JPS6334387B2 - - Google Patents

Info

Publication number
JPS6334387B2
JPS6334387B2 JP10695982A JP10695982A JPS6334387B2 JP S6334387 B2 JPS6334387 B2 JP S6334387B2 JP 10695982 A JP10695982 A JP 10695982A JP 10695982 A JP10695982 A JP 10695982A JP S6334387 B2 JPS6334387 B2 JP S6334387B2
Authority
JP
Japan
Prior art keywords
heat
evaporator
absorber
temperature
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10695982A
Other languages
Japanese (ja)
Other versions
JPS58224280A (en
Inventor
Masao Yoshikazu
Yoshiro Fujioka
Masakuni Tokai
Mikio Muro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP10695982A priority Critical patent/JPS58224280A/en
Publication of JPS58224280A publication Critical patent/JPS58224280A/en
Publication of JPS6334387B2 publication Critical patent/JPS6334387B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、多段式ケミカルヒートポンプによる
太陽熱昇温装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a solar heating device using a multistage chemical heat pump.

〔発明の技術的背景〕 近年廃熱などの低温熱源を、ケミカルヒートポ
ンプを使用して有効に利用しようとする試みがな
されている。しかしながら、低温熱源と冷却水の
温度差が小さい場合には、ケミカルヒートポンプ
を1段使用しただけでは、必要とする高温度が得
られないことがある。
[Technical Background of the Invention] In recent years, attempts have been made to effectively utilize low-temperature heat sources such as waste heat using chemical heat pumps. However, if the temperature difference between the low-temperature heat source and the cooling water is small, the required high temperature may not be obtained by using only one stage of chemical heat pump.

〔問題点を解決しようとする手段〕[Means to try to solve problems]

本発明は、このような実情に対応すべくなされ
たもので、長期蓄熱システムなどにおける蓄積さ
れた濃度差エネルギーを、ケミカルヒートポンプ
の熱源として使用し、春期、秋期などの中間期に
おける太陽熱を低温集熱し、これを低温熱源とし
て利用することを可能となし、この低温熱源とケ
ミカルヒートポンプを組合わせて、従来利用でき
なかつた中間期の太陽熱を有効に利用するととも
に、ケミカルヒートポンプを多段的に接続して、
暖房負荷などに充分なまでの温度に昇温させ、省
エネルギー効果の向上を計ろうとするもので、従
来技術の問題点を解決する本発明の構成は、蒸発
器と吸収器を含む複数のケミカルヒートポンプを
直列に組合わせ、太陽熱集熱器に接続された最上
手側の蒸発器を除いて、各ケミカルヒートポンプ
P1〜Pnを構成する吸収器と次段の蒸発器とを
夫々隣接一体化し、この吸収器内の吸収液と次段
の蒸発器内の循環水を、熱交換器によつて熱交換
させて両者の温度差を均等、もしくは、微小とな
すとともに、上記蒸発器内の循環水が流れる伝熱
管を、上記吸収器と蒸発器内に共通に配設し、上
記吸収器内の上記伝熱管上部に、吸収器内吸収液
の噴射管を、また、上記蒸発器内に配設された上
記伝熱管の上部に、この伝熱管内循環水の噴射管
部を設け、上記各熱交換器を、夫々バルブを介し
て熱負荷に並列に接続したことを特徴とするもの
である。
The present invention was developed in response to these circumstances, and uses the concentration difference energy accumulated in a long-term heat storage system as a heat source for a chemical heat pump, and collects solar heat at a low temperature during intermediate seasons such as spring and autumn. By combining this low-temperature heat source with a chemical heat pump, we can effectively utilize mid-season solar heat, which could not be used in the past, and also connect chemical heat pumps in multiple stages. hand,
The present invention aims to raise the temperature to a temperature sufficient for heating loads, etc., and improve energy saving effects.The present invention solves the problems of the conventional technology. Each chemical heat pump is combined in series with the exception of the uppermost evaporator, which is connected to a solar collector.
The absorbers constituting P 1 to Pn and the next-stage evaporator are integrated adjacent to each other, and the absorption liquid in the absorber and the circulating water in the next-stage evaporator are exchanged with each other by a heat exchanger. In order to make the temperature difference between the two equal or small, a heat transfer tube through which circulating water in the evaporator flows is commonly disposed in the absorber and the evaporator, and the heat transfer tube in the absorber An injection pipe for the absorption liquid in the absorber is provided in the upper part, and an injection pipe part for the circulating water in the heat transfer tube is provided in the upper part of the heat transfer tube disposed in the evaporator, and each of the heat exchangers is , are each connected in parallel to a thermal load via a valve.

