JPH0331883B2 - - Google Patents

Info

Publication number
JPH0331883B2
JPH0331883B2 JP57208969A JP20896982A JPH0331883B2 JP H0331883 B2 JPH0331883 B2 JP H0331883B2 JP 57208969 A JP57208969 A JP 57208969A JP 20896982 A JP20896982 A JP 20896982A JP H0331883 B2 JPH0331883 B2 JP H0331883B2
Authority
JP
Japan
Prior art keywords
valve
signal
bypass valve
temperature
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57208969A
Other languages
Japanese (ja)
Other versions
JPS5999005A (en
Inventor
Makoto Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP57208969A priority Critical patent/JPS5999005A/en
Publication of JPS5999005A publication Critical patent/JPS5999005A/en
Publication of JPH0331883B2 publication Critical patent/JPH0331883B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/04Plants characterised by condensers arranged or modified to co-operate with the engines with dump valves to by-pass stages

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は原子力発電プラント等において用いら
れるタービンバイパスシステムのバイパス弁テス
ト装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a bypass valve testing device for a turbine bypass system used in a nuclear power plant or the like.

[発明の技術的背景] 原子力発電プラントにおいては、系統の事故に
よる負荷しや断時等に際して、蒸気タービン側の
出力と発電機側の出力のアンバランスを検知し、
蒸気タービン入口に設けられた加減弁を急閉し、
それと同時に加減弁の前方に設けられたバイパス
弁を急開して、原子炉から送り出される蒸気をタ
ービンを通さずにバイパスラインを通してコンデ
ンサに送り込むようにしている。これは加減弁の
急閉により閉じ込められた蒸気をバイパスライン
に流すことによつて原子炉に与える影響を緩和
し、原子炉を保護するためである。
[Technical Background of the Invention] In nuclear power plants, when there is a load or power outage due to an accident in the system, an imbalance between the output of the steam turbine and the output of the generator is detected,
The control valve installed at the steam turbine inlet is suddenly closed,
At the same time, a bypass valve installed in front of the control valve is suddenly opened, allowing steam sent from the reactor to flow through the bypass line and into the condenser without passing through the turbine. This is to reduce the impact on the reactor and protect the reactor by allowing the steam trapped by the sudden closing of the control valve to flow into the bypass line.

この様なバイパスシステムを設けることによつ
て、事故が系統側に生じた場合には、原子炉をス
クラム(緊急停止)させずに連続運転させ、系統
の事故が修復された後には、タービンを直ちに起
動することが可能となる。また、加減弁の急閉時
に原子炉の炉圧の上昇を防ぎ、原子力発電プラン
トの信頼性を高めることができる。
By installing such a bypass system, if an accident occurs on the grid side, the reactor can be operated continuously without scram (emergency shutdown), and after the grid accident has been repaired, the turbine can be restarted. It becomes possible to start up immediately. Furthermore, it is possible to prevent the reactor pressure from increasing when the regulating valve is suddenly closed, thereby increasing the reliability of the nuclear power plant.

しかしながら、この様なバイパスシステムにお
いて、加減弁の急閉時にバイパス弁がステイツク
や何等かの原因によつて急開しない場合には、原
子力プラントの停止に到るので、それを防ぐた
め、定期的にバイパス弁の開閉テストを行ない、
ステイツク防止や作動確認を行つている。このバ
イパス弁作動テストは定期的に行なうこととされ
ており、プラントの全使用期間を通して2000回程
度の回数になる。これは、上記の様な系統事故等
によるバイパス弁の実使用が700回程度と予想さ
れるのに比較しても非常に多い回数である。
However, in such a bypass system, if the bypass valve does not open suddenly due to static or some other reason when the regulator valve suddenly closes, the nuclear power plant will shut down. We conducted a bypass valve opening/closing test.
Static prevention and operation confirmation are being carried out. This bypass valve operation test is to be carried out periodically, approximately 2,000 times throughout the entire life of the plant. This is a much higher number than the estimated 700 times that bypass valves are actually used due to system accidents such as those mentioned above.

