、即ち(1)
現在の水位低下変化率α′lが、当初に設定した水位低
下許容変化率α1より小さければ弁の間レートは、現在
の開レートγ1のまんまとする。何んとなればTlは、
そのプラントの試運転調整時、最も妥当とする弁開閉時
間T1から決定された値であるからである。(2)又現
在の水位低下変化率α′lが、当初設定の許容変化率α
lより大きい場合は、γ′1よりゆるやかな新たな関レ
ートγ11に修正する。このγ”lは前回のレートγ′
1に比べて全開から全開までの時間で約10秒から20
秒はど長くなる時間から修正されたT11が妥当である
。そして第2図に於いて7,8.9を繰り返し再循環弁
開レートが修正される。次に再循環弁が上記修正動作を
縁り返され開動作していく過程で、原子炉位が低し。
Therefore, the water level decrease rate calculation α'1 is performed from the current water level and the water level measured just before (8), and then it is determined whether the recirculation valve opening rate needs to be corrected (9), that is, (1 )
If the current rate of change in water level decrease α'l is smaller than the initially set permissible rate of change in water level decrease α1, the valve opening rate is set to be exactly the same as the current opening rate γ1. After all, Tl is
This is because it is a value determined from the most appropriate valve opening/closing time T1 at the time of test run adjustment of the plant. (2) Also, the current rate of change in water level decrease α′l is the initially set allowable rate of change α
If it is larger than l, the related rate is corrected to a new correlation rate γ11 that is gentler than γ'1. This γ”l is the previous rate γ′
Compared to 1, the time from fully open to fully open is approximately 10 seconds to 20 seconds.
The corrected T11 is appropriate since the time becomes longer in seconds. Then, steps 7, 8, and 9 in FIG. 2 are repeated to correct the recirculation valve opening rate. Next, as the recirculation valve reversed the above corrective action and opened, the reactor level dropped.

原子炉位低警報水位十規定水位βs=’Lzになった時
(第1図38.第3図10)、再循環弁の開動作を一担
、その位置に保持する。尚この場合弁開度を保持する条
件として、給水ポンプの吸込流量が給水ポンプ過熱防止
流量以上(第1図40)でなければならない。この理由
は原子炉水位低警報が発生したとしても、給水ポンプの
保護を優先させる考えからである。従って万一給水ポン
プ過熱防止流量が確保されていなければ、原子炉水位低
の警報が発生したとしても調節弁は開動作を継続する。
When the reactor level low warning water level reaches the specified water level βs = 'Lz (Fig. 1, 38, Fig. 3, 10), the recirculation valve is opened and held at that position. In this case, as a condition for maintaining the valve opening degree, the suction flow rate of the water supply pump must be equal to or higher than the water supply pump overheating prevention flow rate (FIG. 1, 40). The reason for this is that even if a low reactor water level alarm occurs, priority should be given to protecting the water pump. Therefore, if the feedwater pump overheat prevention flow rate is not secured, the control valve will continue to open even if a low reactor water level alarm occurs.

