JPS5849780B2 - Absorption heat pump - Google Patents

Absorption heat pump

Info

Publication number
JPS5849780B2
JPS5849780B2 JP3028580A JP3028580A JPS5849780B2 JP S5849780 B2 JPS5849780 B2 JP S5849780B2 JP 3028580 A JP3028580 A JP 3028580A JP 3028580 A JP3028580 A JP 3028580A JP S5849780 B2 JPS5849780 B2 JP S5849780B2
Authority
JP
Japan
Prior art keywords
temperature
low
heat
generator
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3028580A
Other languages
Japanese (ja)
Other versions
JPS56127157A (en
Inventor
米造 井汲
淳夫 吹野
英行 渡辺
忠男 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP3028580A priority Critical patent/JPS5849780B2/en
Publication of JPS56127157A publication Critical patent/JPS56127157A/en
Publication of JPS5849780B2 publication Critical patent/JPS5849780B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 本発明は吸収式ヒートボンプ、詳しくは基本型式の第2
種ヒートポンプを二段にして低温および高温のヒートポ
ンプサイクルを作動させ、基本型式のヒートポンプより
さらに高温の温水が取得されるようにした第2種吸収式
ヒートポンプに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an absorption type heat pump, specifically a basic type second type heat pump.
This invention relates to a second type absorption heat pump in which a seed heat pump is operated in two stages to operate a low-temperature and high-temperature heat pump cycle, thereby obtaining hot water at a higher temperature than that of the basic type heat pump.

吸収式ヒートポンプは第1種ヒートポンプと第2種ヒー
トポンプに分類されるが、そのうちの第2種ヒートポン
プは吸収温度が発生温度より高く、また冷媒の蒸発温度
が凝縮温度より高いタイプのものであって、温排水など
の低温熱源から汲み上げた熱で冷媒を蒸発させ、この冷
媒蒸気を吸収液に吸収させるときに発生する吸収熱によ
り高温の温水を取得する装置である。
Absorption heat pumps are classified into type 1 heat pumps and type 2 heat pumps, of which the absorption temperature is higher than the generation temperature, and the evaporation temperature of the refrigerant is higher than the condensation temperature. This is a device that evaporates a refrigerant using heat pumped up from a low-temperature heat source such as heated waste water, and obtains high-temperature hot water using the absorbed heat generated when the refrigerant vapor is absorbed into an absorption liquid.

その第2種吸収式ヒートポンプの基本的型式は、例えば
第1図に示すように、上胴1に蒸発器2および吸収器3
が収められ、下胴4に発生器5および凝縮器6が収めら
れ、効率をよくするため発生器5と吸収器3の間に熱交
換器7が設けられ、さらに吸収液ポンプ8および冷媒ポ
ンプ9が付設され、蒸発器2内の液化冷媒を再循環させ
るための冷媒再循環ポンプ13とその接続配管が付設さ
れ蒸発器2の加熱熱源および発生器5の駆動熱源として
温排水10が、凝縮器6の吸熱熱源として冷却水11が
それぞれ用いられており、吸収器3から温水12が取得
されるようになっている。
The basic type of the second type absorption heat pump is, for example, as shown in FIG.
A generator 5 and a condenser 6 are housed in the lower shell 4. A heat exchanger 7 is provided between the generator 5 and the absorber 3 to improve efficiency, and an absorption liquid pump 8 and a refrigerant pump are installed. 9 is attached, and a refrigerant recirculation pump 13 for recirculating the liquefied refrigerant in the evaporator 2 and its connecting piping are attached. Cooling water 11 is used as an endothermic heat source for each of the vessels 6, and hot water 12 is obtained from the absorber 3.

冷媒吸収液には例えば水および臭化リチウム水溶液が用
いられる。
For example, water and an aqueous lithium bromide solution are used as the refrigerant absorption liquid.

第2種ヒートポンプの作動サイクルはつぎのとおりであ
る。
The operation cycle of the second type heat pump is as follows.