[背景技術の問題点] バイパス弁が急速作動した場合には蒸気が急速
に流れ込むため、弁下流部に多大な熱応力が発生
するが、従来のバイパス弁テスト装置においては
弁テストボタンを押すとバイパス弁は10秒程度で
全閉から全開状態に達するため、バイパス弁には
テスト時にも多大な熱応力が発生する。一方、弁
テスト時間を熱応力の発生をおさえる様に長くす
ると、コンデンサ側及び原子炉側に悪影響を与え
るという不都合がある。
[Problems with the Background Art] When a bypass valve is activated rapidly, steam flows in rapidly and a large amount of thermal stress is generated downstream of the valve. However, in conventional bypass valve test equipment, when the valve test button is pressed, Because the bypass valve goes from fully closed to fully open in about 10 seconds, the bypass valve is subject to significant thermal stress during testing. On the other hand, if the valve test time is lengthened to suppress the generation of thermal stress, there is a disadvantage that it adversely affects the capacitor side and the nuclear reactor side.

[発明の目的] 本発明は背景技術における上述の如き不都合を
除去すべくなされたもので、バイパス弁の作動テ
スト時において弁下流側に発生する熱応力を最小
に押え、しかも、弁作動テスト時間を短縮して原
子炉やコンデンサに与える影響を低減できるター
ビンバイパスシステムのバイパス弁テスト装置を
提供することを目的とするものである。
[Object of the Invention] The present invention has been made in order to eliminate the above-mentioned disadvantages in the background art, and it minimizes the thermal stress generated on the downstream side of the bypass valve during the operation test of the bypass valve, and further reduces the valve operation test time. The purpose of the present invention is to provide a bypass valve test device for a turbine bypass system that can reduce the impact on the nuclear reactor and capacitor by shortening the time.

[発明の概要] 本発明のタービンバイパスシステムにおけるバ
イパス弁テスト装置は、タービンをバイパスする
バイパスラインに設けられ、所定の微開状態と全
開状態とをとり得るバイパス弁と、このバイパス
弁の内外壁の温度を検出する温度測定系と、この
温度測定系の温度信号を入力するとともに、弁テ
スト開始信号に基いてバイパス弁を所定の微開状
態まで開駆動し、このバイパス弁の内壁の温度が
所定の温度以上となり、かつ内外壁の温度差が所
定の値以下となつたときバイパス弁を全開状態ま
で開駆動する制御装置とを具備する。
[Summary of the Invention] A bypass valve testing device for a turbine bypass system according to the present invention includes a bypass valve that is installed in a bypass line that bypasses a turbine and that can take a predetermined slightly open state and a fully open state, and an inner and outer wall of this bypass valve. A temperature measurement system that detects the temperature of and a control device that opens the bypass valve to a fully open state when the temperature exceeds a predetermined value and the temperature difference between the inner and outer walls becomes less than a predetermined value.

[発明の実施例] 以下、本発明の実施例とその作動を図面を参照
して説明する。
[Embodiments of the Invention] Hereinafter, embodiments of the present invention and their operations will be described with reference to the drawings.

第1図において、原子炉1の出口に設置した蒸
気管2は、タービン3につづくライン4と、ター
ビン3をバイパスするライン5に分岐され、ライ
ン4には緊急時に蒸気をしや断するための主蒸気
止め弁6及び蒸気流入量を制御する加減弁7が設
置されている。また、バイパスライン5にはバイ
パス弁8が設置され、その下流には減圧、減温度
装置9が設けられている。タービン3および減
圧、減温装置9の下流側はコンデンサ10に連結
されている。
In Fig. 1, a steam pipe 2 installed at the outlet of a nuclear reactor 1 is branched into a line 4 that continues to a turbine 3 and a line 5 that bypasses the turbine 3. A main steam stop valve 6 and a control valve 7 for controlling the amount of steam inflow are installed. Further, a bypass valve 8 is installed in the bypass line 5, and a pressure reducing and temperature reducing device 9 is provided downstream of the bypass valve 8. The downstream side of the turbine 3 and the pressure reduction/temperature reduction device 9 is connected to a condenser 10 .