〔実施例〕〔Example〕

図面について本発明の実施例の詳細を説明する
と、第1図は、太陽熱利用の暖房システムの一例
を示し、太陽熱集熱器1を出た温水が、直接暖房
に使用できる温度に達しない場合に、太線で示す
ように太陽熱集熱器1で集熱を行つた熱媒を暖房
負荷に使用することなく、直接、ケミカルヒート
ポンプPを構成する蒸発器2に導き、ケミカルヒ
ートポンプPを使用して吸収器3系を加温し、熱
負荷4の暖房を行うようにしたものである。尚、
この場合熱量が不足の場合は、例えば、化石燃料
ボイラの燃焼熱源を暖房負荷に供給することなど
が考えられる。
To explain the details of the embodiment of the present invention with reference to the drawings, FIG. 1 shows an example of a heating system using solar heat. , as shown by the thick line, the heat medium collected by the solar heat collector 1 is directly guided to the evaporator 2 that constitutes the chemical heat pump P, without being used for heating load, and is absorbed by the chemical heat pump P. This system heats the heating system 3 and performs heating with a heat load of 4. still,
In this case, if the amount of heat is insufficient, for example, a combustion heat source from a fossil fuel boiler may be supplied to the heating load.

本発明は、このように化石燃料ボイラを付設す
ることなく、ケミカルヒートポンプPを多段式に
直列に接続し、太陽熱集熱器1により得られた中
間期における低温熱源と、蓄積された濃度差エネ
ルギーをベースとして、これを多段式に接続した
ケミカルヒートポンプにより順次昇温させ、所定
の温度となつた時点でこれを暖房負荷に供給しよ
うとするものである。
In this way, the present invention connects the chemical heat pumps P in series in a multistage manner without adding a fossil fuel boiler, and uses the low temperature heat source in the intermediate period obtained by the solar heat collector 1 and the accumulated concentration difference energy. Based on this, the temperature is raised sequentially using a chemical heat pump connected in a multi-stage manner, and when the temperature reaches a predetermined value, the temperature is supplied to the heating load.

第2,3図は、本発明の要旨とする多段式ケミ
カルヒートポンプの構成を示す。多段式ケミカル
ヒートポンプの効率を向上させるためには、次の
ようなことが考えられる。
FIGS. 2 and 3 show the configuration of a multistage chemical heat pump that is the gist of the present invention. The following can be considered to improve the efficiency of multistage chemical heat pumps.

(イ) 吸収器抜出液のエンタルピーを、吸収器補給
液、および、蒸発器補給水と熱交換させて回収
し、熱損失を小さくすること。
(b) Recover the enthalpy of the absorber effluent through heat exchange with the absorber make-up liquid and evaporator make-up water to reduce heat loss.

(ロ) 隣り合う吸収器から熱発器への熱抵抗を小さ
くし、隣り合う吸収器と蒸発器の温度差を小さ
くすること。
(b) Reduce the thermal resistance from adjacent absorbers to heat generators and reduce the temperature difference between adjacent absorbers and evaporators.

本発明では、吸収器から蒸発器への熱抵抗を極
力小さくするために、第2,3図に示す一体化の
構成を提案するものである。
The present invention proposes the integrated configuration shown in FIGS. 2 and 3 in order to minimize the thermal resistance from the absorber to the evaporator.