次に原子炉水位がLxに回復後、弁開動作を最新の開レ
ートで開始(第3図11)し、再び修正動作を加えなが
ら、再循環弁が全開になるまで継続され、全開になれば
本プログラム制御は終了する(第3図12)。第4図、
第5図は再循環弁が閉動作する場合の制御動作を示すも
のであり、再循環開動作の場合と同様の考え方にもとづ
き構成されている。第1図の説明に戻るが制御演算部5
0からの信号は信号切換器27とメモリー回路36に接
続される。27は所定の開閉レートで調節弁が動作する
信号と原子炉水位が異常になった時、その直前の弁開度
に保持する信号(36)の切換を行うものである。この
信号切換の条件は次の通りである。即ち原子炉水位変化
率があらかじめ決められた値より大きくなった時(39
) 、又は原子炉水位低警報水位中規定水位に達した時
L!(38)、又は原子炉水位高警報水位−規定水位に
達した時Ls(37)、この3つのいずれかが成立した
時(41)に給水ポンプ過熱防止流量以上(40)が同
時に成立した時(42)にこの信号を自己保持しく43
)、信号切換器27をb→Cに切換え、メモリ(36)
の信号を通し、調節弁の開度を一担、これら原子炉水位
異常(37゜38.39)が発生する直前の弁開度に保
持するようにする。そしてこれら3つの(37,38゜
39)全ての条件が解除(44)され、ある規定時間(
45)経過した時点で(46)、信号切換器(27)は
a−40の信号を通じ調節弁は再び動作を開始する。信
号切換器(27)からの信号は手動−自動切換器(第8
図29)、電圧−電流変換器(第8図31)、電圧−空
気変換器(第8図32)を通り再循環流量調節弁を制御
する。本制御装置はマイクロプロセッサを採用すること
により実行できる。第11図は本発明を適用した場合の
調節弁開度制御を示し第6図はその時の原子炉水位を模
擬したものである。まず第11図について調節弁開動作
について説明すればa1→a2この間は微少開度におけ
る弁の腐食防止(従来技術にある)ためステップ上に開
き規定量レートで且つ([%正を加えなからax→a3
のように開動作していく。a3の点で原子炉水位に異常
(水位低下率が大きくなりすぎたか、又は水位低警報値
に近づき過ぎた)が発生したので、弁開度は一担aδ→
a4まで保持し、水位異常が除去されれば再び規定の間
レートで且つ修正を加えながらa4→a5のように全開
へ動作する。弁閉動作についてはb1→b2→b8→b
4→b8→b8→b7のように動作する。
Next, after the reactor water level has recovered to Lx, the valve opening operation is started at the latest opening rate (Fig. 3, 11), and while adding correction operations again, the recirculation valve is continued until it is fully open. If so, the program control ends (FIG. 3, 12). Figure 4,
FIG. 5 shows the control operation when the recirculation valve closes, and is constructed based on the same concept as the recirculation opening operation. Returning to the explanation of FIG. 1, the control calculation section 5
The signal from 0 is connected to a signal switch 27 and a memory circuit 36. 27 is used to switch between a signal for operating the control valve at a predetermined opening/closing rate and a signal (36) for maintaining the valve opening at the previous valve opening when the reactor water level becomes abnormal. The conditions for this signal switching are as follows. In other words, when the reactor water level change rate becomes larger than a predetermined value (39
), or when the reactor water level reaches the specified water level during low warning water level L! (38), or when the reactor water level high warning water level - reaches the specified water level Ls (37), when any of these three conditions (41) is satisfied, and when the feed water pump overheating prevention flow rate or higher (40) is simultaneously established. (42) to self-hold this signal 43
), switch the signal switch 27 from b to C, and memory (36)
This signal is used to maintain the opening of the control valve at the valve opening just before the reactor water level abnormality (37°38.39) occurs. Then, all three conditions (37, 38° 39) are canceled (44), and a certain specified time (
45) At the time point (46), the signal changer (27) transmits the signal a-40, and the control valve starts operating again. The signal from the signal switch (27) is transferred to the manual-automatic switch (8th
29), a voltage-to-current converter (FIG. 8, 31), and a voltage-to-air converter (FIG. 8, 32) to control the recirculation flow control valve. This control device can be implemented by employing a microprocessor. FIG. 11 shows control valve opening control when the present invention is applied, and FIG. 6 shows a simulation of the reactor water level at that time. First, to explain the opening operation of the control valve with reference to Fig. 11, a1 → a2 During this time, in order to prevent corrosion of the valve at a minute opening (as in the prior art), it is opened on a step at the specified rate and ([% positive is not added. ax→a3
The opening operation is as follows. An abnormality occurred in the reactor water level at point a3 (the rate of water level decline became too large or the water level became too close to the low water level alarm value), so the valve opening was changed to aδ→
It is held until a4, and when the water level abnormality is removed, it operates again at the specified rate and with corrections, from a4 to a5, to fully open. For valve closing operation, b1 → b2 → b8 → b
It operates as follows: 4→b8→b8→b7.

本模擬図の場合、b2→b8とba→b3の2個所で原
子炉水位に異常が発生したので、弁開度を保持したこと
を示している。第6図について説明すれば弁開はa→l
) −* cと開動作し一方水位の方は(イ)→(ロ)
と低下始め(ロ)点で規定の水位まで低下したので弁開
度は一担保持しく c −+ d )、水位が回復(ハ
)′シたので、弁は再び開動作をd→eのように開始し
たことを示す。同様に弁閉動作においてはf→gと動作
し水位は(ホ)→(チ)のように上昇しくチ)点で弁開
度を保持g→hし、水位異常回復後は弁再びh→i −
+ jのように動作し水位は(へ)′→(ト)のように
安定に制御される。即ち本発明による制御方式を適用す
れば原子炉水位は(イ)→(ロ)→(ハ)′→(ニ)→
(ホ)→(チ)→(へ)′→(ト)となり斜線部分の水
位の低下又は水位の上昇が抑制され安定した水位制御が
できる。
In the case of this simulation diagram, an abnormality occurred in the reactor water level at two locations, b2→b8 and ba→b3, so the valve opening degree was maintained. To explain Fig. 6, the valve opening is a → l.
) −* c and the opening operation, while the water level is (a) → (b)
Since the water level has dropped to the specified level at the point where it starts to drop (b), the valve opening degree has to be kept constant (c - + d), and the water level has recovered (c)', so the valve resumes the opening operation from d to e. Indicates that it has started as follows. Similarly, in the valve closing operation, the water level moves from f to g, and the water level rises as shown in (e) to (ch). At point g), the valve opening degree is maintained from g to h. After the water level recovers from the abnormality, the valve moves again from h to h. i-
It operates as shown in + j, and the water level is stably controlled as shown in (to)' → (g). That is, if the control method according to the present invention is applied, the reactor water level will be (a) → (b) → (c)' → (d) →
(e) → (ch) → (e)' → (g) The lowering of the water level or the rise of the water level in the diagonally shaded area is suppressed, and stable water level control is possible.