バイパス弁8は弁駆動部11によつて駆動され
る。制御装置12は弁テスト開始信号13と、バ
イパス弁の内外壁の温度を検出する温度測定系
(図示省略)より出力されるバイパス弁内壁温度
信号14およびバイパス弁外壁温度信号15と、
弁開度信号16とを入力とし、弁駆動部11に向
けて弁テスト信号17を出力する。
Bypass valve 8 is driven by valve drive section 11 . The control device 12 receives a valve test start signal 13, a bypass valve inner wall temperature signal 14 and a bypass valve outer wall temperature signal 15 output from a temperature measurement system (not shown) that detects the temperature of the inner and outer walls of the bypass valve.
It inputs the valve opening signal 16 and outputs a valve test signal 17 to the valve drive unit 11.

第2図は制御装置12の具体例を示すもので、
比較器18はバイパス弁内壁温度信号14と温度
設定値信号19を入力としてアンド回路20に信
号21を送る。また、比較器22は、バイパス弁
内壁温度信号14、バイパス弁外壁温度信号15
及び温度差設定値信号23を入力としてアンド回
路20に信号24を送る。アンド回路20は信号
21と24を入力すると、弁テスト信号発生器2
5に信号26を送る。この弁テスト信号発生器2
5は信号26、弁テスト開始信号13及び弁開度
信号16を入力すると、弁テスト信号17を弁駆
動部11に向けて出力する。
FIG. 2 shows a specific example of the control device 12.
The comparator 18 receives the bypass valve inner wall temperature signal 14 and the temperature set value signal 19 as inputs and sends a signal 21 to the AND circuit 20 . The comparator 22 also outputs a bypass valve inner wall temperature signal 14 and a bypass valve outer wall temperature signal 15.
A signal 24 is sent to the AND circuit 20 using the temperature difference set value signal 23 as input. When the AND circuit 20 inputs the signals 21 and 24, the valve test signal generator 2
Send signal 26 to 5. This valve test signal generator 2
When the signal 26, the valve test start signal 13, and the valve opening degree signal 16 are inputted, the valve test signal 5 outputs the valve test signal 17 to the valve drive unit 11.

次に、上記の様に構成された本発明のテスト装
置の作用について説明する。
Next, the operation of the test apparatus of the present invention configured as described above will be explained.