第2図に示すE1,E2,E3…Enは夫々各段ケミ
カルヒートポンプP1〜Pnの蒸発器、A1,A2,A3
…Anは夫々吸収器である。上記蒸発器E1は、低
温熱源である太陽熱集熱器1により得られた低温
熱源、詳しくは、第1図に示すように、太陽熱集
熱器1から熱負荷4を通つて太陽熱集熱器1に循
環するパイプライン5との間に熱交換が行われる
ように構成されている。この蒸発器E1において
生じた気化潜熱をうばつた蒸気が、第3図に示す
管路6を経て隣接の吸収器A1に入り、この吸収
器A1内の吸収液を加温するとともに、第3図に
示すように、吸収器A1と一体化した蒸発器E2
の循環液は、吸収器A1と蒸発器E2内に循環させ
た伝熱管7を介して加温され、この伝熱管7の端
部から噴出する液により蒸発器E2内の蒸発を高
める。上記吸収器A1内の吸収液と、蒸発器E2
の液とは、熱交換器8aによつて熱交換され、両
液の温度差が微小となるように制御せしめられ、
更に、熱交換器8aを通つた吸収液は、吸収器
A1内の上記伝熱管7の上部から下向きに噴射せ
しめられ、特に、上記伝熱管7の最上部付近がも
つとも高温となるため、上述の熱交換器8aで予
熱(プレヒート)しておくことにより、吸収器
A1と蒸発器E2は略同温になる。この作用が、順
次次段のケミカルヒートポンプP2〜Pnによつて
行われる。第2図の場合、吸収器A1と蒸発器E2
によりケミカルヒートポンプP1が、吸収器A2
蒸発器E3によりP2が、以下同様にしてP3〜Pnま
での多段式ケミカルヒートポンプが構成してあ
る。
E 1 , E 2 , E 3 ...En shown in Fig. 2 are the evaporators of each stage of chemical heat pumps P 1 to Pn, respectively, and A 1 , A 2 , A 3
...An are each absorbers. The evaporator E 1 is a low-temperature heat source obtained from a solar heat collector 1 which is a low-temperature heat source. Specifically, as shown in FIG. 1 and a pipeline 5 circulating therethrough. The steam that has absorbed the latent heat of vaporization generated in this evaporator E 1 enters the adjacent absorber A 1 via the pipe 6 shown in FIG. 3, and heats the absorption liquid in this absorber A 1 . As shown in FIG. 3, the circulating liquid in the evaporator E 2 integrated with the absorber A 1 is heated through the heat exchanger tube 7 that is circulated in the absorber A 1 and the evaporator E 2 . The liquid spouted from the end of the heat transfer tube 7 increases evaporation in the evaporator E2 . The absorption liquid in the absorber A 1 and the liquid in the evaporator E 2 are heat exchanged by a heat exchanger 8a, and the temperature difference between the two liquids is controlled to be minute,
Furthermore, the absorption liquid that has passed through the heat exchanger 8a is transferred to the absorber
The heat is injected downward from the upper part of the heat exchanger tube 7 in A 1 , and since the area near the top of the heat exchanger tube 7 becomes extremely high in temperature, the heat exchanger 8a is used to preheat the heat exchanger 8a. , absorber
A 1 and evaporator E 2 have approximately the same temperature. This action is performed by the chemical heat pumps P 2 to Pn in the next stage. In the case of Figure 2, absorber A 1 and evaporator E 2
The chemical heat pump P 1 is constructed by the absorber A 2 and the evaporator E 3 , the P 2 is constructed by the absorber A 2 and the evaporator E 3, and the multistage chemical heat pump from P 3 to Pn is constructed in the same manner.

なお、蒸発器Eより蒸発した熱媒、例えば水を
吸収して薄められた吸収器A内の吸収液、例えば
LiBr水溶液は、吸収器Aより熱を回収しながら
抜き出し、中間期などにより太陽熱で蓄えた再生
器内の濃厚吸収液(高濃度LiBi水溶液)中に放
出され、一部の濃厚吸収液が再生器より、吸収器
Aから抜き出された希薄吸収液の量に応じて元の
吸収器Aに返送される。他方蒸発器Eの熱媒は蒸
発し、吸収器Aに吸収された量に応じて熱媒量が
減少するが、これは再生器と凝縮器よりなるヒー
トポンプ部により、再生器で吸収液から追い出さ
れた水蒸気を、凝縮器により冷却凝縮して得た熱
媒(水)を蒸発器Eの熱媒減少量に応じて凝縮器
より送給することにより、本装置の運転が継続さ
れる。
In addition, the absorption liquid in the absorber A that has been diluted by absorbing the heat medium evaporated from the evaporator E, for example, water, for example,
The LiBr aqueous solution is extracted from absorber A while recovering heat, and is released into the concentrated absorption liquid (high concentration LiBi aqueous solution) in the regenerator, which is stored with solar heat during the intermediate period, and some of the concentrated absorption liquid is transferred to the regenerator. Accordingly, the amount of dilute absorption liquid extracted from the absorber A is returned to the original absorber A according to the amount. On the other hand, the heat medium in the evaporator E evaporates, and the amount of heat medium decreases according to the amount absorbed by the absorber A. However, this is removed from the absorption liquid by the heat pump section consisting of a regenerator and a condenser. The operation of the apparatus is continued by supplying the heat medium (water) obtained by cooling and condensing the water vapor in the condenser from the condenser in accordance with the amount of decrease in the heat medium in the evaporator E.

