JP3103225B2 - Absorption heat pump using low-temperature heat source - Google Patents

Absorption heat pump using low-temperature heat source

Info

Publication number
JP3103225B2
JP3103225B2 JP04338298A JP33829892A JP3103225B2 JP 3103225 B2 JP3103225 B2 JP 3103225B2 JP 04338298 A JP04338298 A JP 04338298A JP 33829892 A JP33829892 A JP 33829892A JP 3103225 B2 JP3103225 B2 JP 3103225B2
Authority
JP
Japan
Prior art keywords
generator
absorber
solution
heat
refrigerant vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04338298A
Other languages
Japanese (ja)
Other versions
JPH06185828A (en
Inventor
雅博 岡
弘 小島
誠 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP04338298A priority Critical patent/JP3103225B2/en
Publication of JPH06185828A publication Critical patent/JPH06185828A/en
Application granted granted Critical
Publication of JP3103225B2 publication Critical patent/JP3103225B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は河川水又は下水が保有す
る熱を駆動熱源として利用する低温熱源利用吸収ヒート
ポンプに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption heat pump using a low-temperature heat source that uses heat of river water or sewage as a driving heat source.

【0002】[0002]

【従来の技術】従来の河川水又は下水処理水等を熱源水
として利用するヒートポンプは、直火焚き又は蒸気駆動
の単効用サイクルを組んで暖房用温水(40℃〜45℃)を
得ている。
2. Description of the Related Art A conventional heat pump utilizing river water or sewage treatment water as a heat source water obtains warm water for heating (40 ° C. to 45 ° C.) by setting up a single-effect cycle of direct fire or steam drive. .

【0003】[0003]

【発明が解決しようとする課題】しかし、燃料電池排熱
等の2温度レベルの排熱(低温水65℃〜75℃、蒸気)を
ヒートポンプの駆動用熱源として利用した場合、従来の
単効用サイクルでは、低温水排熱を高効率で利用するこ
とが不可能なため、蒸気のみを用いて単効用サイクルで
昇温し、さらに低温水排熱は熱交換器を用いて熱回収し
て暖房用温水を得ており、このために蒸気の消費量が多
くなるという欠点がある。
However, in the case of using two levels of exhaust heat (low-temperature water 65 ° C. to 75 ° C., steam) such as fuel cell exhaust heat as a heat source for driving a heat pump, a conventional single-effect cycle is used. Since it is impossible to use low-temperature water waste heat with high efficiency, the temperature is raised in a single-effect cycle using only steam, and the low-temperature water waste heat is recovered using a heat exchanger for heating. There is a drawback that hot water is obtained, which results in a large consumption of steam.

【0004】本発明の目的は、低温熱源利用吸収ヒート
ポンプにおいて、暖房用温水を得るために使用される蒸
気の消費量を削減することである。
[0004] It is an object of the present invention to reduce the consumption of steam used to obtain hot water for heating in an absorption heat pump utilizing a low-temperature heat source.

【0005】[0005]

【課題を解決するための手段】本発明に係る低温熱源利
用吸収ヒートポンプの構成は次のとおりである。
The structure of an absorption heat pump utilizing a low-temperature heat source according to the present invention is as follows.