弁テストを開始する際には、弁テスト開始信号
13が発生し、弁テスト信号発生器25に信号が
送られ、弁テスト信号発生器25から弁駆動部1
1に向けて弁テスト信号18が送られる。これに
よりバイパス弁8は開き始めるが、予め設定した
開度になると、弁開度信号16によつて弁テスト
信号17が停止され、バイパス弁8はその開度で
一旦停止する。この場合、バイパス弁8は微開状
態で停止されるので、微量の蒸気がバイパス弁8
の下流に流れつづける。従つて、バイパス弁の内
壁温度はゆるやかに上昇し、バイパス弁の外壁温
度もそれに追従して上昇するため、内外壁の温度
差はあまり大きくならず過大な熱応力は発生しな
い。バイパス弁内壁温度が予め設定した値以上に
なると、比較器18はアンド回路20に信号21
を送り、その時の内外面メタル温度差が設定値以
内に入つていれば比較器22はアンド回路20に
信号24を送る。それによつてアンド回路20は
アンド条件が成立し、信号26を出力する。弁テ
スト発生器25は信号26を受けると、弁開度信
号16によつて停止されていた弁テスト信号17
を再び弁駆動部11に送る。その結果、バイパス
弁8は開き、弁テストが続行されることになる。
When starting a valve test, a valve test start signal 13 is generated, a signal is sent to the valve test signal generator 25, and the valve test signal generator 25 starts the valve drive unit 1.
A valve test signal 18 is sent to 1. As a result, the bypass valve 8 starts to open, but when the preset opening degree is reached, the valve test signal 17 is stopped by the valve opening degree signal 16, and the bypass valve 8 temporarily stops at that opening degree. In this case, the bypass valve 8 is stopped in a slightly open state, so a small amount of steam flows into the bypass valve 8.
continues to flow downstream. Therefore, the temperature of the inner wall of the bypass valve rises gradually, and the temperature of the outer wall of the bypass valve rises accordingly, so that the temperature difference between the inner and outer walls does not become too large and excessive thermal stress does not occur. When the bypass valve inner wall temperature exceeds a preset value, the comparator 18 sends a signal 21 to the AND circuit 20.
If the temperature difference between the inner and outer surfaces at that time is within the set value, the comparator 22 sends a signal 24 to the AND circuit 20. As a result, the AND circuit 20 satisfies the AND condition and outputs the signal 26. When the valve test generator 25 receives the signal 26, it generates the valve test signal 17 which has been stopped by the valve opening signal 16.
is sent to the valve drive unit 11 again. As a result, the bypass valve 8 will open and the valve test will continue.

以上の弁開度の動きと内外壁温度の変化を第3
図及び第4図に示す。第3図に示す様に、従来の
弁テスト方法ではバイパス弁8が急激に全閉から
全開状態に到るため、弁ストロークSは直線状に
変化し、バイパス弁内壁温度Tiは急激に上昇す
る。そのため、バイパス弁外壁温度Toは追従で
きず、内外面メタル温度差△Tは大きくなり、過
渡的に大きな熱応力が発生する。これに対し、本
発明による場合には、第4図に示すように、バイ
パス弁8を微開にして時刻t1からt2の間、弁開度
をそのままの開度に保つので、バイパス弁内壁温
度Tiはゆるやかに温度上昇し、従つてバイパス
弁外壁温度Toは十分に追従し、温度差△Tは小
さなものとなる。時刻t2以後、弁を急速に開いて
も既にメタル温度がかなり上昇しているため内外
面メタル温度差△Tはそれ程大きくならず、大き
な熱応力は発生しない。
The above movements in valve opening and changes in inner and outer wall temperatures are explained in the third section.
It is shown in FIG. As shown in Fig. 3, in the conventional valve testing method, the bypass valve 8 suddenly changes from fully closed to fully open, so the valve stroke S changes linearly and the bypass valve inner wall temperature Ti rises rapidly. . Therefore, the bypass valve outer wall temperature To cannot follow the temperature difference ΔT between the inner and outer metal surfaces, and a large transient thermal stress is generated. On the other hand, in the case of the present invention, as shown in FIG. 4, the bypass valve 8 is slightly opened and the valve opening is maintained at the same opening from time t 1 to t 2 . The inner wall temperature Ti rises slowly, and therefore the bypass valve outer wall temperature To sufficiently follows, and the temperature difference ΔT becomes small. After time t2 , even if the valve is opened rapidly, the metal temperature has already risen considerably, so the difference in temperature between the inner and outer metals ΔT does not become that large, and no large thermal stress occurs.

[発明の効果] 以上説明した様に、本発明はバイパス弁の弁テ
ストの際に弁を微開にして一旦弁の動きを停止
し、バイパス弁内外壁温度差が許容値に入つたの
ちに弁開度を大きくする様に構成したものである
から、バイパス弁の作動テスト時にバイパス弁に
発生する熱応力を低く押えることができる。ま
た、弁開度微開にてバイパス弁下流部のウオーミ
ングをすることになり、弁下流に流れる蒸気量は
少なく、従つてコンデンサーや原子炉側にあたえ
る影響も僅かなものとなる。
[Effects of the Invention] As explained above, the present invention opens the valve slightly during a valve test of the bypass valve, temporarily stops the movement of the valve, and after the temperature difference between the inner and outer walls of the bypass valve falls within the allowable value. Since the valve opening is configured to be large, thermal stress generated in the bypass valve during an operation test of the bypass valve can be suppressed to a low level. In addition, since the downstream part of the bypass valve is warmed by opening the valve slightly, the amount of steam flowing downstream of the valve is small, and therefore the influence on the condenser and reactor side is small.