そして、第2図から明らかなように、吸収器
A1〜Anに設けられた熱交換器8a〜8nは、熱
負荷4に対して全パラレル(並列)に接続されて
おり、各熱交換器8a〜8nのセクシヨン毎にバ
ルブV1〜Vnが設けてあつて、熱負荷4が要求す
る一定の温度となつたケミカルヒートポンプ以降
のバルブを閉じ、一定温度を熱負荷に供給する。
And, as is clear from Figure 2, the absorber
The heat exchangers 8a to 8n provided in A 1 to An are all connected in parallel to the heat load 4, and the valves V 1 to Vn are connected to each section of each heat exchanger 8a to 8n. The valves after the chemical heat pump which has been provided and has reached a constant temperature required by the heat load 4 are closed, and a constant temperature is supplied to the heat load.

即ち、T1:入力温度、T2:出力温度 Q1:加熱量、Q2:出力とすると、 Q2=η1・η2…ηn・Q1(η:1段当たりの効率、
n:段数) T2=T1oi=1 △Ti (△Tは1段当たりの温度上昇、n=段数) となる。
That is, if T 1 is input temperature, T 2 is output temperature, Q 1 is heating amount, and Q 2 is output, then Q 2 = η 1・η 2 …ηn・Q 1 (η: efficiency per stage,
n: number of stages) T 2 = T 1 + oi=1 △Ti (ΔT is temperature rise per stage, n = number of stages).

次に、本装置のケミカルヒートポンプが2段の
ものの計算例を示す。
Next, a calculation example for a two-stage chemical heat pump of this device will be shown.

運転条件、 a、低温熱源温度:25℃ b、冷却水温度 :5℃ c、吸 収 剤 :LiBr d、冷 媒 :水 e、高濃度液(c2):50wt% f、低濃度液(c1):45wt% 溶液循環比は、a=c2/c2−c1=50/50−45=10 第1段目ケミカルヒートポンプの効率η1は、蒸
気流1Kg当たりのヒートバランスより、 η1=QA1/QE1=io′+(a−1)・i2−a・i1/io′
−io =608+(10−1)×60−10×66/68−25=0.837 第2段目のヒートポンプの効率η1は、 η2=QE2/QE2=io′+(a−1)・i2−a・i1/io′
−io′ =615+(10−1)×65−10×73/615−40=0.818 ここで io′:蒸発器流出蒸気エンタルピー(吸収器流入
蒸気エンタルピー) io:蒸発器補給水エンタルピー i1:吸収器抜出液エンタルピー i2:吸収器補給液エンタルピー 総合効率ηは、 η=η・η2=0.685 従来使用不可能だつた25℃の温水を本発明によ
り暖房に約70%の効率で使用でき、省エネルギー
効果が大きい。
Operating conditions: a. Low-temperature heat source temperature: 25℃ b. Cooling water temperature: 5℃ c. Absorbent: LiBr d. Refrigerant: water e. High concentration liquid (c 2 ): 50wt% f. Low concentration liquid ( c 1 ): 45wt% The solution circulation ratio is a=c 2 /c 2 −c 1 =50/50−45=10 The efficiency η 1 of the first stage chemical heat pump is calculated from the heat balance per 1 kg of vapor flow. η 1 =QA 1 /QE 1 =io′+(a-1)・i 2 −a・i 1 /io′
-io = 608 + (10-1) x 60-10 x 66/68-25 = 0.837 The efficiency η 1 of the second stage heat pump is: η 2 = QE 2 /QE 2 = io′ + (a-1)・i 2 −a・i 1 /io′
-io' = 615 + (10-1) x 65-10 x 73/615-40 = 0.818 where io': Evaporator outflow steam enthalpy (absorber inflow steam enthalpy) io: Evaporator make-up water enthalpy i 1 : Absorption Enthalpy of drained liquid i 2 : Enthalpy of absorber replenishing liquid The overall efficiency η is: η = η・η 2 = 0.685 Hot water at 25°C, which could not be used conventionally, can be used for heating with approximately 70% efficiency with the present invention. , has a large energy saving effect.