〔発明の効果〕〔Effect of the invention〕

本発明によれば原子炉水位の安定した制御を達成するこ
とができ、原子力発電所として出来る丈避けたい原子炉
水位異常の警報発生(警報値二通常水位±101)を回
避できる。
According to the present invention, it is possible to achieve stable control of the reactor water level, and it is possible to avoid the generation of an alarm for reactor water level abnormality (alarm value 2 normal water level ±101), which is desired to be avoided in a nuclear power plant.

【図面の簡単な説明】 第1図は本発明による一実施例の制御ブロック図、第2
図、第3図、第4図、第5図は本発明が有する制御機能
図、第6図は本発明を適用した場合の再循環弁動作説明
と原子炉水位の変動模擬図、第7図は原子炉給水ポンプ
廻りのシステム系統図、第8図は従来技術における再循
環流量制御ブロック図、第9図は従来制御方式による再
循環弁動作明による再循環弁動作説明図をそれぞれ示す
。 1・・・再循環弁開動作開始流量検出、2・・・初期水
L1.3・・・低警報水位十βl=L x、4・・・水
位差Lx−Lz=La、5・・・初期時間設定T1.6
・・・水位l −1′
[Brief Description of the Drawings] Fig. 1 is a control block diagram of an embodiment according to the present invention;
Figures 3, 4, and 5 are control function diagrams of the present invention, Figure 6 is an explanation of recirculation valve operation when the present invention is applied, and a simulated diagram of fluctuations in reactor water level, and Figure 7 8 shows a system system diagram around the reactor feed water pump, FIG. 8 shows a recirculation flow rate control block diagram in the prior art, and FIG. 9 shows an explanatory diagram of the recirculation valve operation according to the conventional control system. 1... Recirculation valve opening operation start flow rate detection, 2... Initial water L1.3... Low alarm water level 1βl=L x, 4... Water level difference Lx-Lz=La, 5... Initial time setting T1.6
...Water level l -1'

Claims (1)