従つて、本発明によれば、バイパス弁に大きな
熱応力を与えることなしにテストを行なうことが
でき、バイパス弁ひいては原子力プラント全体の
信頼性向上に寄与することができる。
Therefore, according to the present invention, it is possible to perform a test without applying large thermal stress to the bypass valve, and it is possible to contribute to improving the reliability of the bypass valve and, by extension, of the entire nuclear power plant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のタービンバイパスシステムに
おけるバイパス弁テスト装置を備えた原子力発電
プラントの系統図、第2図は本発明における制御
装置の具体例を示す回路図、第3図は従来の弁テ
スト方法による弁ストロークとバイパス弁の内外
壁温度の関係を示すグラフ、第4図は本発明の装
置による弁ストロークとバイパス弁の内外壁温度
の関係を示すグラフである。 1……原子炉、2……蒸気管、3……タービ
ン、4……ライン、5……バイパスライン、6…
…主蒸気止め弁、7……加減弁、8……バイパス
弁、9……減圧、減温装置、10……コンデン
サ、11……弁駆動部、12……制御装置、13
……弁テスト開始信号、14……バイパス弁内壁
温度信号、15……バイパス弁外壁温度信号、1
6……弁開度信号、17……弁テスト信号、1
8,22……比較器、19……温度設定値信号、
20……アンド回路、23……温度差設定値信
号、25……弁テスト信号発生器。
Fig. 1 is a system diagram of a nuclear power plant equipped with a bypass valve test device in the turbine bypass system of the present invention, Fig. 2 is a circuit diagram showing a specific example of the control device in the present invention, and Fig. 3 is a conventional valve test FIG. 4 is a graph showing the relationship between the valve stroke and the temperature of the inner and outer walls of the bypass valve according to the method, and FIG. 4 is a graph showing the relationship between the valve stroke and the temperature of the inner and outer walls of the bypass valve according to the apparatus of the present invention. 1... Nuclear reactor, 2... Steam pipe, 3... Turbine, 4... Line, 5... Bypass line, 6...
... Main steam stop valve, 7 ... Control valve, 8 ... Bypass valve, 9 ... Pressure reduction, temperature reducing device, 10 ... Condenser, 11 ... Valve drive section, 12 ... Control device, 13
... Valve test start signal, 14 ... Bypass valve inner wall temperature signal, 15 ... Bypass valve outer wall temperature signal, 1
6... Valve opening signal, 17... Valve test signal, 1
8, 22... Comparator, 19... Temperature set value signal,
20...AND circuit, 23...Temperature difference set value signal, 25...Valve test signal generator.

Claims (1)