【0006】蒸発器、第1吸収器、第1発生器、第1熱
交換器、第2吸収器、第2発生器、第3発生器、凝縮
器、第2熱交換器、第3熱交換器、蒸発器内に通された
熱源水ライン、第1吸収器から第2吸収器を通り、凝縮
器を循環する温水とり出しライン、第1発生器内を循環
する低温水とり出しライン、第1吸収器から出て第1発
生器に至る第1稀溶液ラインを分岐して第2吸収器から
第2発生器に至る第2稀溶液ラインに結んだ冷房切り換
え用の第1バイパスライン、第3発生器から第2吸収器
に至る第2濃溶液ラインを分岐して第1発生器から第1
吸収器に至る第1濃溶液ラインに結んだ冷房切り換え用
の第2バイパスラインから成ると共に暖房サイクルにお
いては、蒸発器において低温熱源から熱を汲み上げ蒸発
した冷媒蒸気を第1吸収器において吸収溶液に吸収さ
せ、第1吸収器の稀溶液は溶液ポンプにより第1熱交換
器を通し、第1発生器に導いた低温水により加熱して冷
媒蒸気と濃溶液とに分離し、第1発生器において分離し
た濃溶液を、第1熱交換器に通し、第1吸収器に送り、
再び冷媒蒸気を吸収させて第1吸収器と第1発生器の間
を循環させ、第1発生器において発生した冷媒蒸気を第
2吸収器において吸収溶液に吸収し、第2吸収器の稀溶
液を溶液ポンプにより第2熱交換器、第3熱交換器を経
て第2発生器に導き蒸気(高温熱源)により加熱して中
間濃度溶液と冷媒蒸気とに分離し、第2発生器において
分離した中間濃度溶液を第3熱交換器を経て第3発生器
に導き、第2発生器において発生した冷媒蒸気により、
さらに加熱して濃溶液と冷媒蒸気とに分離し、第3発生
器において分離した濃溶液を第2熱交換器を経て第2吸
収器に送り、再び第1発生器より発生した冷媒蒸気を吸
収させて、吸収溶液を第2吸収器、第2発生器、第3発
生器の順で循環させ、第2発生器において発生した冷媒
蒸気を第3発生器に導き、中間溶液を加熱して濃縮し、
凝縮した後、凝縮器8に導き、第3発生器において発生
した冷媒蒸気を凝縮器に導き、冷却水(ここでは暖房用
温水)に潜熱を与えて凝縮し、凝縮器の冷媒は蒸発器に
送り、低温熱源の熱を汲み上げて蒸発し、暖房用温水を
温水とり出しラインを経由して第1吸収器、第2吸収
器、凝縮器の順に流し、第1吸収器、第2吸収器におい
ては吸収熱、凝縮器においては凝縮熱をそれぞれ貰うこ
とにより昇温して放熱器内に循環させ、冷房時のサイク
ルにおいては、蒸発器において冷房用冷水から熱を奪っ
て発生した冷媒蒸気は第1吸収器において吸収溶液に吸
収し、第1吸収器の稀溶液を溶液ポンプにより第1熱交
換器、第3熱交換器を経て第2発生器に導き、蒸気によ
り加熱して中間濃度溶液と冷媒蒸気とに分離し、第2発
生器の中間濃度溶液を第3熱交換器を経て第3発生器に
導き、第2発生器より発生した冷媒蒸気により加熱して
濃溶液と冷媒蒸気とに分離し、第3発生器の濃溶液を第
1熱交換器を経て第1吸収器に導き、再び蒸発器からの
冷媒蒸気を吸収させ、第2発生器において発生した冷媒
蒸気を第3発生器に導き、中間濃度溶液を加熱濃縮して
凝縮し凝縮器に送り、第3発生器において発生した冷媒
蒸気を凝縮器に導き、冷却水に潜熱を与えて凝縮し、凝
縮器の冷媒は蒸発器に送り、冷房用の冷水から熱を奪っ
て蒸発し、冷却水は第1吸収器においては吸収熱、凝縮
器においては凝縮熱を奪い、更に第1及び第2バイパス
ラインを切り換えて第1発生器及び第2吸収器をバイパ
スし、冷房時においては通常の二重効果サイクルを組ん
で冷房を行うことが可能なように構成して成る低温熱源
利用吸収ヒートポンプ。
[0006] Evaporator, first absorber, first generator, first heat exchanger, second absorber, second generator, third generator, condenser, second heat exchanger, third heat exchange A heat source water line passed through the evaporator, a hot water extraction line circulating through the condenser from the first absorber through the second absorber, a low temperature water extraction line circulating through the first generator, A first bypass line for cooling switching, which branches off a first diluted solution line from the first absorber to the first generator and connects to a second diluted solution line from the second absorber to the second generator; The second concentrated solution line from the third generator to the second absorber is branched and the second concentrated solution line is branched from the first generator to the first
The heating cycle includes a second bypass line for switching cooling connected to the first concentrated solution line leading to the absorber, and in the heating cycle, heat is drawn from the low-temperature heat source in the evaporator and the evaporated refrigerant vapor is converted into the absorbing solution in the first absorber. Absorbed, the dilute solution in the first absorber is passed through the first heat exchanger by the solution pump, heated by the low-temperature water led to the first generator and separated into refrigerant vapor and a concentrated solution. The separated concentrated solution is passed through a first heat exchanger and sent to a first absorber,
The refrigerant vapor is again absorbed and circulated between the first absorber and the first generator, and the refrigerant vapor generated in the first generator is absorbed in the absorption solution in the second absorber, and the diluted solution in the second absorber is absorbed. Was led to the second generator through the second heat exchanger and the third heat exchanger by the solution pump, and was heated by steam (high-temperature heat source) to be separated into an intermediate-concentration solution and a refrigerant vapor, and separated in the second generator. The intermediate-concentration solution is led to the third generator via the third heat exchanger, and the refrigerant vapor generated in the second generator causes
It is further heated to separate it into a concentrated solution and refrigerant vapor, and the concentrated solution separated in the third generator is sent to the second absorber via the second heat exchanger, and the refrigerant vapor generated from the first generator is absorbed again. Then, the absorbing solution is circulated in the order of the second absorber, the second generator, and the third generator, and the refrigerant vapor generated in the second generator is guided to the third generator, and the intermediate solution is heated and concentrated. And
After the condensation, the refrigerant is led to the condenser 8, the refrigerant vapor generated in the third generator is led to the condenser, and latent water is given to the cooling water (here, the heating water for heating) to be condensed. Sends, pumps out the heat of the low-temperature heat source, evaporates, and flows the hot water for heating through the hot water take-out line in the order of the first absorber, the second absorber, and the condenser, and in the first absorber, the second absorber In the cooling cycle, the refrigerant vapor generated by removing heat from the cooling water in the evaporator receives the heat of absorption and the heat of condensation in the condenser. In the first absorber, the diluted solution in the first absorber is absorbed into the absorbing solution, guided to the second generator through the first heat exchanger and the third heat exchanger by the solution pump, and heated by steam to form an intermediate concentration solution. Separated into refrigerant vapor and the intermediate concentration solution of the second generator The concentrated solution of the third generator is guided to the third generator via the third heat exchanger, heated by the refrigerant vapor generated from the second generator and separated into a concentrated solution and a refrigerant vapor. Through the first absorber, absorbs the refrigerant vapor from the evaporator again, guides the refrigerant vapor generated in the second generator to the third generator, heats and concentrates the intermediate-concentration solution to condense it into the condenser. Sending the refrigerant vapor generated in the third generator to the condenser, giving latent heat to the cooling water and condensing it, sending the refrigerant of the condenser to the evaporator, evaporating by taking away heat from the cooling water for cooling, and cooling. Water absorbs heat of absorption in the first absorber and heat of condensation in the condenser, and further switches the first and second bypass lines to bypass the first generator and the second absorber. Constructed so that cooling can be performed in a double effect cycle Low temperature heat source using absorption heat pump consisting of Te.

