JPS6333288B2 - - Google Patents

Info

Publication number
JPS6333288B2
JPS6333288B2 JP1170980A JP1170980A JPS6333288B2 JP S6333288 B2 JPS6333288 B2 JP S6333288B2 JP 1170980 A JP1170980 A JP 1170980A JP 1170980 A JP1170980 A JP 1170980A JP S6333288 B2 JPS6333288 B2 JP S6333288B2
Authority
JP
Japan
Prior art keywords
dielectric ceramic
capacitor
electrodes
internal electrodes
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1170980A
Other languages
Japanese (ja)
Other versions
JPS56110218A (en
Inventor
Shoichi Iwatani
Kenichi Umeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP1170980A priority Critical patent/JPS56110218A/en
Priority to DE19803012839 priority patent/DE3012839A1/en
Priority to BR8002155A priority patent/BR8002155A/en
Priority to GB8011755A priority patent/GB2046517B/en
Priority to FR8008217A priority patent/FR2454169A1/en
Priority to NL8002124A priority patent/NL181242C/en
Publication of JPS56110218A publication Critical patent/JPS56110218A/en
Publication of JPS6333288B2 publication Critical patent/JPS6333288B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、チツプ状磁器コンデンサおよびコン
デンサ集合体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to chip-shaped porcelain capacitors and capacitor assemblies.

チツプ状磁器コンデンサは、小形大容量化が容
易であること、平面の導電パターンに直接ボンデ
ングが可能で高密度実装化の要請に合うこと、高
い周波数領域まで優れた周波数特性を示すこと、
更に外形が統一されていてプリント基板等に実装
する際、自動装着、組立が可能であること等々の
優れた特長を有しており、最近、超薄形ラジオ、
テープレコーダ、電卓もしくは電子チユーナ等の
電子、電気機器の高度化、高密度実装化に伴い、
その使用量が増大する一方である。
Chip-shaped porcelain capacitors are easy to make small and large in capacity, can be directly bonded to a flat conductive pattern and meet the demands of high-density packaging, and exhibit excellent frequency characteristics up to high frequencies.
Furthermore, it has excellent features such as having a unified external shape and being able to be automatically mounted and assembled when mounted on a printed circuit board, etc. Recently, ultra-thin radios,
With the increasing sophistication and high-density packaging of electronic and electrical equipment such as tape recorders, calculators, and electronic tuners,
Its usage continues to increase.

第1図はチツプ状磁器コンデンサの従来例を示
し、チタン酸バリウムまたは酸化チタン等を主成
分とする厚さ50〜100μ程度の誘電体磁器1の両
面に電極2,3を形成すると共に、該電極2,3
の相反する一端を、前記誘電体磁器1の両端に形
成した端部電極4,5にそれぞれ導通接続した構
造となつている。6は電極2,3の絶縁性、半田
付けフラツクスに対する耐薬品性を確保すべく、
電極2,3の表面に形成した保護層で、ガラス質
または合成樹脂で構成される。
FIG. 1 shows a conventional example of a chip-shaped ceramic capacitor, in which electrodes 2 and 3 are formed on both sides of a dielectric ceramic 1 with a thickness of about 50 to 100 μm, the main component of which is barium titanate or titanium oxide. Electrodes 2, 3
The opposite ends of the dielectric ceramic 1 are electrically connected to end electrodes 4 and 5 formed at both ends of the dielectric ceramic 1, respectively. 6, in order to ensure the insulation properties of the electrodes 2 and 3 and chemical resistance against soldering flux,
A protective layer formed on the surfaces of the electrodes 2 and 3, and made of glass or synthetic resin.

上記の従来のチツプ状磁器コンデンサにおい
て、取得容量を増大させるには、誘電体磁器1と
して高誘電率系の磁器材料を使用すること、電極
2,3の重なり面積を大きくすることのほか、電
極2−3間の厚みtをできるだけ薄くすることが
有効である。しかし、上述のような単板形の構造
であると、電極2−3間の厚みtを薄くする程に
誘電体磁器1の機械的強度が低下し、誘電体磁器
1の破損、割れ等を生じ易くなり、また半田付時
等における耐サーマルシヨツク性が低下するた
め、電極2−3間の厚み減少による取得容量の増
大に限界がある。また誘電体磁器1が焼成による
反りを発生するため、この反りを吸収するために
も誘電体磁器1にある程度の厚みを持たせること
が必要であり、厚み減少による容量の増大はこの
面からも限界がある。
In order to increase the acquired capacitance in the conventional chip-shaped ceramic capacitor described above, in addition to using a high dielectric constant ceramic material as the dielectric ceramic 1 and increasing the overlapping area of the electrodes 2 and 3, It is effective to make the thickness t between 2 and 3 as thin as possible. However, with the single-plate structure as described above, the smaller the thickness t between the electrodes 2 and 3, the lower the mechanical strength of the dielectric porcelain 1, and the more likely it is that the dielectric porcelain 1 will be damaged, cracked, etc. This tends to occur, and the thermal shock resistance during soldering etc. decreases, so there is a limit to the increase in the acquired capacitance by reducing the thickness between the electrodes 2-3. Also, since the dielectric porcelain 1 will warp due to firing, it is necessary to give the dielectric porcelain 1 a certain amount of thickness in order to absorb this warp. There is a limit.