【特許請求の範囲】 1 タービンをバイパスするバイパススラインに
設けられ、所定の微開状態と全開状態とをとり得
るバイパス弁と、このバイパス弁の内外壁の温度
を検出する温度測定系と、該温度測定系の温度信
号を入力するとともに、弁テスト開始信号に基い
て前記バイパス弁を所定の微開状態まで開駆動
し、このバイパス弁の内壁の温度が所定の温度以
上となり、かつ前記内外壁の温度差が所定の値以
下となつたとき前記バイパス弁を全開状態まで開
駆動する制御装置とを具備することを特徴とする
タービンバイパスシステムにおけるバイパス弁テ
スト装置。 2 制御装置がバイパス弁の内壁温度信号および
温度設定値信号を入力する比較器と、前記バイパ
ス弁の内壁温度信号、外壁温度信号および温度差
設定値信号を入力する比較器と、これらの両比較
器の出力を入力するアンド回路と、このアンド回
路の出力、弁テスト開始信号および前記バイパス
弁の弁開度信号を入力し、弁テスト信号を出力す
る弁テスト信号発生装置とを具備する特許請求の
範囲第1項に記載のタービンバイパスシステムに
おけるバイパス弁テスト装置。
[Scope of Claims] 1. A bypass valve that is installed in a bypass line that bypasses a turbine and can be in a predetermined slightly open state and a fully open state, and a temperature measurement system that detects the temperature of the inner and outer walls of this bypass valve. At the same time as inputting the temperature signal of the temperature measurement system, the bypass valve is driven to open to a predetermined slightly open state based on the valve test start signal, and when the temperature of the inner wall of the bypass valve becomes equal to or higher than the predetermined temperature, and A bypass valve test device for a turbine bypass system, comprising: a control device that opens the bypass valve to a fully open state when a temperature difference between outer walls becomes equal to or less than a predetermined value. 2. A comparator into which the control device inputs the inner wall temperature signal and temperature set value signal of the bypass valve, a comparator into which the inner wall temperature signal, outer wall temperature signal, and temperature difference set value signal of the bypass valve are input, and a comparison between these two. A patent claim comprising: an AND circuit that inputs the output of the AND circuit; and a valve test signal generator that inputs the output of the AND circuit, a valve test start signal, and a valve opening signal of the bypass valve, and outputs a valve test signal. A bypass valve test device for a turbine bypass system according to item 1.
JP57208969A 1982-11-29 1982-11-29 Bypass valve test device in turbine bypass system Granted JPS5999005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57208969A JPS5999005A (en) 1982-11-29 1982-11-29 Bypass valve test device in turbine bypass system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57208969A JPS5999005A (en) 1982-11-29 1982-11-29 Bypass valve test device in turbine bypass system

Publications (2)

Publication Number Publication Date
JPS5999005A JPS5999005A (en) 1984-06-07
JPH0331883B2 true JPH0331883B2 (en) 1991-05-09

Family

ID=16565155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57208969A Granted JPS5999005A (en) 1982-11-29 1982-11-29 Bypass valve test device in turbine bypass system

Country Status (1)

Country Link
JP (1) JPS5999005A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106872154B (en) * 2017-01-20 2019-09-03 合肥通用机械研究院有限公司 A kind of Low lift safety valve discharge capacity test macro and test method

Also Published As

Publication number Publication date
JPS5999005A (en) 1984-06-07

Similar Documents

Publication Publication Date Title
JPH0331883B2 (en)
US4069660A (en) Chemical reaction furnace system
JP3435450B2 (en) Turbine bypass valve control device
JPS6239656B2 (en)
JPH0429921B2 (en)
JP3697316B2 (en) Moisture separator heater protection device for nuclear power plant
JPS6023699A (en) Hammering inhibiting controller for emergency drain discharge system
JP2892744B2 (en) On-off valve operation diagnostic device
JPS6158903A (en) Turbine controller for nuclear reactor
JPS6050318B2 (en) Reactor control device
JPH0222360B2 (en)
JPS6056110A (en) Control method of ventilator
JPS6116210A (en) Method and device of operating steam turbine
JPS6364758B2 (en)
JPS63105204A (en) Control device for steam turbine
JPS58100795A (en) Bwr type reactor power plant
JPS5916679B2 (en) Reactor water supply control system
JPS63686B2 (en)
JPS5821596A (en) Device for closing isolation valve of main steam
JPS62297602A (en) Controller for pressure of main steam
JPS58100796A (en) Bwr type reactor power plant
JPS587200B2 (en) Shunt flow control device in fast breeder reactor plant
JPS639082B2 (en)
JPH0454199B2 (en)
JPS63223309A (en) Warming device for turbine steam regulation valve