【0007】[0007]

【作用】[Action]

1.暖房時のサイクル 蒸発器において低温熱源から熱を汲み上げ蒸発した冷媒
蒸気は第1吸収器において吸収溶液に吸収される。第1
吸収器の稀溶液は溶液ポンプにより第1熱交換器を通
り、第1発生器に導かれ低温水からの加熱を受けて冷媒
蒸気と濃溶液とに分離される。第1発生器において分
離された濃溶液は、第1熱交換器4を通り、第1吸収器
に送られ、再び冷媒蒸気を吸収することにより第1吸収
器と第1発生器の間を循環する。また、第1発生器にお
いて発生した冷媒蒸気は第2吸収器において吸収溶液に
吸収される。第2吸収器5の稀溶液は溶液ポンプにより
第2熱交換器、第3熱交換器を経て第2発生器に導かれ
蒸気(高温熱源)による加熱を受けて中間濃度溶液と冷
媒蒸気とに分離される。第2発生器において分離された
中間濃度溶液は第3熱交換器を経て第3発生器に導か
れ、第2発生器において発生した冷媒蒸気により、さら
に加熱され濃溶液と冷媒蒸気とに分離される。第3発生
器において分離された濃溶液は、第2熱交換器を経て第
2吸収器に送られ再び第1発生器より発生した冷媒蒸気
を吸収することにより、吸収溶液は第2吸収器、第2発
生器、第3発生器の順で循環する。また、第2発生器に
おいて発生した冷媒蒸気は第3発生器に導かれ中間溶液
を加熱濃縮し、凝縮した後、凝縮器に導かれる。また、
第3発生器において発生した冷媒蒸気も凝縮器8に導か
れ、冷却水(ここでは暖房用温水)に潜熱を与えて凝縮
する。凝縮器の冷媒は蒸発器1に送られ、低温熱源の熱
を汲み上げて蒸発する。上記のようなサイクルを繰り返
す間に、温水とり出しラインの暖房用温水は第1吸収
器、第2吸収器、凝縮器の順に流れ、第1吸収器、第2
吸収器においては吸収熱、凝縮器においては凝縮熱をそ
れぞれ貰うことにより昇温され、放熱器内を循環する。
1. Cycle at the time of heating Pumping heat from a low-temperature heat source in the evaporator and evaporating the refrigerant vapor is absorbed in the absorbing solution in the first absorber. First
The dilute solution in the absorber passes through the first heat exchanger by the solution pump, is led to the first generator, is heated by the low-temperature water, and is separated into the refrigerant vapor and the concentrated solution. The concentrated solution separated in the first generator passes through the first heat exchanger 4, is sent to the first absorber, and circulates between the first absorber and the first generator by absorbing the refrigerant vapor again. I do. Further, the refrigerant vapor generated in the first generator is absorbed in the absorbing solution in the second absorber. The dilute solution in the second absorber 5 is led to the second generator through the second heat exchanger and the third heat exchanger by the solution pump, and is heated by steam (high-temperature heat source) to be converted into an intermediate concentration solution and refrigerant vapor. Separated. The intermediate concentration solution separated in the second generator is led to the third generator via the third heat exchanger, and further heated by the refrigerant vapor generated in the second generator to be separated into a concentrated solution and refrigerant vapor. You. The concentrated solution separated in the third generator is sent to the second absorber through the second heat exchanger and absorbs the refrigerant vapor generated again from the first generator, so that the absorbing solution becomes the second absorber, The circulation is performed in the order of the second generator and the third generator. The refrigerant vapor generated in the second generator is led to the third generator, where the intermediate solution is heated and concentrated, condensed, and then led to the condenser. Also,
The refrigerant vapor generated in the third generator is also guided to the condenser 8 and condenses by giving latent heat to the cooling water (here, hot water for heating). The refrigerant in the condenser is sent to the evaporator 1 and pumps up the heat of the low-temperature heat source to evaporate. During the repetition of the above cycle, the hot water for heating in the hot water extraction line flows in the order of the first absorber, the second absorber, and the condenser, and the first absorber, the second absorber,
The temperature is increased by receiving heat of absorption in the absorber and heat of condensation in the condenser, and circulates in the radiator.

【0008】2.冷房時のサイクル 蒸発器において冷房用冷水から熱を奪って発生した冷媒
蒸気は第1吸収器において吸収溶液に吸収される。第1
吸収器の稀溶液は溶液ポンプにより第1熱交換器、第3
熱交換器を経て第2発生器に導かれ、蒸気による加熱を
うけて中間濃度溶液と冷媒蒸気とに分離される。第2発
生器の中間濃度溶液は第3熱交換器を経て第3発生器に
導かれ、第2発生器より発生した冷媒蒸気により加熱を
うけて、濃溶液と冷媒蒸気とに分離される。第3発生器
の濃溶液は第1熱交換器を経て第1吸収器に導かれ、再
び蒸発器からの冷媒蒸気を吸収する。また、第2発生器
において発生した冷媒蒸気は第3発生器に導かれ、中間
濃度溶液を加熱濃縮して凝縮し凝縮器に送られる。第3
発生器において発生した冷媒蒸気は凝縮器に導かれ冷却
水に潜熱を与えて凝縮する。凝縮器の冷媒は蒸発器に送
られ、冷房用の冷水から熱を奪って蒸発する。また冷却
水は第1吸収器においては吸収熱、凝縮器においては凝
縮熱を奪う。すなわち、第1熱交換器・第1発生器間と
第2熱交換器・第3熱交換器間との間、第3発生器・第
2熱交換器間と第1発生器・第1熱交換器間との間に第
1及び第2バイパスラインを設けてこのバイパス側に切
り替えることによって、第1発生器及び第2吸収器をバ
イパスし、冷房時においては熱源水ラインを介して冷水
をとり出すことにより通常の二重効用サイクルを組んで
冷房を行うことが可能となる。
[0008] 2. Cooling cycle The refrigerant vapor generated by removing heat from the cooling water in the evaporator is absorbed by the absorbing solution in the first absorber. First
The dilute solution in the absorber is supplied to the first heat exchanger and the third
It is guided to the second generator via the heat exchanger, and is separated into an intermediate concentration solution and a refrigerant vapor by being heated by the vapor. The intermediate-concentration solution of the second generator is guided to the third generator via the third heat exchanger, and is heated by the refrigerant vapor generated from the second generator to be separated into a concentrated solution and refrigerant vapor. The concentrated solution of the third generator is led to the first absorber via the first heat exchanger, and absorbs the refrigerant vapor from the evaporator again. The refrigerant vapor generated in the second generator is guided to the third generator, where the intermediate-concentration solution is heated and concentrated, condensed, and sent to the condenser. Third
Refrigerant vapor generated in the generator is guided to the condenser, and condenses by giving latent heat to the cooling water. The refrigerant in the condenser is sent to the evaporator, and evaporates by removing heat from the cooling water for cooling. The cooling water takes away heat of absorption in the first absorber and heat of condensation in the condenser. That is, between the first heat exchanger and the first generator and between the second heat exchanger and the third heat exchanger, between the third generator and the second heat exchanger, and between the first generator and the first heat exchanger. By providing the first and second bypass lines between the exchangers and switching to the bypass side, the first generator and the second absorber are bypassed, and during cooling, cold water is supplied through the heat source water line. By taking it out, it becomes possible to perform cooling in a normal double-effect cycle.