こうした従来の欠点を除去し、機械的強度を低
下させることなく電極間隔を縮小して大容量化を
図ると同時に、耐サーマルシヨツク性を向上させ
た高信頼度のコンデンサとして、第2図に示すよ
うなチツプ状磁器コンデンサが提案されている。
By eliminating these conventional drawbacks and increasing capacity by reducing the electrode spacing without reducing mechanical strength, we have created a highly reliable capacitor with improved thermal shock resistance, as shown in Figure 2. Chip-shaped porcelain capacitors have been proposed.

このチツプ状磁器コンデンサは、平板状に形成
された誘電体磁器1の一面に、電極2を設けると
共に、該誘電体磁器1の内部に、前記電極2の形
成面から数μ〜数十μ程度の層厚を有する誘電体
磁器層1Aを介して、内部電極7を埋設し、該内
部電極7の背後をたとえば100μ〜1000μ程度の誘
電体磁器層1Bによつて裏打ち補強した構造とな
つている。
This chip-shaped ceramic capacitor is provided with an electrode 2 on one surface of a dielectric ceramic 1 formed in a flat plate shape, and an electrode 2 is provided inside the dielectric ceramic 1 by several microns to several tens of microns from the surface on which the electrode 2 is formed. The internal electrode 7 is buried through a dielectric ceramic layer 1A having a layer thickness of , and the internal electrode 7 is lined and reinforced with a dielectric ceramic layer 1B having a thickness of, for example, about 100μ to 1000μ. .

上述のように、第2図のチツプ状磁器コンデン
サは、内部電極7の背後を誘電体磁器層1Bによ
つて裏打ち補強してあるから、誘電体磁器層1A
を薄くして大容量化を図る一方、誘電体磁器層1
Aの薄形化による機械的強度の低下分を、誘電体
磁器層1Bによつて補ない、全体の厚み、機械的
強度を低下させることなく、大容量化を図ること
ができる。また内部電極7のまわりを誘電体磁器
層1A,1Bによつて封止した構造となつている
から、端部電極4,5の半田付け時における耐ヒ
ートシヨツク性が向上し、半田による内部電極7
の半田喰われ現象が防止され、また界面剥離など
もほぼ完全に防止することができる。
As mentioned above, in the chip-shaped ceramic capacitor shown in FIG. 2, the back of the internal electrode 7 is lined and reinforced with the dielectric ceramic layer 1B.
While increasing the capacity by thinning the dielectric ceramic layer 1,
The decrease in mechanical strength due to the thinning of A is compensated for by the dielectric ceramic layer 1B, and it is possible to increase the capacity without reducing the overall thickness or mechanical strength. Furthermore, since the internal electrode 7 is sealed with the dielectric ceramic layers 1A and 1B, the heat shock resistance during soldering of the end electrodes 4 and 5 is improved, and the internal electrode 7
The phenomenon of solder eating is prevented, and interfacial peeling can be almost completely prevented.

しかし、内部電極7と対となる電極2を、誘電
体磁器1の表面上に設け、その表面に保護層6を
コーテイングする構造となつていたため、次のよ
うな欠点もあつた。
However, since the electrode 2 paired with the internal electrode 7 was provided on the surface of the dielectric ceramic 1 and the protective layer 6 was coated on the surface, there were the following drawbacks.

(1) 電極2の半田喰われ現象や、半田付け時等に
おけるヒートシヨツクによるクラツクの発生お
よび電極2の界面剥離現象を防止できず、信頼
性の面で問題があつた。
(1) Solder eating of the electrode 2, cracks caused by heat shock during soldering, and interfacial peeling of the electrode 2 could not be prevented, resulting in reliability problems.

(2) 誘電体磁器層1A,1Bと電極2,7は、シ
ート積層法、スクリーン印刷積層法等の厚膜製
造技術により、一貫工程内で積層化し得るが、
保護層6は材質的に誘電体磁器と異なるガラス
質または合成樹脂で構成する必要があるため、
別工程で形成しなければならず、製造工程の複
雑化、製造コストアツプ等を招く。
(2) The dielectric ceramic layers 1A, 1B and the electrodes 2, 7 can be laminated in an integrated process using a thick film manufacturing technique such as a sheet lamination method or a screen printing lamination method.
Since the protective layer 6 needs to be made of glass or synthetic resin, which is different from dielectric porcelain in terms of material,
It must be formed in a separate process, which complicates the manufacturing process and increases manufacturing costs.

(3) 保護層6と誘電体磁器1との材質の差異か
ら、両者の界面に剥離等を生じるために、湿気
の侵入による電極2の絶縁性、耐薬品性等が劣
化し易く、信頼性に問題がある。
(3) Due to the difference in materials between the protective layer 6 and the dielectric ceramic 1, peeling occurs at the interface between the two, so the insulation, chemical resistance, etc. of the electrode 2 are likely to deteriorate due to moisture intrusion, reducing reliability. There is a problem.