即ち、熱源となる温排水10は蒸発器2に導かれ、温排
水の有する熱を冷媒に与える。
That is, the heated waste water 10 serving as a heat source is guided to the evaporator 2, and the heat of the heated waste water is given to the refrigerant.

この熱によって蒸発器2において蒸発した冷媒蒸気は吸
収器3内において吸収液に吸収される。
The refrigerant vapor evaporated in the evaporator 2 by this heat is absorbed by an absorption liquid in the absorber 3.

この吸収プロセスで発生する熱量は吸収器3を通る水を
加熱するので温水12が得られる。
The amount of heat generated in this absorption process heats the water passing through the absorber 3 so that hot water 12 is obtained.

冷媒蒸気を吸収して稀釈された吸収液は熱交換器7を経
て発生器5に送られる。
The absorption liquid that has absorbed refrigerant vapor and is diluted is sent to the generator 5 via the heat exchanger 7.

その吸収液は発生器5において熱源となる温排水10に
よって加熱され沸騰し濃縮される。
The absorbed liquid is heated in the generator 5 by heated waste water 10 serving as a heat source, boils and is concentrated.

濃縮された吸収液は吸収液ポンプ8によって熱交換器7
を通って吸収器3からの高温稀釈液と熱交換後吸収器3
にはいり吸収を繰返す。
The concentrated absorption liquid is transferred to a heat exchanger 7 by an absorption liquid pump 8.
After heat exchange with the hot diluted liquid from the absorber 3 through the absorber 3
Enter and repeat absorption.

発生器5において発生した冷媒蒸気は凝縮器6に導かれ
、冷却水11によって冷却され凝縮する。
Refrigerant vapor generated in the generator 5 is led to the condenser 6, where it is cooled and condensed by the cooling water 11.

液化冷媒は冷媒ポンプ9によって蒸発器2に送られる。The liquefied refrigerant is sent to the evaporator 2 by a refrigerant pump 9.

蒸発器2内の液化冷媒は冷媒再環循ポンプ13によって
再循環される。
The liquefied refrigerant in the evaporator 2 is recirculated by a refrigerant recirculation pump 13.

このようにして温排水と冷却水との間の熱落差を利用す
ることによって吸収器で温水をさらに高温にして送り出
すのである。
In this way, by utilizing the heat drop between the heated wastewater and the cooling water, the absorber heats the hot water even higher and sends it out.

その基本型式の吸収式ヒートポンプにおいては、例えば
温排水10の温度が60℃で冷却水11の温度が15℃
のときには吸収器3から取得できる温水12は約80℃
〜90℃であるが、その温排水および冷却水の温度条件
を前述のとおりとし吸収器3から取得される温水12を
より高温にするためには、上述の基本型式の吸収式ヒー
トポンプを第2図の如く2台連設して一方を低温側20
、他方を高温側21とすることによって可能となる。
In the basic type of absorption heat pump, for example, the temperature of the heated waste water 10 is 60°C and the temperature of the cooling water 11 is 15°C.
When , the hot water 12 obtained from the absorber 3 is approximately 80°C.
~90°C, but in order to make the hot water 12 obtained from the absorber 3 higher temperature by setting the temperature conditions of the heated wastewater and cooling water as described above, the above-mentioned basic type absorption heat pump is replaced with a second one. As shown in the figure, install two units in a row and place one on the low temperature side 20.
, this becomes possible by setting the other side to the high temperature side 21.

第2図には第1図と共通のものには同一参照番号を用い
、その番号に低温側にはa、高温側にはbを付している
In FIG. 2, the same reference numerals are used for parts common to those in FIG. 1, and the numbers are suffixed with a for the low temperature side and b for the high temperature side.