【0009】[0009]

【実施例】図1において1は蒸発器、2は第1吸収器、
3は第1発生器、4は第1熱交換器、5は第2吸収器、
6は第2発生器、7は第3発生器、8は凝縮器、9は第
2熱交換器、10は第3熱交換器、11は蒸発器1内に通さ
れた熱源水ライン(冷水ライン)、12は第1吸収器2か
ら第2吸収器5を通り、凝縮器8を循環する温水とり出
しライン(冷却水ライン)、13は第1発生器3内を循環
する低温水ライン、14は第1吸収器2から出て第1発生
器3に至る第1稀溶液ライン20を三方弁15で分岐して第
2吸収器5から第2発生器6に至る第2稀溶液ライン21
に三方弁16で結んだ冷房切り替え用の第1バイパスライ
ン、17は第3発生器7から第2吸収器5に至る第2濃溶
液ライン23を三方弁18で分岐して第1発生器3から第1
吸収器2に至る第1濃溶液ライン22に三方弁19で結んだ
冷房切り替え用の第2バイパスライン、24は第2発生器
6内を加熱するための加熱蒸気ライン、25、26、27、28
は蒸気ラインである。次に、上記実施例の運転例を説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIG. 1, 1 is an evaporator, 2 is a first absorber,
3 is a first generator, 4 is a first heat exchanger, 5 is a second absorber,
6 is a second generator, 7 is a third generator, 8 is a condenser, 9 is a second heat exchanger, 10 is a third heat exchanger, and 11 is a heat source water line (cold water) passed through the evaporator 1. Line, 12 is a hot water extraction line (cooling water line) passing from the first absorber 2 through the second absorber 5 and circulating through the condenser 8, 13 is a low temperature water line circulating in the first generator 3, Reference numeral 14 denotes a second dilute solution line 21 which branches out of the first dilute solution line 20 from the first absorber 2 and reaches the first generator 3 by the three-way valve 15 and extends from the second absorber 5 to the second generator 6.
A first bypass line for cooling switching connected to a three-way valve 16 is connected to a third concentrated solution line 23 extending from the third generator 7 to the second absorber 5 by a three-way valve 18. From first
A second bypass line for cooling switching, which is connected to a first concentrated solution line 22 leading to the absorber 2 by a three-way valve 19, 24 is a heated steam line for heating the inside of the second generator 6, 25, 26, 27, 28
Is a steam line. Next, an operation example of the above embodiment will be described.

【0010】1.暖房運転サイクル 蒸発器1において低温熱源から熱を汲み上げ蒸発した冷
媒蒸気は第1吸収器2において吸収溶液に吸収される。
第1吸収器2の稀溶液は溶液ポンプにより第1熱交換
器4を通り、第1発生器3に導かれ低温水からの加熱を
受けて冷媒蒸気と濃溶液とに分離される。第1発生器
3において分離された濃溶液は、第1熱交換器4を通
り、第1吸収器2に送られ、再び冷媒蒸気を吸収するこ
とにより第1吸収器2と第1発生器3の間を循環する。
また、第1発生器3において発生した冷媒蒸気は第2吸
収器5において吸収溶液に吸収される。第2吸収器5の
稀溶液は溶液ポンプにより第2熱交換器9、第3熱交換
器10を経て第2発生器6に導かれ蒸気(高温熱源)によ
る加熱を受けて中間濃度溶液と冷媒蒸気とに分離され
る。第2発生器6において分離された中間濃度溶液は第
3熱交換器10を経て第3発生器7に導かれ、第2発生器
6において発生した冷媒蒸気により、さらに加熱され濃
溶液と冷媒蒸気とに分離される。第3発生器7において
分離された濃溶液は、第2熱交換器9を経て第2吸収器
5に送られ再び第1発生器3により発生した冷媒蒸気を
吸収することにより、吸収溶液は第2吸収器5、第2発
生器6、第3発生器7の順で循環する。また、第2発生
器6において発生した冷媒蒸気は第3発生器7に導かれ
中間溶液を加熱濃縮し、凝縮した後、凝縮器8に導かれ
る。また、第3発生器7において発生した冷媒蒸気も凝
縮器8に導かれ、冷却水(ここでは暖房用温水)に潜熱
を与えて凝縮する。凝縮器8の冷媒は蒸発器1に送ら
れ、低温熱源の熱を汲み上げて蒸発する。上記のような
サイクルを繰り返す間に、温水とり出しライン12の暖房
用温水は第1吸収器2、第2吸収器5、凝縮器8の順に
流れ、第1吸収器2、第2吸収器5においては吸収熱、
凝縮器8においては凝縮熱をそれぞれ貰うことにより昇
温され、放熱器(図示せず)に至り、暖房を行う。
[0010] 1. Heating operation cycle In the evaporator 1, the refrigerant vapor pumped up from the low-temperature heat source and evaporated is absorbed in the absorption solution in the first absorber 2.
The dilute solution in the first absorber 2 passes through the first heat exchanger 4 by the solution pump, is led to the first generator 3 and is heated by low-temperature water to be separated into refrigerant vapor and a concentrated solution. The concentrated solution separated in the first generator 3 passes through the first heat exchanger 4 and is sent to the first absorber 2, where the concentrated solution is again absorbed by the refrigerant vapor so that the first absorber 2 and the first generator 3 are absorbed. Circulating between
Further, the refrigerant vapor generated in the first generator 3 is absorbed in the absorbing solution in the second absorber 5. The dilute solution in the second absorber 5 is led to the second generator 6 via the second heat exchanger 9 and the third heat exchanger 10 by the solution pump, and is heated by steam (high-temperature heat source) to receive the intermediate solution and the refrigerant. Separated with steam. The intermediate-concentration solution separated in the second generator 6 is guided to the third generator 7 through the third heat exchanger 10, and further heated by the refrigerant vapor generated in the second generator 6, and is further heated by the refrigerant vapor. And separated. The concentrated solution separated in the third generator 7 is sent to the second absorber 5 through the second heat exchanger 9 and absorbs the refrigerant vapor generated by the first generator 3 again, so that the absorbing solution becomes the second solution. It circulates in the order of the two absorbers 5, the second generator 6, and the third generator 7. The refrigerant vapor generated in the second generator 6 is guided to the third generator 7, where the intermediate solution is heated and concentrated, condensed, and then guided to the condenser 8. The refrigerant vapor generated in the third generator 7 is also guided to the condenser 8 and condenses by giving latent heat to the cooling water (here, hot water for heating). The refrigerant in the condenser 8 is sent to the evaporator 1 and pumps up the heat of the low-temperature heat source to evaporate. During the repetition of the above-described cycle, the hot water for heating in the hot water extraction line 12 flows in the order of the first absorber 2, the second absorber 5, and the condenser 8, and the first absorber 2, the second absorber 5 In the heat of absorption,
In the condenser 8, the temperature is raised by receiving the heat of condensation, respectively, and reaches a radiator (not shown) to perform heating.