【特許請求の範囲】 1、復水器の復水を給水ポンプにより発電プラントの蒸
気発生器へ送り、当該ポンプの出口側にはポンプの最少
流量を確保するためポンプ出口から分岐された配管とポ
ンプ最少流量を調節する再循環流量調節弁を有する系統
並びにポンプ吸込流量を検出する流量検出装置並びに蒸
気発生器水位を検出する水位検出装置を有し、給水ポン
プの吸込流量に応じて再循環流量調節弁が開閉する給水
装置において、あらかじめ規定された再循環弁開変化率
(又は閉変化率)で開動作(又は閉動作)を開始した再
循環弁は、中間の弁位置において、常時蒸気発生器の水
位変化率を計算、監視し、蒸気発生器水位変化率が規定
の水位変化率より大きくなつた場合は、初期の再循環弁
開変化率(又は閉変化率)よりゆるやかな新たな再循環
弁開変化率(又は閉変化率に修正し制御することを特徴
とする給水ポンプの再循環流量制御装置。 2、特許請求の範囲第1項において、設定された開変化
率(又は閉変化率)で再循環弁が開動作(又は閉動作)
する途中で(1)蒸気発生器水位高警報水位になる手前
の水位になつた時(2)蒸気発生器水位低警報水位にな
る手前の水位になつた時(3)蒸気発生器水位変化率が
異常に大きくなつた時、上記の(1)、(2)、(3)
のいずれかが発生し、ポンプの吸込流量が給水ポンプ過
熱防止流量以上が流れている時は再循環流量調節弁の開
動作(又は閉動作)を中止し、弁開度を一担その位置に
保持し、上記(1)、(2)、(3)の全ての条件がな
くなれば再び開動作(又は閉動作)することを特徴とす
る給水ポンプの再循環流量制御装置。
[Claims] 1. The condensate of the condenser is sent to the steam generator of the power generation plant by a water supply pump, and the outlet side of the pump is equipped with a pipe branched from the pump outlet in order to ensure the minimum flow rate of the pump. The system has a recirculation flow rate control valve that adjusts the pump minimum flow rate, a flow rate detection device that detects the pump suction flow rate, and a water level detection device that detects the steam generator water level, and the recirculation flow rate is adjusted according to the suction flow rate of the feed water pump. In a water supply system where a control valve opens and closes, the recirculation valve that starts its opening operation (or closing operation) at a predetermined recirculation valve opening change rate (or closing change rate) constantly generates steam at an intermediate valve position. Calculate and monitor the water level change rate of the steam generator, and if the steam generator water level change rate becomes larger than the specified water level change rate, a new recirculation valve opening rate of change (or closing rate of change) that is slower than the initial rate of change of the recirculation valve is set. A recirculation flow rate control device for a water supply pump characterized by correcting and controlling the circulation valve opening change rate (or closing change rate). 2. In claim 1, The recirculation valve opens (or closes) at
(1) When the water level reaches just before the steam generator water level high warning level (2) When the water level reaches the steam generator water level just before the low warning water level (3) Steam generator water level change rate becomes abnormally large, the above (1), (2), (3)
If any of the above occurs and the pump suction flow exceeds the feedwater pump overheating prevention flow, stop the opening (or closing) of the recirculation flow control valve and adjust the valve opening to that position. A recirculation flow rate control device for a water supply pump, characterized in that the recirculation flow rate control device for a water supply pump is opened (or closed) again when all of the conditions (1), (2), and (3) above are eliminated.
JP17563586A 1986-07-28 1986-07-28 Recirculating flow controller for feed pump Pending JPS6334405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17563586A JPS6334405A (en) 1986-07-28 1986-07-28 Recirculating flow controller for feed pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17563586A JPS6334405A (en) 1986-07-28 1986-07-28 Recirculating flow controller for feed pump

Publications (1)

Publication Number Publication Date
JPS6334405A true JPS6334405A (en) 1988-02-15

Family

ID=15999531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17563586A Pending JPS6334405A (en) 1986-07-28 1986-07-28 Recirculating flow controller for feed pump

Country Status (1)

Country Link
JP (1) JPS6334405A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013092476A (en) * 2011-10-26 2013-05-16 Mitsubishi Heavy Ind Ltd Auxiliary feed water valve control device of steam generator
JP2016183790A (en) * 2015-03-25 2016-10-20 三浦工業株式会社 Boiler device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013092476A (en) * 2011-10-26 2013-05-16 Mitsubishi Heavy Ind Ltd Auxiliary feed water valve control device of steam generator
US9208905B2 (en) 2011-10-26 2015-12-08 Mitsubishi Heavy Industries, Ltd. Auxiliary feedwater valve control apparatus of steam generator
JP2016183790A (en) * 2015-03-25 2016-10-20 三浦工業株式会社 Boiler device

Similar Documents

Publication Publication Date Title
JPH0682592A (en) Automatic core monitoring apparatus
JP2809977B2 (en) Control device
US4478783A (en) Nuclear power plant feedwater controller design
CN112382427B (en) Liquid level control method and system for nuclear power plant evaporator
JPS6253797B2 (en)
JPS6334405A (en) Recirculating flow controller for feed pump
CN116520798A (en) Method, device, equipment and storage medium for diagnosing fault of regulating door
CN114251645A (en) Water level control system and control method for steam generator
KR100584835B1 (en) Feedwater control system for steam generator in nuclear power plant and control method thereof
CN114688520A (en) Liquid level auxiliary control method and system for steam generator of nuclear power station
JPS6039845B2 (en) Nuclear turbine pressure control device
CN116641763A (en) Method and device for controlling front steam pressure of multi-module high-temperature reactor steam turbine
JPS5882195A (en) Reactor feedwater control device
JPS5916679B2 (en) Reactor water supply control system
JPH0222360B2 (en)
JPH0233404A (en) Valve test device for steam turbine
JPH0472964B2 (en)
JPH0331883B2 (en)
JPS5838759B2 (en) Steam pressure control device for nuclear power plants
JPS6153559B2 (en)
JPS62218898A (en) Coolant extraction flow controller for pressurized water type reactor
JPH02201613A (en) Turbine guide vane controller
JPH04113298A (en) Controlling of nuclear reactor pressure
JPH0422479B2 (en)
JPS6045398B2 (en) Nuclear power plant water supply control method and device