低温側ヒートポンプ20においては温排水10の温度は
60℃、冷却水11の温度C:は15℃、取得温水12
の温度は80℃であるが、高温側ヒートポンプ21にお
いては低温側からの80℃の温水12を蒸発器2bおよ
び発生器5bに導き、冷却水11の温度を15℃とすれ
ば吸収器3bから100℃〜120”Cの高温水または
蒸気22が取得される。
In the low-temperature side heat pump 20, the temperature of the heated waste water 10 is 60°C, the temperature of the cooling water 11 is 15°C, and the obtained hot water 12 is
is 80°C, but in the high temperature side heat pump 21, the 80°C hot water 12 from the low temperature side is guided to the evaporator 2b and the generator 5b, and if the temperature of the cooling water 11 is 15°C, the hot water 12 from the absorber 3b is A high temperature water or steam 22 of 100°C to 120″C is obtained.

しかしながら、前述のように基本型式の吸収式ヒートポ
ンプを2台連設することは可能であるが、機械が大型と
なり、当然コストも高くなるという問題があった。
However, although it is possible to install two basic type absorption heat pumps in series as described above, there is a problem in that the machines become large and the cost naturally increases.

本発明は、前述の基本型式の吸収式ヒートポンプを2台
連設したものと同様の性能を有するコンパクトな吸収式
ヒートポンプを提供しようとするものである。
The present invention aims to provide a compact absorption heat pump having the same performance as that of two absorption heat pumps of the aforementioned basic type connected in series.

本発明による吸収式ヒートボンプは、一方の上胴内に低
温蒸発器および低温吸収器を収めるとともに他方の上胴
内に高温蒸発器および高温吸収器を収めていることは前
述の基本型式の吸収式ヒートポンプと同様であるが、下
胴については一つの下胴内に低温発生器および高温発生
器を収めるとともに低温、高温共用の凝縮器を収め、低
温蒸発器および低温発生器を加熱するのに温排水を、凝
縮器を冷却するのに冷却水を、高温蒸発器内で蒸発し且
つ高温発生器に熱を伝えるのに低温吸収器によって昇温
された液状の冷媒または冷媒と吸収液との混合液(以下
混合熱媒という)をそれぞれ用い、低温側および高温側
の二つのヒートポンプサイクルが作動して高温吸収器か
ら高温水が取得されるようにしたものである。
The absorption type heat pump according to the present invention has a low-temperature evaporator and a low-temperature absorber housed in one upper shell, and a high-temperature evaporator and a high-temperature absorber housed in the other upper shell. It is similar to a heat pump, but the lower body contains a low-temperature generator and a high-temperature generator, as well as a condenser for both low and high temperatures. waste water, cooling water to cool the condenser, liquid refrigerant or a mixture of refrigerant and absorption liquid evaporated in a high temperature evaporator and heated by a low temperature absorber to transfer heat to a high temperature generator. Two heat pump cycles, one on the low-temperature side and one on the high-temperature side, are operated to obtain high-temperature water from the high-temperature absorber using liquids (hereinafter referred to as mixed heat medium).

本発明による吸収式ヒートポンプの実施例について図面
を参照して説明する。
Embodiments of the absorption heat pump according to the present invention will be described with reference to the drawings.

第3図には第1図および第2図と共通のものには同一参
照番号を用い、その番号に低温側にはa1高温側にはb
を付している。
In Figure 3, the same reference numbers are used for the same parts as in Figures 1 and 2.
is attached.

第3図において、上胴は低温側20、高温側21の二つ
に分れており、低温側の上胴1a内に低温蒸発器2a、
低温吸収器3aが、高温側の上胴1b内に高温蒸発器2
b,高温吸収器3bが収められ、一つの下胴23内には
低温発生器24、高温発生器25および低温、高温共用
の凝縮器26が収められている。
In FIG. 3, the upper shell is divided into two parts, a low-temperature side 20 and a high-temperature side 21, and a low-temperature evaporator 2a,
A low-temperature absorber 3a is provided with a high-temperature evaporator 2 in the upper body 1b on the high-temperature side.
b, a high temperature absorber 3b is housed, and one lower body 23 houses a low temperature generator 24, a high temperature generator 25, and a condenser 26 for both low and high temperatures.