【0011】2.冷房運転サイクル 蒸発器1において低温熱源から熱を奪って発生した冷媒
蒸気は第1吸収器2において吸収溶液に吸収される。第
1吸収器2の稀溶液は溶液ポンプにより第1熱交換器
4、第3熱交換器10を経て第2発生器6に導かれ、蒸気
による加熱をうけて中間濃度溶液と冷媒蒸気とに分離さ
れる。第2発生器6の中間濃度溶液は第3熱交換器10を
経て第3発生器7に導かれ、第2発生器6より発生した
冷媒蒸気により加熱をうけて、濃溶液と冷媒蒸気とに分
離される。第3発生器7の濃溶液は第1熱交換器4を経
て第1吸収器2に導かれ、再び蒸発器1からの冷媒蒸気
を吸収する。また、第2発生器6において発生した冷媒
蒸気は第3発生器7に導かれ、中間濃度溶液を加熱濃縮
して凝縮し凝縮器8に送られる。第3発生器7において
発生した冷媒蒸気は凝縮器8に導かれて冷却水ライン12
を通る冷却水に潜熱を与えて凝縮する。凝縮器8の冷媒
は蒸発器1に送られ、冷房用の冷水から熱を奪って蒸発
する。また冷却水は第1吸収器2においては吸収熱、凝
縮器8においては凝縮熱を奪う。すなわち図1に示すよ
うに、第1熱交換器4・第1発生器3間と第2熱交換器
9・第3熱交換器10間との間、第3発生器7・第2熱交
換器9間と第1発生器3・第1熱交換器4間との間に冷
房切り替え用の三方弁、及び冷暖切り替え用バイパスラ
イン14、17を設けることによって、第1発生器4及び第
2吸収器5をバイパスし、冷房時においては通常の二重
効用サイクルを組んで暖房時の熱源水ライン11から冷水
をとり出し、放熱器内に循環させて冷房を行う。
2. Cooling operation cycle Refrigerant vapor generated by removing heat from a low-temperature heat source in the evaporator 1 is absorbed in the absorption solution in the first absorber 2. The dilute solution in the first absorber 2 is guided to the second generator 6 through the first heat exchanger 4 and the third heat exchanger 10 by a solution pump, and is heated by steam to be converted into an intermediate concentration solution and refrigerant vapor. Separated. The intermediate-concentration solution of the second generator 6 is guided to the third generator 7 through the third heat exchanger 10 and is heated by the refrigerant vapor generated from the second generator 6 to be converted into a concentrated solution and refrigerant vapor. Separated. The concentrated solution in the third generator 7 is guided to the first absorber 2 via the first heat exchanger 4 and absorbs the refrigerant vapor from the evaporator 1 again. The refrigerant vapor generated in the second generator 6 is guided to the third generator 7, where the intermediate-concentration solution is heated and concentrated, condensed, and sent to the condenser 8. Refrigerant vapor generated in the third generator 7 is guided to the condenser 8 and is supplied to the cooling water line 12.
Gives latent heat to the cooling water passing through and condenses it. The refrigerant in the condenser 8 is sent to the evaporator 1 and evaporates by removing heat from cooling water for cooling. The cooling water takes away heat of absorption in the first absorber 2 and heat of condensation in the condenser 8. That is, as shown in FIG. 1, between the first heat exchanger 4 and the first generator 3 and between the second heat exchanger 9 and the third heat exchanger 10, between the third generator 7 and the second heat exchanger. By providing a three-way valve for cooling switching and bypass lines 14 and 17 for cooling and heating between the units 9 and between the first generator 3 and the first heat exchanger 4, the first generator 4 and the second generator By bypassing the absorber 5 and taking out a cold water from the heat source water line 11 at the time of heating in a normal double effect cycle at the time of cooling, and circulating in the radiator to perform cooling.

【0012】次に、上記実施例を用いた吸収ヒートポン
プの計算条件例を示す。
Next, an example of calculation conditions for an absorption heat pump using the above embodiment will be described.