さらに、この種のチツプ状磁器コンデンサは、
その平面積がたとえば3×5m/m程度と非常に
小さく、かつ厚みも1mm前後と非常に薄くて取扱
い難いこと、しかも高密度実装化の要請から更に
小型化される傾向にあること、誘電体磁器層1
A,1Bの積層構造をとる必要があること等々の
特有の事情があり、製造工程の始めから終りま
で、磁器コンデンサ単品として製造することは非
常に困難である。また、集中型遅延素子のように
複数個のコンデンサを必要とする場合や、プリン
ト回路基板上に複数個のコンデンサを実装する場
合には、一個づつ作製されたチツプ状磁器コンデ
ンサを必要数だけ組合せて使用しなければなら
ず、組立工数が多く、コスト高になり、また小型
化や実装密度の高度化を図るうえに不利になる。
さらに、得られたチツプ状磁器コンデンサの特性
を測定し、基準値内に収まつたものだけを選別す
る際にも、一個づつ特性測定選別作業を行なわな
ければならず、非常に煩瑣である。
Furthermore, this kind of chip-shaped porcelain capacitor is
Its flat area is very small, for example, about 3 x 5 m/m, and its thickness is about 1 mm, making it difficult to handle.Furthermore, there is a trend toward further miniaturization due to the demand for high-density packaging, and dielectric materials Porcelain layer 1
Due to unique circumstances such as the need to have a laminated structure of A and 1B, it is extremely difficult to manufacture a single ceramic capacitor from the beginning to the end of the manufacturing process. In addition, when multiple capacitors are required such as a lumped delay element, or when multiple capacitors are mounted on a printed circuit board, it is possible to combine the required number of chip-shaped ceramic capacitors that are individually manufactured. This requires a large number of assembly steps, increases costs, and is disadvantageous in terms of miniaturization and high packaging density.
Furthermore, when measuring the characteristics of the obtained chip-shaped porcelain capacitors and selecting only those that fall within standard values, it is necessary to measure and select the characteristics one by one, which is very cumbersome.

本発明は上述する技術的問題を解決し、電極の
半田喰われ現象やクラツクの発生、界面剥離現象
等を生じることがなく、しかも製造の容易な、高
信頼度かつ安価なチツプ状磁器コンデンサを提供
することを目的とする。
The present invention solves the above-mentioned technical problems, and provides a highly reliable and inexpensive chip-shaped porcelain capacitor that is easy to manufacture, does not cause the phenomenon of solder eating of the electrodes, the occurrence of cracks, or the phenomenon of interfacial peeling. The purpose is to provide.

また本発明は、上述するチツプ状磁器コンデン
サ単品を簡単に割り出すことができると共に、複
合形の磁器コンデンサとしても使用し得る、取扱
い、保管等に便利なコンデンサ集合体を提供する
ことを目的とする。
Another object of the present invention is to provide a capacitor assembly that is convenient for handling, storage, etc., and can be used as a composite type of ceramic capacitor as well as being able to easily separate individual chip-shaped ceramic capacitors. .

上記目的を達成するため、本発明は、誘電体磁
器の相対する両端に実質的な容量を定める電極に
電気的に導通接続する端部電極をそれぞれ有して
成るチツプ状磁器コンデンサにおいて、前記誘電
体磁器の内部に前記実質的な容量を定める電極を
層状に埋設し、該内部電極の内、最外側に位置す
る2つの内部電極の一方は前記内部電極間の誘電
体磁器層の層厚よりも厚い誘電体磁器層によつて
覆い、前記2つの内部電極の他方は前記内部電極
の一方を覆う前記誘電体磁器層よりも充分に薄い
層厚の誘電体磁器層によつて覆つたことを特徴と
する。
To achieve the above object, the present invention provides a chip-shaped porcelain capacitor having end electrodes electrically connected to electrodes defining a substantial capacitance at opposite ends of a dielectric ceramic. Electrodes determining the substantial capacitance are embedded in layers inside the body porcelain, and one of the two outermost internal electrodes has a thickness that is greater than the layer thickness of the dielectric ceramic layer between the internal electrodes. is covered with a thick dielectric ceramic layer, and the other of the two internal electrodes is covered with a dielectric ceramic layer that is sufficiently thinner than the dielectric ceramic layer that covers one of the internal electrodes. Features.

また、本発明に係るコンデンサ集合体は、誘電
体磁器基板上にその長さ方向に沿つて間隔を隔て
て凹溝を設け、前記凹溝によつて区画された各領
域内にコンデンサ要素を有してなり、前記コンデ
ンサ要素のそれぞれは、前記誘電体磁器基板の内
部に前記実質的な容量を定める電極を層状に埋設
し、該内部電極の内、最外側に位置する2つの内
部電極の一方は前記内部電極間の誘電体磁器層の
層厚よりも厚い誘電体磁器層によつて覆い、前記
2つの内部電極の他方は前記内部電極の一方を覆
う前記誘電体磁器層よりも充分に薄い層厚の誘電
体磁器層によつて覆い、幅方向の両端部に前記内
部電極に導通する端部電極を付与してなることを
特徴とする。
Further, in the capacitor assembly according to the present invention, grooves are provided at intervals along the length of the dielectric ceramic substrate, and capacitor elements are provided in each region divided by the grooves. Each of the capacitor elements has electrodes that define the substantial capacitance buried inside the dielectric ceramic substrate in a layered manner, and one of the two inner electrodes located at the outermost side of the inner electrodes. is covered with a dielectric ceramic layer that is thicker than the dielectric ceramic layer between the internal electrodes, and the other of the two internal electrodes is sufficiently thinner than the dielectric ceramic layer that covers one of the internal electrodes. It is characterized in that it is covered with a thick dielectric ceramic layer, and end electrodes that are electrically connected to the internal electrodes are provided at both ends in the width direction.

以下実施例たる添付図面を参照し、本発明の内
容を具体的に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The content of the present invention will be specifically described below with reference to the accompanying drawings, which are examples.