〔発明の効果〕〔Effect of the invention〕

上述のように本発明によれば、次のような効果
が得られる。
As described above, according to the present invention, the following effects can be obtained.

(a) 中間期(春期、秋期)における太陽熱を低温
集熱してこれを低温熱源として利用し、この低
温熱源を多段的に配列したケミカルヒートポン
プによつて順次昇温せしめ、暖房負荷などに供
給することによつて化石燃料などの省エネルギ
ー効果を向上させることができる。
(a) Solar heat collected during the intermediate seasons (spring and autumn) at low temperatures is used as a low-temperature heat source, and this low-temperature heat source is sequentially heated by chemical heat pumps arranged in multiple stages and then supplied to heating loads, etc. By doing so, it is possible to improve the energy saving effect of fossil fuels, etc.

(b) 隣り合う吸収器と次段の蒸発器を一体化し、
かつ、蒸発器内の循環水、一体化された蒸発
器、および、吸収器内に共通に配設した伝熱管
内に流し、蒸発器内伝熱管の上に、循環水を散
布、または、滴下させることにより、吸収器か
ら蒸発器への熱抵抗を小さくするとともに、隣
り合う吸収器と次段の蒸発器の温度差を小さく
し、多段式ケミカルヒートポンプの効率を向上
させることができる。
(b) Integrating adjacent absorbers and the next stage evaporator,
In addition, the circulating water in the evaporator, the integrated evaporator, and the integrated evaporator are passed through the heat transfer tubes arranged in common in the absorber, and the circulating water is sprinkled or dripped onto the heat transfer tubes in the evaporator. By doing so, it is possible to reduce the thermal resistance from the absorber to the evaporator, reduce the temperature difference between adjacent absorbers and the next stage evaporator, and improve the efficiency of the multistage chemical heat pump.

(c) 各ケミカルヒートポンプP1〜Pnの熱交換器
を、バルブを介して熱負荷に並列に接続したの
で、熱負荷が要求する一定の温度となつたケミ
カルヒートポンプ以降のバルブを閉じ、一定温
度を熱負荷に供給することができる。
(c) Since the heat exchangers of each chemical heat pump P 1 to Pn are connected in parallel to the heat load via valves, the valves after the chemical heat pump that reaches the constant temperature required by the heat load are closed, and the heat exchanger of each chemical heat pump P1 to Pn is connected in parallel to the heat load. can be supplied to the heat load.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、太陽熱利用暖房システムの説明図、
第2図は本発明多段式ケミカルヒートポンプの説
明図、第3図は蒸発器、吸収器の一体化構造を示
す縦断正面図である。 1……太陽熱集熱器、2……蒸発器、3……吸
収器、4……熱負荷、P1〜Pn……ケミカルヒー
トポンプ、E1〜En……蒸発器、A1〜An……吸収
器、7……伝熱管、8a〜8n……熱交換器、
V1〜Vn……バルブ。
Figure 1 is an explanatory diagram of a solar heating system;
FIG. 2 is an explanatory diagram of the multistage chemical heat pump of the present invention, and FIG. 3 is a longitudinal sectional front view showing an integrated structure of an evaporator and an absorber. 1...Solar heat collector, 2...Evaporator, 3...Absorber, 4...Heat load, P1 ~ Pn...Chemical heat pump, E1 ~En...Evaporator, A1 ~An... Absorber, 7... Heat exchanger tube, 8a to 8n... Heat exchanger,
V 1 ~Vn...Valve.