【0013】 1.初期条件 (1)冷水温度 入口 12 ℃ 出口 9 ℃ (2)加熱用低温温水温度 入口 70 ℃ 出口 65 ℃ (3)加熱用蒸気圧力 5 kg/ cm2 G (4)温水温度 入口 40 ℃ 出口 45 ℃ 2.計算に用いたサイクル条件 初期条件より決定した新しいサイクルのサイクル条件を
以下に示す。
[0013] 1. Initial conditions (1) Cold water temperature Inlet 12 ° C Outlet 9 ° C (2) Low temperature hot water temperature for heating Inlet 70 ° C Outlet 65 ° C (3) Steam pressure for heating 5 kg / cm 2 G (4) Hot water temperature Inlet 40 ° C Outlet 45 ° C 2. Cycle conditions used for calculation The cycle conditions of the new cycle determined from the initial conditions are shown below.

【0014】 (1)蒸発器 温度 tE 7.5 ℃ 圧力 PE 8 mmHg (2)吸収器 第1 圧力 PE 8 mmHg 第2 圧力 PCE 14 mmHg (3)凝縮器 温度 tC 47 ℃ 圧力 PC 80 mmHg (4)再生器 第1 圧力 PCE 14 mmHg 第2 圧力 PC 80 mmHg 第3 圧力 PC 589 mmHg (5)溶液濃度 低段側 稀溶液 ξL1 60.0 % 濃溶液 ξL2 63.0 % 高段側 稀溶液 ξH1 55.2 % 中間溶液 ξH2 57.0 % 濃溶液 ξH2 58.2 % 3.比較に用いた従来のシステム 単効用吸収ヒートポンプ+低温排熱回収温水熱交換器 4.比較結果 <計算結果例> 100 kcal/hの暖房用温水を得る場合 新しいサイクル 低温水排熱利用量 40.4 kcal/h 蒸気消費量 30.0 kcal/h 従来のシステム 低温水排熱利用量 40.4 kcal/h 蒸気消費量 35.1 kcal/h 蒸気消費量削減率 (35.1−30.0)/35.1×100 =1
4.5% 以上より、同じ低温水排熱がある場合、従来のシステム
と比較すると蒸気の消費量が15%程度削減可能となっ
た。
[0014] (1) evaporator temperature t E 7.5 ° C. The pressure P E 8 mmHg (2) the absorber first pressure P E 8 mmHg second pressure P CE 14 mmHg (3) condenser temperature t C 47 ° C. The pressure P C 80 mmHg (4) regenerator first pressure P CE 14 mmHg second pressure P C 80 mmHg third pressure P C 589 mmHg (5) solution concentration lower stage diluted solution xi] L1 60.0% concentrated solution xi] L2 63.0% higher stage Side Dilute solution ξ H1 55.2% Intermediate solution ξ H2 57.0% Concentrated solution ξ H2 58.2% 3. Conventional system used for comparison Single-effect absorption heat pump + low-temperature exhaust heat recovery hot-water heat exchanger Comparison results <Example of calculation results> When obtaining 100 kcal / h of hot water for heating New cycle Low-temperature water waste heat usage 40.4 kcal / h Steam consumption 30.0 kcal / h Conventional system Low-temperature water waste heat usage 40.4 kcal / h Steam consumption 35.1 kcal / h Steam consumption reduction rate (35.1−30.0) /35.1×100 = 1
From 4.5% or more, when the same low-temperature water exhaust heat is used, steam consumption can be reduced by about 15% compared to the conventional system.

【0015】図2に上記新サイクル運転時のデューリン
グ線図を示す。
FIG. 2 shows a During diagram during the new cycle operation.

【0016】[0016]

【発明の効果】本発明は以上の如き構成と作用から成る
ため、暖房運転においては蒸気の消費量を15%程度削減
して効率の良い運転を行うことができると共に三方弁を
切り替えるだけで冷房時には二重効用サイクル運転を行
うことができる。
Since the present invention has the above-described structure and operation, in the heating operation, it is possible to reduce the steam consumption by about 15% to perform the efficient operation and to perform the cooling only by switching the three-way valve. Sometimes a double effect cycle operation can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るヒートポンプの実施例の説明図。FIG. 1 is an explanatory view of an embodiment of a heat pump according to the present invention.

【図2】実施例の場合のデューリング線図の説明図。FIG. 2 is an explanatory diagram of a During diagram in the case of an embodiment.

【符号の説明】[Explanation of symbols]

1 蒸発器 2 第1吸収器 3 第1発生器 4 第1熱交換器 5 第2吸収器 6 第2発生器 7 第3発生器 8 凝縮器 9 第2熱交換器 10 第3熱交換器 11 熱源水ライン(冷水ライン) 12 温水とり出しライン(冷却水ライン) 13 低温水ライン 14 第1バイパスライン 15、16 三方弁 17 第2バイパスライン 18、19 三方弁 20 第1稀溶液ライン 21 第2稀溶液ライン 22 第1濃溶液ライン 23 第2濃溶液ライン 24 加熱蒸気ライン DESCRIPTION OF SYMBOLS 1 Evaporator 2 1st absorber 3 1st generator 4 1st heat exchanger 5 2nd absorber 6 2nd generator 7 3rd generator 8 Condenser 9 2nd heat exchanger 10 3rd heat exchanger 11 Heat source water line (cold water line) 12 Hot water extraction line (cooling water line) 13 Low temperature water line 14 First bypass line 15, 16 Three-way valve 17 Second bypass line 18, 19 Three-way valve 20 First dilute solution line 21 Second Dilute solution line 22 First concentrated solution line 23 Second concentrated solution line 24 Heated steam line

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−37262(JP,A) 特開 昭62−272068(JP,A) 特開 昭59−32762(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25B 15/00 303 F25B 30/04 520 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-37262 (JP, A) JP-A-62-272068 (JP, A) JP-A-59-32762 (JP, A) (58) Field (Int. Cl. 7 , DB name) F25B 15/00 303 F25B 30/04 520