第3図Aは本発明に係るチツプ状磁器コンデン
サの平面図、第3図Bは第3図AのB1−B1線上
における正面断面図である。図において、第2図
と同一の参照符号は機能的に同一性ある構成部分
を示している。図示するように、本発明において
は、誘電体磁器1の内部に実質的な容量を定める
電極7,8を、誘電体磁器層1Aを介して層状に
埋設し、これらの2つの内部電極7,8の一方、
即ち内部電極7は内部電極7−8間の誘電体磁器
層1Aの層厚よりも厚い誘電体磁器層1Bによつ
て覆い、内部電極8は内部電極7を覆う誘電体磁
器層1Bよりも充分に薄い層厚の誘電体磁器層1
Cによつて覆つた構造となつている。内部電極8
を覆う誘電体磁器層1Cの層厚は、図示すよう
に、内部電極7−8間の誘電体磁器層1Aと略等
しく設定する。このような構造であると、内部電
極7のみならず、内部電極8も誘電体磁器1の内
部に封止した完全なモノリシツクな構造となるの
で、内部電極7,8の半田喰われ現象、サーマル
シヨツクによるクラツクの発生、界面剥離現象、
酸化による劣化等が完全に防止され、信頼性が著
るしく向上する。しかも、内部電極8の上面の誘
電体磁器層1Cが保護層となるので、従来のよう
な保護層の界面剥離現象を生じる余地がなく、信
頼性が向上する。また、誘電体磁器層1Cは、他
の誘電体磁器層1A,1Bの積層化工程と同一の
工程で形成できるから、製造工程が簡単化され、
製造コストが安価になる。
FIG. 3A is a plan view of a chip-shaped porcelain capacitor according to the present invention, and FIG. 3B is a front sectional view taken along line B 1 -B 1 in FIG. 3A. In the figures, the same reference numerals as in FIG. 2 indicate functionally identical components. As shown in the figure, in the present invention, electrodes 7 and 8 that define a substantial capacity are buried inside the dielectric ceramic 1 in a layered manner with the dielectric ceramic layer 1A interposed therebetween, and these two internal electrodes 7, One of 8,
That is, the internal electrode 7 is covered with the dielectric ceramic layer 1B which is thicker than the dielectric ceramic layer 1A between the internal electrodes 7-8, and the internal electrode 8 is covered with a dielectric ceramic layer 1B which is thicker than the dielectric ceramic layer 1B which covers the internal electrode 7. Dielectric ceramic layer 1 with a thin layer thickness
It has a structure covered by C. Internal electrode 8
As shown in the figure, the layer thickness of the dielectric ceramic layer 1C covering the internal electrodes 7-8 is set to be approximately equal to that of the dielectric ceramic layer 1A between the internal electrodes 7-8. With such a structure, not only the internal electrodes 7 but also the internal electrodes 8 are sealed inside the dielectric ceramic 1, resulting in a completely monolithic structure, which prevents the phenomenon of solder eating of the internal electrodes 7 and 8 and thermal damage. Occurrence of cracks due to shock, interfacial peeling phenomenon,
Deterioration due to oxidation is completely prevented, and reliability is significantly improved. Moreover, since the dielectric ceramic layer 1C on the upper surface of the internal electrode 8 serves as a protective layer, there is no possibility of interfacial peeling of the protective layer as in the conventional case, and reliability is improved. Furthermore, since the dielectric ceramic layer 1C can be formed in the same process as the lamination process of the other dielectric ceramic layers 1A and 1B, the manufacturing process is simplified.
Manufacturing costs become cheaper.

しかも、内部電極7は内部電極7−8間の誘電
体磁器層1Aの層厚よりも厚い誘電体磁器層1B
によつて覆い、内部電極8は内部電極7を覆う誘
電体磁器層1Bよりも充分に薄い層厚の誘電体磁
器層1Cによつて覆つた構造としてあるので、焼
成時において、層厚の薄い誘電体磁器層1Cによ
る熱応力歪が、その下側の内部電極7,8及び誘
電体磁器層1A,1Bに比較して著しく小さくな
る。このため、誘電体磁器層1Cの熱応力歪によ
るデラミネーシヨンが防止され、信頼度の高いチ
ツプ状磁器コンデンサが得られる。
Moreover, the internal electrode 7 has a dielectric ceramic layer 1B thicker than the dielectric ceramic layer 1A between the internal electrodes 7-8.
Since the internal electrode 8 is covered with a dielectric ceramic layer 1C that is sufficiently thinner than the dielectric ceramic layer 1B that covers the internal electrode 7, during firing, Thermal stress strain caused by the dielectric ceramic layer 1C is significantly smaller than that of the internal electrodes 7 and 8 and the dielectric ceramic layers 1A and 1B below it. Therefore, delamination of the dielectric ceramic layer 1C due to thermal stress distortion is prevented, and a highly reliable chip-shaped ceramic capacitor can be obtained.

また、この実施例では、誘電体磁器1の端部電
極4,5を設けた両端の隅部に、弧状または斜状
の欠落部9〜12を設けてある。このような欠落
部9〜12を設けると、自動装着機のマガジンお
よび回路基板への装着性が非常に良好になる。
Further, in this embodiment, arcuate or diagonal missing portions 9 to 12 are provided at the corners of both ends of the dielectric ceramic 1 where the end electrodes 4 and 5 are provided. Providing such missing portions 9 to 12 makes it very easy to attach to the magazine and circuit board of the automatic placement machine.

なお、内部電極7,8は、白金、パラジウム、
銀またはこれらの合金等の高融点の金属を主成分
とする電極材料によつて構成する。
Note that the internal electrodes 7 and 8 are made of platinum, palladium,
It is composed of an electrode material whose main component is a metal with a high melting point such as silver or an alloy thereof.

次に第4図Aは本発明に係るコンデンサ集合体
の平面図、第4図B,Cは第4図AのB2−B2線、
B3−B3線上における各断面図である。図におい
て、13は誘電体磁器基板である。該誘電体磁器
基板13は、チタン酸バリウムまたは酸化チタン
等の高誘電率系磁器材料によつて構成してあり、
その一面または両面の同一位置に、所定の間隔d1
をおいて、凹溝S1を複数本設けてある。凹溝S1
は、誘電体磁器基板13を分割するための分割位
置となるもので、連続する線状、ミシン目状また
は部分的に基板13の表面から裏面に達する透孔
状に設けることができる。
Next, FIG. 4A is a plan view of a capacitor assembly according to the present invention, FIGS. 4B and C are line B 2 -B 2 of FIG. 4A,
It is each sectional view on the B3 - B3 line. In the figure, 13 is a dielectric ceramic substrate. The dielectric ceramic substrate 13 is made of a high dielectric constant ceramic material such as barium titanate or titanium oxide.
At the same position on one or both sides, at a predetermined interval d 1
A plurality of concave grooves S1 are provided at the same time. Concave groove S 1
These are dividing positions for dividing the dielectric ceramic substrate 13, and can be provided in a continuous line shape, a perforation shape, or a partially through hole shape that reaches from the front surface to the back surface of the substrate 13.

前記凹溝S1によつて区画された各領域内には、
互に独立するチツプ状磁器コンデンサ要素がそれ
ぞれ形成されている。チツプ状磁器コンデンサの
それぞれは、第3図A,Bに示したと実質的に同
一の構造、すなわち、誘電体磁器基板13の内部
に2つの内部電極14,15を層状に埋設し、該
内部電極14,15のうちの一つ、たとえば内部
電極14の背後に、内部電極14−15間の誘電
体磁器層13Aより厚い層厚の誘電体磁器層13
Bを設けた構造となつている。内部電極15の上
面は、保護層となる誘電体磁器層13Cによつて
封止してある。また凹溝S1の両端には弧状または
角状の欠落部16,17を設け、該欠落部16,
17によつて区分された誘電体磁器基板13の両
端に、前記内部電極14,15にそれぞれ導通す
る端部電極18,19を設けてある。
In each area divided by the groove S1 ,
Mutually independent chip-shaped porcelain capacitor elements are each formed. Each of the chip-shaped ceramic capacitors has substantially the same structure as shown in FIGS. 14, 15, for example, behind the internal electrode 14, a dielectric ceramic layer 13 having a thickness thicker than the dielectric ceramic layer 13A between the internal electrodes 14-15.
It has a structure with B. The upper surface of the internal electrode 15 is sealed with a dielectric ceramic layer 13C serving as a protective layer. Further, arcuate or angular cutout portions 16 and 17 are provided at both ends of the groove S1 , and the cutout portions 16 and 17 are provided at both ends of the groove S1.
At both ends of the dielectric ceramic substrate 13 divided by 17, end electrodes 18 and 19 are provided which are electrically connected to the internal electrodes 14 and 15, respectively.

本発明に係るコンデンサ集合体は上述のような
構造であるから、集中型遅延素子のように複数個
のコンデンサを必要とする場合や、回路基板上に
複数個のコンデンサを実装する必要がある場合に
は、そのまま使用することができ、組立工数の減
少化、コストダウン、小型化および高密度実装化
等を図るうえにきわめて大きな効果を奏する。し
かも、第5図に示すように、凹溝S1に沿つて割り
出すことにより、チツプ状磁器コンデンサ単品を
簡単に取り出すこともできる。また各チツプ状磁
器コンデンサは、誘電体磁器基板13を介して一
体化されていても、電気的には互に独立している
ので、集合体の状態で特性の測定、選別作業を行
なうことができ、測定選別作業が非常に容易にな
る。しかも、コンデンサ集合体は、コンデンサ単
品の何倍もの大きさを有するから、紛失したりす
る恐れもなく、取扱い、保管に便利であり、また
製造も容易である。
Since the capacitor assembly according to the present invention has the above-described structure, it can be used in cases where a plurality of capacitors are required, such as a lumped delay element, or when it is necessary to mount a plurality of capacitors on a circuit board. The device can be used as is, and is extremely effective in reducing assembly man-hours, reducing costs, downsizing, and achieving high-density packaging. Moreover, as shown in FIG. 5, a single chip-shaped porcelain capacitor can be easily taken out by indexing along the groove S1 . In addition, even though the chip-shaped ceramic capacitors are integrated via the dielectric ceramic substrate 13, they are electrically independent from each other, so it is possible to measure the characteristics and sort them while they are in an aggregate state. This greatly facilitates measurement and selection work. Furthermore, since the capacitor assembly is many times larger than a single capacitor, there is no risk of loss, it is convenient to handle and store, and it is easy to manufacture.

以上述べたように、本発明は、誘電体磁器の相
対する両端に実質的な容量を定める電極に電気的
に導通接続する端部電極をそれぞれ有して成るチ
ツプ状磁器コンデンサにおいて、前記誘電体磁器
の内部に前記実質的な容量を定める電極を層状に
埋設し、該内部電極の内、最外側に位置する2つ
の内部電極の一方は前記内部電極間の誘電体磁器
層の層厚よりも厚い誘電体磁器層によつて覆い、
前記2つの内部電極の他方は前記内部電極の一方
を覆う前記誘電体磁器層よりも充分に薄い層厚の
誘電体磁器層によつて覆つたことを特徴とするか
ら、次のような効果がある。
As described above, the present invention provides a chip-shaped porcelain capacitor having end electrodes electrically connected to electrodes defining substantial capacitance at opposite ends of a dielectric porcelain. Electrodes determining the substantial capacitance are buried inside the ceramic in a layered manner, and one of the two outermost internal electrodes has a thickness that is greater than the layer thickness of the dielectric ceramic layer between the internal electrodes. covered by a thick dielectric porcelain layer;
Since the other of the two internal electrodes is covered with a dielectric ceramic layer that is sufficiently thinner than the dielectric ceramic layer that covers one of the internal electrodes, the following effects can be obtained. be.

(1) 実質な容量を定める電極の全てを誘電体磁器
の内部に封止した完全なモノリシツクな構造と
なり、電極の半田喰われ現象、サーマルシヨツ
クによるクラツクの発生、界面剥離現象および
酸化による劣化等が完全に防止される。したが
つて本発明によれば、特性の安定した高信頼度
のチツプ状磁器コンデンサを提供することがで
きる。
(1) It has a completely monolithic structure in which all of the electrodes that determine the actual capacitance are sealed inside the dielectric ceramic, which prevents solder erosion of the electrodes, cracks due to thermal shock, interfacial peeling phenomena, and deterioration due to oxidation. is completely prevented. Therefore, according to the present invention, it is possible to provide a highly reliable chip-shaped ceramic capacitor with stable characteristics.

(2) 材質的に同一である誘電体磁器材料を使用し
て積層化することにより製造し得るから、製造
工程が簡単化され、製造コストが安価になる。
(2) Since they can be manufactured by laminating the same dielectric ceramic materials, the manufacturing process is simplified and the manufacturing cost is reduced.

(3) 最外側に位置する2つの内部電極の一方は内
部電極間の誘電体磁器層の層厚よりも厚い誘電
体磁器層によつて覆つたから、全体の厚み、機
械的強度を低下させることなく、大容量化した
チツプ状磁器コンデンサを提供できる。
(3) One of the two outermost internal electrodes is covered with a dielectric ceramic layer that is thicker than the dielectric ceramic layer between the internal electrodes, which reduces the overall thickness and mechanical strength. It is possible to provide a chip-shaped porcelain capacitor with a large capacity without any problems.

(4) 最外側に位置する2つの内部電極の一方は内
部電極間の誘電体磁器層の層厚よりも厚い誘電
体磁器層によつて覆い、2つの内部電極の他方
は前記内部電極の一方を覆う前記誘電体磁器層
よりも充分に薄い層厚の誘電体磁器層によつて
覆つたから、内部電極の他方を覆う誘電体磁器
層による熱応力歪が、その下側の内部電極及び
誘電体磁器層に比較して著しく小さくなる。こ
のため、誘電体磁器層の熱応力歪によるデラミ
ネーシヨンを防止し、高信頼度のチツプ状磁器
コンデンサを提供できる。
(4) One of the two outermost internal electrodes is covered with a dielectric ceramic layer that is thicker than the dielectric ceramic layer between the internal electrodes, and the other of the two internal electrodes is covered with one of the internal electrodes. Since the dielectric ceramic layer is sufficiently thinner than the dielectric ceramic layer covering the other internal electrode, the thermal stress strain caused by the dielectric ceramic layer covering the other internal electrode will affect the internal electrode and dielectric layer below. It is significantly smaller than the body porcelain layer. Therefore, delamination of the dielectric ceramic layer due to thermal stress distortion can be prevented, and a highly reliable chip-shaped ceramic capacitor can be provided.

また、本発明に係るコンデンサ集合体は、誘電
体磁器基板上にその長さ方向に沿つて間隔を隔て
て凹溝を設け、前記凹溝によつて区画された各領
域内にコンデンサ要素を有してなり、前記コンデ
ンサ要素のそれぞれは、前記誘電体磁器基板の内
部に前記実質的な容量を定める電極を層状に埋設
し、該内部電極の内、最外側に位置する2つの内
部電極の一方は前記内部電極間の誘電体磁器層の
層厚よりも厚い誘電体磁器層によつて覆い、前記
2つの内部電極の他方は前記内部電極の一方を覆
う前記誘電体磁器層よりも充分に薄い層厚の誘電
体磁器層によつて覆い、幅方向の両端部に前記内
部電極に導通する端部電極を付与してなることを
特徴とするから、次のような効果が得られる。
Further, in the capacitor assembly according to the present invention, grooves are provided at intervals along the length of the dielectric ceramic substrate, and capacitor elements are provided in each area divided by the grooves. Each of the capacitor elements has electrodes defining the substantial capacitance embedded in the dielectric ceramic substrate in a layered manner, and one of the two inner electrodes located at the outermost side of the inner electrodes. is covered with a dielectric ceramic layer that is thicker than the dielectric ceramic layer between the internal electrodes, and the other of the two internal electrodes is sufficiently thinner than the dielectric ceramic layer that covers one of the internal electrodes. Since it is characterized in that it is covered with a thick dielectric ceramic layer and provided with end electrodes that are electrically connected to the internal electrodes at both ends in the width direction, the following effects can be obtained.

(1) 前述したチツプ状磁器コンデンサと実質的に
同一の構造、効果を有する高信頼度の磁器コン
デンサを複数個具備し、集中型遅延素子のよう
に複数のコンデンサを必要とするものの構成部
品として誠に好適なコンデンサ集合体を提供す
ることができる。
(1) It is equipped with a plurality of highly reliable ceramic capacitors that have substantially the same structure and effect as the above-mentioned chip-shaped ceramic capacitor, and can be used as a component of a device that requires multiple capacitors such as a lumped delay element. A truly suitable capacitor assembly can be provided.

(2) 凹溝に沿つて分割することにより、任意数の
複合コンデンサまたは最小単位としてのチツプ
状磁器コンデンサをも、きわめて容易に得るこ
とができる。
(2) By dividing along the grooves, any number of composite capacitors or chip-shaped porcelain capacitors as the smallest unit can be obtained very easily.

(3) コンデンサ集合体は、コンデンサ単品の何倍
もの大きさを有するから、紛失したりする恐れ
もなく、取扱い、保管にきわめて便利である。
(3) Since a capacitor assembly is many times larger than a single capacitor, there is no risk of losing it, and it is extremely convenient to handle and store.

(4) 各コンデンサ要素は、誘電体磁器基板により
一体化されていても、電気的には互に独立して
おり、集合体の状態で、特性の測定、選別を行
なうことができるから、不良品の選別作業が非
常に容易になる。
(4) Even though each capacitor element is integrated with a dielectric ceramic substrate, it is electrically independent from each other, and its characteristics can be measured and sorted in the aggregate state. This greatly facilitates the selection of good products.

なお、上記の各実施例では、一対の内部電極を
有するものについて説明したが、より多層の積層
形についても、本発明は同様に適用が可能であ
る。
Although each of the above embodiments has been described as having a pair of internal electrodes, the present invention is similarly applicable to a stacked type with more layers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のチツプ状磁器コンデンサの断面
図、第2図は先に提案されたチツプ状磁器コンデ
ンサの断面図、第3図Aは本発明に係るチツプ状
磁器コンデンサの平面図、第3図Bは第3図Aの
B1−B1線上における断面図、第4図Aは本発明
に係るコンデンサ集合体の平面図、第4図B,C
は第4図AのB2−B2線、B3−B3線上における各
断面図、第5図は本発明に係るコンデンサ集合体
よりチツプ状磁器コンデンサを割り出す方法を説
明する図である。 1,13……誘電体磁器、1A,13A……誘
電体磁器層、1B,13B……誘電体磁器層、1
C,13C……誘電体磁器層、4,5,18,1
9……端部電極、7,8,14,15……内部電
極、9,10,11,12……欠落部、S1……凹
溝。
1 is a sectional view of a conventional chip-shaped ceramic capacitor, FIG. 2 is a sectional view of a previously proposed chip-shaped porcelain capacitor, and FIG. 3A is a plan view of a chip-shaped porcelain capacitor according to the present invention. Figure B is the same as Figure 3A.
A sectional view taken along line B 1 - B 1 , FIG. 4A is a plan view of a capacitor assembly according to the present invention, and FIGS. 4B and C
4A are cross-sectional views taken along lines B 2 -B 2 and B 3 -B 3 in FIG. 4A, and FIG. 5 is a diagram illustrating a method for determining chip-shaped ceramic capacitors from a capacitor assembly according to the present invention. 1, 13...Dielectric ceramic layer, 1A, 13A...Dielectric ceramic layer, 1B, 13B...Dielectric ceramic layer, 1
C, 13C...dielectric ceramic layer, 4, 5, 18, 1
9... End electrode, 7, 8, 14, 15... Internal electrode, 9, 10, 11, 12... Missing part, S 1 ... Concave groove.

Claims (1)

【特許請求の範囲】 1 誘電体磁器の相対する両端に実質的な容量を
定める電極に電気的に導通接続する端部電極をそ
れぞれ有して成るチツプ状磁器コンデンサにおい
て、前記誘電体磁器の内部に前記実質的な容量を
定める電極を層状に埋設し、該内部電極の内、最
外側に位置する2つの内部電極の一方は前記内部
電極間の誘電体磁器層の層厚よりも厚い誘電体磁
器層によつて覆い、前記2つの内部電極の他方は
前記内部電極の一方を覆う前記誘電体磁器層より
も充分に薄い層厚の誘電体磁器層によつて覆つた
ことを特徴とするチツプ状磁器コンデンサ。 2 前記2つの内部電極の他方は、前記内部電極
間の誘電体磁器層と略等しい層厚の誘電体磁器層
で覆つたことを特徴とする特許請求の範囲第1項
に記載のチツプ状磁器コンデンサ。 3 前記誘電体磁器は、前記両端の隅部に欠落部
を有することを特徴とする特許請求の範囲第1項
または第2項に記載のチツプ状磁器コンデンサ。 4 誘電体磁器基板上にその長さ方向に沿つて間
隔を隔てて凹溝を設け、前記凹溝によつて区画さ
れた各領域内にコンデンサ要素を有してなり、前
記コンデンサ要素のそれぞれは、前記誘電体磁器
基板の内部に前記実質的な容量を定める電極を層
状に埋設し、該内部電極の内、最外側に位置する
2つの内部電極の一方は前記内部電極間の誘電体
磁器層の層厚よりも厚い誘電体磁器層によつて覆
い、前記2つの内部電極の他方は前記内部電極の
一方を覆う前記誘電体磁器層よりも充分に薄い層
厚の誘電体磁器層によつて覆い、幅方向の両端部
に前記内部電極に導通する端部電極を付与してな
ることを特徴とするコンデンサ集合体。 5 隣接する前記コンデンサ要素の各端部電極
は、電気的に互いに独立させたことを特徴とする
特許請求の範囲第4項に記載のコンデンサ集合
体。 6 隣接する前記コンデンサ要素の各端部電極
は、前記誘電体磁器基板の前記凹溝の両端部上に
設けられた欠落部によつて、電気的に互いに独立
させたことを特徴とする特許請求の範囲第5項に
記載のコンデンサ集合体。
[Scope of Claims] 1. A chip-shaped porcelain capacitor having end electrodes electrically connected to electrodes defining a substantial capacity at opposite ends of a dielectric porcelain, wherein the inside of the dielectric porcelain is electrodes that determine the substantial capacity are buried in layers, one of the two outermost internal electrodes being made of a dielectric material having a thickness greater than the layer thickness of the dielectric ceramic layer between the internal electrodes. The chip is covered with a ceramic layer, and the other of the two internal electrodes is covered with a dielectric ceramic layer that is sufficiently thinner than the dielectric ceramic layer that covers one of the internal electrodes. shaped porcelain capacitor. 2. The chip-shaped porcelain according to claim 1, wherein the other of the two internal electrodes is covered with a dielectric porcelain layer having approximately the same thickness as the dielectric porcelain layer between the internal electrodes. capacitor. 3. The chip-shaped porcelain capacitor according to claim 1 or 2, wherein the dielectric ceramic has a cutout at the corner of both ends. 4 Recessed grooves are provided at intervals along the length of the dielectric ceramic substrate, and capacitor elements are provided in each region divided by the recessed grooves, and each of the capacitor elements is , electrodes defining the substantial capacitance are embedded in layers inside the dielectric ceramic substrate, and one of the two outermost internal electrodes is a dielectric ceramic layer between the internal electrodes. The other of the two internal electrodes is covered with a dielectric ceramic layer that is sufficiently thinner than the dielectric ceramic layer that covers one of the internal electrodes. What is claimed is: 1. A capacitor assembly comprising: a capacitor assembly covered with a capacitor; and end electrodes electrically connected to the internal electrodes provided at both ends in the width direction. 5. The capacitor assembly according to claim 4, wherein the end electrodes of the adjacent capacitor elements are electrically independent from each other. 6. A patent claim characterized in that each end electrode of the adjacent capacitor element is made electrically independent from each other by a cutout provided on both ends of the groove of the dielectric ceramic substrate. The capacitor assembly according to item 5.
JP1170980A 1979-04-11 1980-02-02 Chippshaped porcelain capacitor and capacitor assembly Granted JPS56110218A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1170980A JPS56110218A (en) 1980-02-02 1980-02-02 Chippshaped porcelain capacitor and capacitor assembly
DE19803012839 DE3012839A1 (en) 1979-04-11 1980-04-02 ELECTRIC CAPACITOR
BR8002155A BR8002155A (en) 1979-04-11 1980-04-09 CAPACITOR AND CAPACITOR SET
GB8011755A GB2046517B (en) 1979-04-11 1980-04-09 Chip capacitor with recessed edges
FR8008217A FR2454169A1 (en) 1979-04-11 1980-04-11 ULTRA-THIN CAPACITOR
NL8002124A NL181242C (en) 1979-04-11 1980-04-11 DISC CAPACITOR AND CAPACITOR UNIT.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1170980A JPS56110218A (en) 1980-02-02 1980-02-02 Chippshaped porcelain capacitor and capacitor assembly

Publications (2)

Publication Number Publication Date
JPS56110218A JPS56110218A (en) 1981-09-01
JPS6333288B2 true JPS6333288B2 (en) 1988-07-05

Family

ID=11785566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1170980A Granted JPS56110218A (en) 1979-04-11 1980-02-02 Chippshaped porcelain capacitor and capacitor assembly

Country Status (1)

Country Link
JP (1) JPS56110218A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5839030U (en) * 1981-09-07 1983-03-14 ティーディーケイ株式会社 capacitor element
JPS5839029U (en) * 1981-09-07 1983-03-14 ティーディーケイ株式会社 capacitor element
JP4746423B2 (en) * 2005-12-22 2011-08-10 日本特殊陶業株式会社 Wiring board built-in capacitor manufacturing method and wiring board built-in capacitor
JP5652487B2 (en) * 2013-03-04 2015-01-14 株式会社村田製作所 Multilayer ceramic capacitor

Also Published As

Publication number Publication date
JPS56110218A (en) 1981-09-01

Similar Documents

Publication Publication Date Title
KR20200042860A (en) Multilayer ceramic electronic component
JPS6333288B2 (en)
JP2000340448A (en) Laminated ceramic capacitor
JPH0738359B2 (en) Multilayer capacitor with fuse
US20210241976A1 (en) Multilayer ceramic electronic component and mount structure for multilayer ceramic electronic component
JP2587851Y2 (en) Multilayer capacitors
JP2001023864A (en) Multiple electronic part
JPS6225873Y2 (en)
JPS58220492A (en) Composite circuit device
WO2024075402A1 (en) Multilayer ceramic electronic component
JP2000252165A (en) Multiple multilayer ceramic capacitor
JP2020167322A (en) Multilayer ceramic capacitor
JP2555638B2 (en) Method for manufacturing multilayer ceramic substrate
JPS6214668Y2 (en)
US11848160B2 (en) Multilayer ceramic capacitor
JPH06251993A (en) Chip type electronic part assembly
JPS5827302A (en) Chip element including resistor
JPH06120073A (en) Chip-type laminated ceramic capacitor
JP3025379B2 (en) Manufacturing method of multilayer capacitor
US20230290571A1 (en) Multilayer capacitor
JP2023099439A (en) Laminate-type electronic component
JP2023107724A (en) Laminated electronic component
JP2024022341A (en) Multilayer ceramic capacitor and mounting structure of multilayer ceramic capacitor
JP2023099433A (en) Laminate type electronic component
JP2023099431A (en) Laminate-type electronic component