Claims (1)

【特許請求の範囲】[Claims] 1 蒸発器と吸収器を含む複数のケミカルヒート
ポンプを直列に組合わせ、太陽熱集熱器に接続さ
れた最上手側の蒸発器を除いて、各ケミカルヒー
トポンプP1〜Pnを構成する吸収器と次段の蒸発
器とを夫々隣接一体化し、この吸収器内の吸収液
と次段の蒸発器内の循環水を、熱交換器によつて
熱交換させて両者の温度差を均等、もしくは、微
小となすとともに、上記蒸発器内の循環水が流れ
る伝熱管を、上記吸収器と蒸発器内に共通に配設
し、上記吸収器内の上記伝熱管上部に、吸収器内
吸収液の噴射管を、また、上記蒸発器内に配設さ
れた上記伝熱管の上部に、この伝熱管内循環水の
噴射管部を設け、上記各熱交換器を、夫々バルブ
を介して熱負荷に並列に接続したことを特徴とす
る多段式ケミカルヒートポンプによる太陽熱昇温
装置。
1 Multiple chemical heat pumps including evaporators and absorbers are combined in series, and except for the uppermost evaporator connected to the solar heat collector, the absorbers constituting each chemical heat pump P1 to Pn and the next The evaporators of each stage are integrated adjacent to each other, and the absorption liquid in this absorber and the circulating water in the evaporator of the next stage are heat exchanged by a heat exchanger to equalize or minimize the temperature difference between the two. At the same time, a heat transfer tube through which the circulating water in the evaporator flows is commonly disposed in the absorber and the evaporator, and an injection tube for the absorption liquid in the absorber is installed above the heat transfer tube in the absorber. Further, an injection pipe section for circulating water in the heat transfer tube is provided at the upper part of the heat transfer tube disposed in the evaporator, and each of the heat exchangers is connected in parallel to the heat load via a valve. A solar heating device using a multi-stage chemical heat pump, which is characterized by being connected.
JP10695982A 1982-06-23 1982-06-23 Multistage type chemical heat pump utilizing solar heat Granted JPS58224280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10695982A JPS58224280A (en) 1982-06-23 1982-06-23 Multistage type chemical heat pump utilizing solar heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10695982A JPS58224280A (en) 1982-06-23 1982-06-23 Multistage type chemical heat pump utilizing solar heat

Publications (2)

Publication Number Publication Date
JPS58224280A JPS58224280A (en) 1983-12-26
JPS6334387B2 true JPS6334387B2 (en) 1988-07-11

Family

ID=14446867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10695982A Granted JPS58224280A (en) 1982-06-23 1982-06-23 Multistage type chemical heat pump utilizing solar heat

Country Status (1)

Country Link
JP (1) JPS58224280A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250026U (en) * 1988-09-28 1990-04-06

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250026U (en) * 1988-09-28 1990-04-06

Also Published As

Publication number Publication date
JPS58224280A (en) 1983-12-26

Similar Documents

Publication Publication Date Title
WO2017185930A1 (en) Combined solar-powered seawater desalination and air-conditioned cooling method and system having high efficiency
JPS5818574B2 (en) heat pump
CN112503782A (en) Oil field waste heat recovery system and method applying solar energy and lithium bromide heat pump
US4553409A (en) Multiple regeneration multiple absorption type heat pump
CN214199238U (en) Oil field waste heat recovery system applying solar energy and lithium bromide heat pump
JPS5849781B2 (en) Absorption heat pump
JP3103225B2 (en) Absorption heat pump using low-temperature heat source
US4458500A (en) Absorption heat pump system
JPS6334387B2 (en)
JPS5986846A (en) Hot water supply device of heat pump type
JP2000205691A (en) Absorption refrigerating machine
JP3401546B2 (en) Absorption refrigerator
JP3297720B2 (en) Absorption refrigerator
JP3103224B2 (en) Absorption heat pump using low-temperature heat source
WO2024140317A1 (en) Comprehensive utilization system of low-grade thermal energy
JPH05256535A (en) Sorption heat pump system
JPH0555787B2 (en)
JPH03134207A (en) Steam turbine system and energy supply system
JPS5849780B2 (en) Absorption heat pump
JPS5913666B2 (en) heat pump system
CN116265836A (en) Solution heat accumulating type cold and hot water system and refrigerating and heating method thereof
JPS6125987B2 (en)
JPS6148064B2 (en)
JPH0148373B2 (en)
JPS6135897Y2 (en)