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 蒸発器、第1吸収器、第1発生器、第1
熱交換器、第2吸収器、第2発生器、第3発生器、凝縮
器、第2熱交換器、第3熱交換器、蒸発器内に通された
熱源水ライン、第1吸収器から第2吸収器を通り、凝縮
器を循環する温水とり出しライン、第1発生器内を循環
する低温水ライン、第1吸収器から出て第1発生器に至
る第1稀溶液ラインを分岐して第2吸収器から第2発生
器に至る第2稀溶液ラインに結んだ冷房切り換え用の第
1バイパスライン、第3発生器から第2吸収器に至る第
2濃溶液ラインを分岐して第1発生器から第1吸収器に
至る第1濃溶液ラインに結んだ冷房切り換え用の第2バ
イパスラインから成ると共に暖房サイクルにおいては、
蒸発器において低温熱源から熱を汲み上げ蒸発した冷媒
蒸気を第1吸収器において吸収溶液に吸収させ、第1吸
収器の稀溶液は溶液ポンプにより第1熱交換器を通し、
第1発生器に導いた低温水により加熱して冷媒蒸気と濃
溶液とに分離し、第1発生器において分離した濃溶液
を、第1熱交換器に通し、第1吸収器に送り、再び冷媒
蒸気を吸収させて第1吸収器と第1発生器の間を循環さ
せ、第1発生器において発生した冷媒蒸気を第2吸収器
において吸収溶液に吸収し、第2吸収器の稀溶液を溶液
ポンプにより第2熱交換器、第3熱交換器を経て第2発
生器に導き蒸気(高温熱源)により加熱して中間濃度溶
液と冷媒蒸気とに分離し、第2発生器において分離した
中間濃度溶液を第3熱交換器を経て第3発生器に導き、
第2発生器において発生した冷媒蒸気により、さらに加
熱して濃溶液と冷媒蒸気とに分離し、第3発生器におい
て分離した濃溶液を第2熱交換器を経て第2吸収器に送
り、再び第1発生器より発生した冷媒蒸気を吸収させ
て、吸収溶液を第2吸収器、第2発生器、第3発生器の
順で循環させ、第2発生器において発生した冷媒蒸気を
第3発生器に導き、中間溶液を加熱して濃縮し、凝縮し
た後、凝縮器8に導き、第3発生器において発生した冷
媒蒸気を凝縮器に導き、冷却水(ここでは暖房用温水)
に潜熱を与えて凝縮し、凝縮器の冷媒は蒸発器に送り、
低温熱源の熱を汲み上げて蒸発し、暖房用温水を温水と
り出しラインを経由して第1吸収器、第2吸収器、凝縮
器の順に流し、第1吸収器、第2吸収器においては吸収
熱、凝縮器においては凝縮熱をそれぞれ貰うことにより
昇温して放熱器内に循環させ、 冷房時のサイクルにおいては、蒸発器において熱源水ラ
インから熱を奪って発生した冷媒蒸気は第1吸収器にお
いて吸収溶液に吸収し、第1吸収器の稀溶液を溶液ポン
プにより第1熱交換器、第3熱交換器を経て第2発生器
に導き、蒸気により加熱して中間濃度溶液と冷媒蒸気と
に分離し、第2発生器の中間濃度溶液を第3熱交換器を
経て第3発生器に導き、第2発生器より発生した冷媒蒸
気により加熱して濃溶液と冷媒蒸気とに分離し、第3発
生器の濃溶液を第1熱交換器を経て第1吸収器に導き、
再び蒸発器からの冷媒蒸気を吸収させ、第2発生器にお
いて発生した冷媒蒸気を第3発生器に導き、中間濃度溶
液を加熱濃縮して凝縮し凝縮器に送り、第3発生器にお
いて発生した冷媒蒸気を凝縮器に導き、冷却水に潜熱を
与えて凝縮し、凝縮器の冷媒は蒸発器に送り、冷房用の
冷水から熱を奪って蒸発し、冷却水は第1吸収器におい
ては吸収熱、凝縮器においては凝縮熱を奪い、更に第1
及び第2バイパスラインを切り換えて第1発生器及び第
2吸収器をバイパスし、冷房時においては通常の二重効
果サイクルを組んで冷房を行うことが可能なように構成
して成る低温熱源利用吸収ヒートポンプ。
1. An evaporator, a first absorber, a first generator, a first
From the heat exchanger, the second absorber, the second generator, the third generator, the condenser, the second heat exchanger, the third heat exchanger, the heat source water line passed through the evaporator, and the first absorber A hot water extraction line circulating through the condenser through the second absorber, a low temperature water line circulating through the first generator, and a first dilute solution line exiting from the first absorber and reaching the first generator are branched. A first bypass line for cooling switching connected to a second dilute solution line from the second absorber to the second generator, and a second concentrated solution line from the third generator to the second absorber. In the heating cycle, a second bypass line for switching cooling is connected to a first concentrated solution line from the first generator to the first absorber.
In the evaporator, heat is drawn from the low-temperature heat source and the evaporated refrigerant vapor is absorbed in the absorption solution in the first absorber, and the diluted solution in the first absorber is passed through the first heat exchanger by the solution pump,
Heated by the low-temperature water led to the first generator to separate into a refrigerant vapor and a concentrated solution, the concentrated solution separated in the first generator is passed through the first heat exchanger, sent to the first absorber, and again. The refrigerant vapor is absorbed and circulated between the first absorber and the first generator, and the refrigerant vapor generated in the first generator is absorbed in the absorption solution in the second absorber, and the diluted solution in the second absorber is removed. The solution pump passes through the second heat exchanger and the third heat exchanger to the second generator and is heated by steam (high-temperature heat source) to be separated into an intermediate-concentration solution and a refrigerant vapor, which is then separated in the second generator. Guiding the concentrated solution through a third heat exchanger to a third generator,
The refrigerant vapor generated in the second generator is further heated to separate it into a concentrated solution and a refrigerant vapor, and the concentrated solution separated in the third generator is sent to the second absorber via the second heat exchanger and again. The refrigerant vapor generated from the first generator is absorbed, the absorbing solution is circulated in the order of the second absorber, the second generator, and the third generator, and the refrigerant vapor generated in the second generator is generated in the third generator. After the intermediate solution is heated, concentrated and condensed, and condensed, it is guided to the condenser 8, and the refrigerant vapor generated in the third generator is guided to the condenser, and the cooling water (here, hot water for heating)
Gives latent heat to the condensate, the refrigerant of the condenser is sent to the evaporator,
The heat of the low-temperature heat source is pumped and evaporated, and the warm water for heating flows through the hot water take-out line in the order of the first absorber, the second absorber, and the condenser, and is absorbed in the first absorber and the second absorber. Heat and heat are condensed in the condenser to raise the temperature and circulate through the radiator. In the cooling cycle, the refrigerant vapor generated by removing heat from the heat source water line in the evaporator is first absorbed. The dilute solution in the first absorber is introduced into the second generator via the first heat exchanger and the third heat exchanger by the solution pump, and is heated by the steam to be heated to the intermediate concentration solution and the refrigerant vapor. And the intermediate concentration solution of the second generator is led to the third generator via the third heat exchanger, and heated by the refrigerant vapor generated from the second generator to be separated into the concentrated solution and the refrigerant vapor. Then, the concentrated solution of the third generator is passed through the first heat exchanger to the first suction port. Lead to the collector,
The refrigerant vapor from the evaporator is again absorbed, the refrigerant vapor generated in the second generator is led to the third generator, the intermediate concentration solution is heated and concentrated, condensed, sent to the condenser, and generated in the third generator. The refrigerant vapor is led to the condenser and condenses by giving latent heat to the cooling water, and the refrigerant in the condenser is sent to the evaporator to take heat from the cooling water for cooling and evaporate, and the cooling water is absorbed by the first absorber. In heat and condenser, it takes away heat of condensation,
And using a low-temperature heat source configured to switch the second bypass line to bypass the first generator and the second absorber and to perform cooling in a normal double effect cycle during cooling. Absorption heat pump.
JP04338298A 1992-12-18 1992-12-18 Absorption heat pump using low-temperature heat source Expired - Fee Related JP3103225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04338298A JP3103225B2 (en) 1992-12-18 1992-12-18 Absorption heat pump using low-temperature heat source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04338298A JP3103225B2 (en) 1992-12-18 1992-12-18 Absorption heat pump using low-temperature heat source