外部の接続配管としては、低温蒸発器2aの加熱熱源お
よび低温発生器24の駆動熱源として温排水10が流入
流出するようにされ、凝縮器26の吸熱熱源として冷却
水11が流入流出するようにされ、高温水または蒸気2
2を高温吸収器3bから取出すように温水が流入流出す
るようにされている。
The external connection piping is configured such that heated waste water 10 flows in and out as a heating heat source for the low-temperature evaporator 2a and as a driving heat source for the low-temperature generator 24, and cooling water 11 flows in and out as an endothermic heat source for the condenser 26. and high temperature water or steam2
2 is taken out from the high-temperature absorber 3b, hot water flows in and out.

一方高温蒸発器2b内の液状の冷媒または冷媒と吸収液
との混合液、即ち混合熱媒は熱媒ポンプ27によってま
ず高温発生器25内の管内を通り、ついで低温吸収器3
a内の管内を通って高温蒸発器2b内に導かれている高
温蒸発器2bはフラッシュ蒸発器が用いられている。
On the other hand, the liquid refrigerant or the mixture of refrigerant and absorption liquid in the high-temperature evaporator 2b, that is, the mixed heat medium, first passes through the tube in the high-temperature generator 25 by the heat medium pump 27, and then passes through the pipe in the low-temperature absorber 3.
A flash evaporator is used as the high-temperature evaporator 2b that is guided into the high-temperature evaporator 2b through the tube inside a.

また低温発生器24と低温吸収器3aの間、および高温
発生器25と高温吸収器3bの間にそれぞれ効率をよく
するための熱交換器?a 7bが設けられ、さらに低
温側および高温側に吸収液ポンプ8a,8bが付設され
、凝縮器26に冷媒ポンプ9が付設され、高温蒸発器2
bに熱媒ポンプ27が付設され、低温蒸発器2a内の液
化冷媒を伝熱管上に強制的に滴下させるための冷媒再循
環ポンプ13とその接続配管が付設されている。
Also, is there a heat exchanger between the low temperature generator 24 and the low temperature absorber 3a and between the high temperature generator 25 and the high temperature absorber 3b to improve efficiency? a 7b, absorption liquid pumps 8a and 8b are attached to the low-temperature side and high-temperature side, a refrigerant pump 9 is attached to the condenser 26, and a high-temperature evaporator 2
A heat medium pump 27 is attached to b, and a refrigerant recirculation pump 13 and its connecting piping are attached for forcibly dropping the liquefied refrigerant in the low-temperature evaporator 2a onto the heat transfer tubes.

この冷媒ポンプ9および冷媒再循環ポンプ13はポンプ
のキャビテーション等を防止するため液面リレー等によ
るポンプの保護装置を有することは云うまでもない。
It goes without saying that the refrigerant pump 9 and the refrigerant recirculation pump 13 have a pump protection device such as a liquid level relay to prevent pump cavitation or the like.

この吸収式ヒートポンプのヒートポンプサイクルについ
て説明する。
The heat pump cycle of this absorption heat pump will be explained.

下胴23で発生した冷媒蒸気は凝縮器26にて凝縮され
て液冷媒となり、冷媒ポンプ9により低温蒸発器2aお
よび高温蒸発器2bへ送られる。
The refrigerant vapor generated in the lower shell 23 is condensed in the condenser 26 to become a liquid refrigerant, and the refrigerant pump 9 sends the liquid refrigerant to the low-temperature evaporator 2a and the high-temperature evaporator 2b.

つぎに吸収液は低温サイクルと高温サイクルの二つに分
けられるが、低温サイクルでは吸収液が低温発生器24
において温排水10により加熱され濃液となって吸収液
ポンプ8aにより低温吸収器3aへ送られ、低温吸収器
3aにおいて低温蒸発器2aで蒸発した冷媒を吸収しそ
のときの吸収熱を管内を流れる流体に伝える。
Next, the absorption liquid is divided into a low temperature cycle and a high temperature cycle. In the low temperature cycle, the absorption liquid is transferred to the low temperature generator 24.
The concentrated liquid is heated by the heated waste water 10 and sent to the low-temperature absorber 3a by the absorbent pump 8a, where it absorbs the refrigerant evaporated by the low-temperature evaporator 2a, and the absorbed heat flows through the pipe. Tell the fluid.

つぎに高温サイクルでは吸収液が高温発生器25におい
て高温蒸発器2bからの混合熱媒により加熱され濃液と
なって吸収液ポンプ8bにより高温吸収器3bへ導かれ
、高温蒸発器2bから来る冷媒を吸収し、このときに生
ずる吸収熱により高温吸収器3b内を流れる温水22を
加熱する。
Next, in the high-temperature cycle, the absorption liquid is heated in the high-temperature generator 25 by the mixed heating medium from the high-temperature evaporator 2b, becomes a concentrated liquid, and is guided to the high-temperature absorber 3b by the absorption liquid pump 8b, where the refrigerant coming from the high-temperature evaporator 2b The absorbed heat generated at this time heats the hot water 22 flowing inside the high temperature absorber 3b.

温水を加熱した冷媒を吸収して薄くなった吸収液は高温
発生器25に戻り、再び加熱されて濃液となり同じサイ
クルを繰返す。
The absorption liquid, which has become thinner by absorbing the refrigerant that heated the hot water, returns to the high temperature generator 25 and is heated again to become a concentrated liquid, and the same cycle is repeated.

このサイクルで特徴的なことは、混合熱媒の循環サイク
ルである。
A characteristic feature of this cycle is the circulation cycle of the mixed heat medium.

高温蒸発器2bを出た混合熱媒は熱媒ポンプ27により
圧送され、高温発生器25の管内へと送られ、高温発生
器25内で管外を流下する吸収液に熱を与え、温度が低
下し、低温吸収器3aへと送られる。
The mixed heat medium that has exited the high-temperature evaporator 2b is pumped by the heat-medium pump 27 and sent into the tube of the high-temperature generator 25, where it gives heat to the absorption liquid flowing down outside the tube, and the temperature increases. The temperature decreases and is sent to the low-temperature absorber 3a.

低温吸収器3aでは高温発生器25とは逆に管外を流下
する吸収液により加熱される。
In the low-temperature absorber 3a, contrary to the high-temperature generator 25, it is heated by the absorption liquid flowing down outside the tube.

この加熱された混合熱媒は高温蒸発器2bへ導かれ高温
蒸発器内に設けられたスプレーノズル等により容器内に
噴出してフラッシュ蒸発し、冷媒蒸気となり、液体は自
己蒸発により自分自身が冷却され、冷媒受けに溜る○こ
の混合熱媒の循環サイクルは、上述の実施例においては 高温蒸 熱媒ポ 高温発 低温吸 高温蒸発器2b ン
プ21 生器25収器3a発器2bのように直列に流す
方式を例示したが、この混合熱媒の流し方はその他に、
例えば、 高温蒸 熱媒ポ 低温吸 高温発 高温蒸発器2bンプ
27 収器3a生器b 発器2bのように直列に流す
方式、 高温蒸 熱媒ポ 低温吸 高温蒸 発器2b ンプ27 収器3 発器2b高温発 生器乃 のように一部並列に流す方式、 高温蒸 熱媒ポ 低温吸 高温発 高温蒸発器2b ン
プ2 収器3a生器25 発器2b低温蒸へ一部7、
イ7,7, 発器2a のように一部並列に流すとともに一部バイパスする方式
等種々のものが考えられる。
This heated mixed heat medium is led to the high-temperature evaporator 2b, and is sprayed into the container by a spray nozzle installed in the high-temperature evaporator, flash evaporates, and becomes refrigerant vapor, and the liquid cools itself by self-evaporation. In the above-described embodiment, the circulation cycle of this mixed heat medium is as follows: high-temperature vapor heat medium pump high-temperature generation low-temperature absorption Although we have shown examples of how to flow this mixed heat medium, there are other ways to flow this mixed heat medium.
For example, a system in which high temperature evaporation heat medium low temperature absorption high temperature generation high temperature evaporator 2b pump 27 collector 3a generator b generator 2b flows in series, high temperature evaporation heat medium low temperature absorption high temperature evaporator 2b pump 27 collector 3 Generator 2b high-temperature generator, part of the system flows in parallel, high-temperature vapor heat medium pump low-temperature absorption high-temperature generation high-temperature evaporator 2b pump 2 collector 3a generator 25 generator 2b low-temperature evaporator part 7,
Various methods are conceivable, such as a method in which part of the power flows in parallel and a part of the power is bypassed, as shown in A7, 7 and Generator 2a.

第4図は本発明による吸収式ヒートポンプの作動サイク
ルをデューリング線図上に描いたものである。
FIG. 4 depicts the operating cycle of the absorption heat pump according to the present invention on a Dühring diagram.

図において、Aは低温側吸収液の循環サイクル、Bは高
温側吸収液の循環サイクル、Cは冷媒の循環サイクル、
信、は凝縮器26において冷媒蒸気が凝縮する温度、t
2は低温発生器24において吸収液が沸騰濃縮を完了し
た点における温度、t3は低温蒸発器2aにおいて冷媒
が蒸発する温度、t4は高温発生器25において吸収液
が沸騰濃縮を完了した点における温度、t5は高温蒸発
器2bにおいて冷媒が蒸発する温度、t6は低温吸収器
3aにおいて吸収液が吸収を完了した点における温度、
t7は高温吸器3bにおいて吸収液が吸収を完了した点
における温度、P は低A 温側上胴1a内の圧力、PBは高温側上胴1b内の圧力
、PCは下胴23内の圧力であり、低温吸収液サイクル
Aにおいてa−hbは吸収器における吸収、b−4−c
は稀溶液と濃溶液との熱交換における稀溶液側の状態変
化、(−dは発生器における沸騰濃縮、d−4−aは熱
交換1) −a− (に対応する濃溶液側の状態変化を
示している。
In the figure, A is the circulation cycle of the absorption liquid on the low temperature side, B is the circulation cycle of the absorption liquid on the high temperature side, C is the circulation cycle of the refrigerant,
is the temperature at which the refrigerant vapor condenses in the condenser 26, t
2 is the temperature at which the absorption liquid completes boiling concentration in the low temperature generator 24, t3 is the temperature at which the refrigerant evaporates in the low temperature evaporator 2a, and t4 is the temperature at the point at which the absorption liquid completes boiling concentration in the high temperature generator 25. , t5 is the temperature at which the refrigerant evaporates in the high-temperature evaporator 2b, t6 is the temperature at the point at which absorption of the absorption liquid is completed in the low-temperature absorber 3a,
t7 is the temperature at the point where the absorption liquid has completed absorption in the high-temperature absorber 3b, P is the pressure in the upper shell 1a on the low temperature side, PB is the pressure in the upper shell 1b on the high temperature side, and PC is the pressure in the lower shell 23. Yes, in low-temperature absorption liquid cycle A, a-hb is absorption in the absorber, b-4-c
is the state change on the dilute solution side during heat exchange between the dilute solution and the concentrated solution, (-d is boiling concentration in the generator, d-4-a is the heat exchange 1) -a- (the state on the concentrated solution side corresponding to It shows change.

高温吸収液サイクルBはサイクルAと同様に作動する。Hot absorbent cycle B operates similarly to cycle A.

このヒートポンプでは蒸発温度と加熱温度は同温度であ
り、温水として利用できるのは吸収器の出熱のみである
In this heat pump, the evaporation temperature and heating temperature are the same, and only the heat output from the absorber can be used as hot water.

従って成績係数(COP)は、Qo:低温発生器の受熱
量 QE:低温蒸発器の受熱量 QA:高温吸収器の冷却熱量 Qc:凝縮器の冷却熱量 として となる。
Therefore, the coefficient of performance (COP) is as follows: Qo: Heat received by the low temperature generator QE: Heat received by the low temperature evaporator QA: Cooling heat amount of the high temperature absorber Qc: Cooling heat amount of the condenser.

本発明による吸収式ヒートポンプは、第2図に示すよう
な4つの胴が第3図に示すように3つに減らされるので
、小形軽量にし製作コストを低減することができ、また
一台の従来の基本型式の吸収式ヒートポンプより高温の
温水を取得することができる。
Since the absorption heat pump according to the present invention has four barrels as shown in FIG. 2, it is reduced to three as shown in FIG. It is possible to obtain hot water at a higher temperature than the basic type of absorption heat pump.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は基本型式の第2種ヒートポンプの線図式説明図
、第2図は第1図の基本型式の第2種ヒートポンプを2
段に連設したヒートポンプの線図式説明図、第3図は本
発明による吸収式ヒートポンプの実施例の線図式説明図
、第4図は本発明による吸収式ヒートポンプのデューリ
ング線図の概要である。 A・・・・・・低温側吸収液の循環サイクル、B・・・
・・・高温側吸収液の循環サイクル、C・・・・・・冷
媒のサイクル、t・・・・・・温度、P・・・・・・圧
力、1・・・・・・上胴、2・・・・・・蒸発器、3・
・・・・・吸収器、4・・・・・下胴、5・・・・・・
発生器、6・・・・・・凝縮器、7・・・・・・熱交換
器、8・・・・・・吸収液ポンプ、9・・・・・・冷媒
ポンプ、10・・・・・・温排水、11・・・・・・冷
却水、12・・・・・・温水、13・・・・・・冷媒再
循環ポンプ、20・・・・・・低温側ヒートポンプ、2
1・・・・・・高温側ヒートポンプ、22・・・・・・
高温水まなま蒸気、23・・・・・・下胴、24・・・
・・・低温発生器、25・・・・・・高温発生器、26
・・・・・・凝縮器、27・・・・・・熱媒ポンプ。
Figure 1 is a diagrammatic explanatory diagram of the basic type 2 heat pump, and Figure 2 is the basic type 2 type heat pump shown in Figure 1.
FIG. 3 is a diagrammatic explanatory diagram of a heat pump connected in stages, FIG. 3 is a diagrammatic explanatory diagram of an embodiment of an absorption heat pump according to the present invention, and FIG. 4 is an overview of a Dühring diagram of an absorption heat pump according to the present invention. . A... Circulation cycle of the absorption liquid on the low temperature side, B...
...High temperature side absorption liquid circulation cycle, C...Refrigerant cycle, t...Temperature, P...Pressure, 1... Upper shell, 2... Evaporator, 3.
...Absorber, 4...Lower body, 5...
Generator, 6... Condenser, 7... Heat exchanger, 8... Absorption liquid pump, 9... Refrigerant pump, 10...・・Hot waste water, 11・・・Cooling water, 12・・・・Hot water, 13・・・・Refrigerant recirculation pump, 20・・・・Low temperature side heat pump, 2
1...High temperature side heat pump, 22...
High-temperature water and steam, 23...Lower body, 24...
... Low temperature generator, 25 ... High temperature generator, 26
...Condenser, 27... Heat medium pump.

Claims (1)

【特許請求の範囲】[Claims] 1 一方の上胴内に低温蒸発器および低温吸収器を収め
、他方の上胴内に高温蒸発器および高温吸収器を収め、
一つの下胴内に低温発生器および高温発生器を収めると
ともに低温、高温共用の凝縮器を収め、前記低温蒸発器
および前記低温発生器を加熱するのに温排水を、前記凝
縮器を冷却するのに冷却水を、前記高温蒸発器内で蒸発
し且つ前記高温発生器に熱を伝えるのに前記低温吸収器
によって昇温された冷媒または冷媒と吸収液との混合液
をそれぞれ用い、低温側および高温側の二つのヒートポ
ンプサイクルが作動して前記高温吸収器から高温水が取
得されるようにしたことを特徴とする吸収式ヒートポン
プ。
1 A low-temperature evaporator and a low-temperature absorber are housed in one upper shell, a high-temperature evaporator and a high-temperature absorber are housed in the other upper shell,
A low-temperature generator and a high-temperature generator are housed in one lower body, and a condenser for both low and high temperatures is housed in one lower body, and heated waste water is used to heat the low-temperature evaporator and the low-temperature generator, and the condenser is cooled. The cooling water is evaporated in the high-temperature evaporator and a refrigerant heated by the low-temperature absorber or a mixture of a refrigerant and an absorption liquid is used to transfer heat to the high-temperature generator, and the low-temperature side is heated. and an absorption heat pump characterized in that two heat pump cycles on the high temperature side are activated to obtain high temperature water from the high temperature absorber.
JP3028580A 1980-03-12 1980-03-12 Absorption heat pump Expired JPS5849780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3028580A JPS5849780B2 (en) 1980-03-12 1980-03-12 Absorption heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3028580A JPS5849780B2 (en) 1980-03-12 1980-03-12 Absorption heat pump

Publications (2)

Publication Number Publication Date
JPS56127157A JPS56127157A (en) 1981-10-05
JPS5849780B2 true JPS5849780B2 (en) 1983-11-07

Family

ID=12299439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3028580A Expired JPS5849780B2 (en) 1980-03-12 1980-03-12 Absorption heat pump

Country Status (1)

Country Link
JP (1) JPS5849780B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0211328Y2 (en) * 1985-02-27 1990-03-20
JP2006207883A (en) * 2005-01-26 2006-08-10 Ebara Corp Absorption heat pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0211328Y2 (en) * 1985-02-27 1990-03-20
JP2006207883A (en) * 2005-01-26 2006-08-10 Ebara Corp Absorption heat pump

Also Published As

Publication number Publication date
JPS56127157A (en) 1981-10-05

Similar Documents

Publication Publication Date Title
KR20050092031A (en) An absorbtion air conditioner
JPS61110852A (en) Absorption heat pump/refrigeration system
JPS5849781B2 (en) Absorption heat pump
KR101208459B1 (en) Organic rankine cycle turbo generation system generating cooling air and hot water
US4470269A (en) Absorption refrigeration system utilizing low temperature heat source
US20120324925A1 (en) Triple-effect vapor absorption refrigeration system
JPS5849780B2 (en) Absorption heat pump
JP2837058B2 (en) Absorption type heat pump device
JPS5818575B2 (en) heat pump
JP3381094B2 (en) Absorption type heating and cooling water heater
JPH05256535A (en) Sorption heat pump system
JPS61122428A (en) Floor heater using 2-stage absorbing heat pump
KR200144045Y1 (en) Absorption type cooler
JPH04268170A (en) Absorption type heat pump device
JP3103224B2 (en) Absorption heat pump using low-temperature heat source
JP3484142B2 (en) 2-stage double-effect absorption refrigerator
JPS6232384B2 (en)
JPS6138601A (en) Condensation method of two kinds of steam
JPS6334387B2 (en)
JPH05272831A (en) Absorption refrigerator
JPS60117065A (en) Heat recovery device for absorption cold and hot water machine
JPH0354378Y2 (en)
JPS61268961A (en) Self-exhaust heat recovery device
JPS6125987B2 (en)
JPS6344031B2 (en)