Publications (2)

Publication Number Publication Date
JPH06185828A JPH06185828A (en) 1994-07-08
JP3103225B2 true JP3103225B2 (en) 2000-10-30

Family

ID=18316822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04338298A Expired - Fee Related JP3103225B2 (en) 1992-12-18 1992-12-18 Absorption heat pump using low-temperature heat source

Country Status (1)

Country Link
JP (1) JP3103225B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665174U (en) * 1992-11-16 1994-09-13 山口電機工業株式会社 Automotive tire cover with optical display function
JP3025231U (en) * 1995-07-19 1996-06-11 ギュン−ゴン キム Rescue band

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003266614A1 (en) 2002-09-26 2004-06-15 Ebara Corporation Absorption refrigerating machine
CN100449229C (en) * 2002-09-26 2009-01-07 株式会社荏原制作所 Absorption refrigerating machine
CN100451487C (en) * 2006-10-05 2009-01-14 李华玉 Two-stage absorbing heat pump of first type
CN101532748A (en) * 2009-04-14 2009-09-16 李华玉 Method for improving heating temperature of heat pump and type II high-temperature absorption heat pump
JP5513981B2 (en) * 2010-05-14 2014-06-04 荏原冷熱システム株式会社 Absorption heat pump
WO2012145859A1 (en) * 2011-04-25 2012-11-01 Li Huayu Recuperative double-effect and triple-effect second-type absorption heat pump
CN108954900A (en) * 2018-09-18 2018-12-07 迪茗(上海)智能科技有限公司 A kind of refrigerating plant and method
CN111854220A (en) * 2020-07-31 2020-10-30 东北电力大学 Efficient energy-saving method for cold end of steam turbine of thermal power generating unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665174U (en) * 1992-11-16 1994-09-13 山口電機工業株式会社 Automotive tire cover with optical display function
JP3025231U (en) * 1995-07-19 1996-06-11 ギュン−ゴン キム Rescue band

Also Published As

Publication number Publication date
JPH06185828A (en) 1994-07-08

Similar Documents

Publication Publication Date Title
WO2017185930A1 (en) Combined solar-powered seawater desalination and air-conditioned cooling method and system having high efficiency
JP3103225B2 (en) Absorption heat pump using low-temperature heat source
GB2166534A (en) Absorption refrigeration system
JP2696575B2 (en) Absorption refrigerator
JP3103224B2 (en) Absorption heat pump using low-temperature heat source
JPS5986846A (en) Hot water supply device of heat pump type
JP2000205691A (en) Absorption refrigerating machine
JP3865346B2 (en) Absorption chiller / heater
JP3481530B2 (en) Absorption chiller / heater
JP3297720B2 (en) Absorption refrigerator
JP2657703B2 (en) Absorption refrigerator
JP3290464B2 (en) Combined refrigeration equipment
JP3401546B2 (en) Absorption refrigerator
JP3093471B2 (en) Absorption heat pump using low-temperature heat source
JP3093472B2 (en) Absorption heat pump using low-temperature heat source
JPS6355620B2 (en)
JP2004301345A (en) Ammonia absorption refrigerator
JP2696574B2 (en) Absorption refrigerator
JP2892519B2 (en) Absorption heat pump equipment
US5911746A (en) Gax absorption cycle with secondary refrigerant
JP3173057B2 (en) Absorption heat pump
JPH0429339Y2 (en)
JP3401545B2 (en) Absorption refrigerator
JP2000257978A (en) Exhaust heat utilizing absorption heater chillear
JP3811632B2 (en) Waste heat input type absorption refrigerator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees