JPS6214668Y2 - - Google Patents

Info

Publication number
JPS6214668Y2
JPS6214668Y2 JP1979069843U JP6984379U JPS6214668Y2 JP S6214668 Y2 JPS6214668 Y2 JP S6214668Y2 JP 1979069843 U JP1979069843 U JP 1979069843U JP 6984379 U JP6984379 U JP 6984379U JP S6214668 Y2 JPS6214668 Y2 JP S6214668Y2
Authority
JP
Japan
Prior art keywords
dielectric ceramic
electrodes
dielectric
lead wires
multilayer ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1979069843U
Other languages
Japanese (ja)
Other versions
JPS55169839U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1979069843U priority Critical patent/JPS6214668Y2/ja
Publication of JPS55169839U publication Critical patent/JPS55169839U/ja
Application granted granted Critical
Publication of JPS6214668Y2 publication Critical patent/JPS6214668Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は、帯状のテーピング部材上に、リード
線を間隔をおいて多数個保持させ、隣り合う一対
のリード線間に積層磁器コンデンサを挟持させた
積層磁器コンデンサ連に関する。
[Detailed description of the invention] The present invention relates to a series of multilayer ceramic capacitors in which a large number of lead wires are held at intervals on a band-shaped taping member, and a multilayer ceramic capacitor is sandwiched between a pair of adjacent lead wires. .

積層磁器コンデンサは、小型で大容量が取れる
こと、チツプ化することにより平面状の導電パタ
ンにボンデングが可能となること、高い周波数範
囲まで優れた周波数特性を示すこと、さらに外形
の統一により、プリント基板等に実装する際、自
動挿入が可能となること等々の優れた特長を有し
ており、最近、超薄形ラジオ、超小型トランシー
バ、テープレコーダ、電卓または電子チユーナ等
の電子機器の高度化、高密度実装化に伴い、使用
量が増大する一方である。
Multilayer ceramic capacitors are compact and have large capacitance, can be bonded to a flat conductive pattern by being made into chips, have excellent frequency characteristics up to a high frequency range, and have a uniform external shape that makes it easy to print. It has excellent features such as being able to be automatically inserted when mounted on a board, etc., and has recently been used in advanced electronic devices such as ultra-thin radios, ultra-compact transceivers, tape recorders, calculators, and electronic tuners. , the amount used continues to increase with the trend towards higher density packaging.

第1図は従来より知られた積層磁器コンデンサ
の断面図を示し、平板矩形状の誘電体磁器1の内
部に、その厚みt方向に沿つて、誘電体磁器層a1
〜a6を介して、複数の内部電極2a1〜2a4、2b1
〜2b3を層状に埋設すると共に、内部電極2a1
2a4、2b1〜2b3の、反対側の一端を、側面に設
けた端部電極3,4にそれぞれ導通接続した構造
となつている。したがつて端部電極3に対しては
内部電極2a1〜2a4が並列接続され、端部電極4
に対しては内部電極2b1〜2b3が並列接続され、
内部電極2a1−2b1…2a2−…−2a4間に、誘電
体磁器層a1〜a6による容量が形成される。
FIG. 1 shows a cross-sectional view of a conventionally known multilayer ceramic capacitor, in which a dielectric ceramic layer a 1 is formed inside a flat rectangular dielectric ceramic 1 along its thickness t direction.
A plurality of internal electrodes 2a 1 to 2a 4 , 2b 1 via ~a 6
~ 2b 3 is buried in a layered manner, and internal electrodes 2a 1 ~
One end of opposite sides of 2a 4 and 2b 1 to 2b 3 is conductively connected to end electrodes 3 and 4 provided on the side surface, respectively. Therefore, the internal electrodes 2a 1 to 2a 4 are connected in parallel to the end electrode 3.
The internal electrodes 2b 1 to 2b 3 are connected in parallel to
A capacitance is formed between the internal electrodes 2a 1 -2b 1 ...2a 2 -...-2a 4 by the dielectric ceramic layers a 1 -a 6 .

ところで、コンデンサや抵抗などの電子部品の
製造工程における省力化や、自動挿入機によるプ
リント基板への自動挿入化のため、従来より第2
図に示すような電子部品連が知られている。これ
は絶縁紙などより成る保持帯5aと接着テープ5
bとより構成される帯状のテーピング部材5上
に、コンデンサあるいは抵抗などの電子部品6
を、そのリード線7,8の部分で、一定間隔毎に
多数個保持させ、これを巻枠等に巻回させたもの
である。
By the way, in order to save labor in the manufacturing process of electronic components such as capacitors and resistors, and to automatically insert them into printed circuit boards using automatic insertion machines, the second
A series of electronic components as shown in the figure is known. This consists of a retaining band 5a made of insulating paper or the like and an adhesive tape 5.
Electronic components 6 such as capacitors or resistors are placed on the band-shaped taping member 5 composed of
are held at regular intervals by the lead wires 7 and 8, and are wound around a winding frame or the like.

第1図に示した積層磁器コンデンサを使用し、
積層磁器コンデンサ連を構成しようとする場合、
第3図A,Bに示すように、その端部電極3,4
をリード線7,8間で挟持せざるを得ない。
Using the laminated ceramic capacitor shown in Figure 1,
When trying to configure a series of multilayer porcelain capacitors,
As shown in FIGS. 3A and 3B, the end electrodes 3 and 4
must be held between the lead wires 7 and 8.

しかしこの積層磁器コンデンサは、厚みtがた
とえば1mm前後と非常に薄い反面、幅Wが10mm前
後と比較的大きいため、リード線7−8間におけ
る積層磁器コンデンサの支持が不安定になるこ
と、リード線7,8が脱落してしまう場合がある
こと、更にテーピング部材5を巻回した場合に積
層磁器コンデンサの部分だけが異常に厚くなつて
しまうこと等々の不都合を生じる。
However, although the thickness t of this multilayer ceramic capacitor is very thin, for example, around 1 mm, the width W is relatively large, around 10 mm. Inconveniences arise, such as the wires 7 and 8 sometimes falling off, and furthermore, when the taping member 5 is wound, the thickness of only the multilayer ceramic capacitor becomes abnormally thick.

上述のような従来の積層磁器コンデンサの欠点
を除去するため、第4図A,Bに示す積層磁器コ
ンデンサが提案されている。この積層磁器コンデ
ンサは、誘電体磁器1の厚み方向に誘電体磁器層
a1〜a6を介して複数の内部電極2a1〜2a4、2b1
〜2b3を層状に埋設し、該内部電極2a1〜2a4
2b1〜2b3の相反する一端を端部電極3,4にそ
れぞれ導通接続すると共に、誘電体磁器1の厚み
方向の二表面に、前記端部電極3,4にそれぞれ
各別に接続する取出し電極9,10を設けた構造
となつている。
In order to eliminate the drawbacks of the conventional multilayer ceramic capacitors as described above, multilayer ceramic capacitors shown in FIGS. 4A and 4B have been proposed. This multilayer ceramic capacitor has dielectric ceramic layers in the thickness direction of dielectric ceramic 1.
A plurality of internal electrodes 2a 1 to 2a 4 and 2b 1 via a 1 to a 6
~ 2b 3 are buried in a layered manner, and the internal electrodes 2a 1 ~ 2a 4 ,
Opposite ends of 2b 1 to 2b 3 are conductively connected to the end electrodes 3 and 4, respectively, and extraction electrodes are connected to the end electrodes 3 and 4 separately on two surfaces of the dielectric ceramic 1 in the thickness direction. 9 and 10 are provided.

このような構造であれば、コンデンサ連化する
に当り、第5図に示すように、テーピング部材5
上にテーピングされたリード線7,8間に、当該
積層磁器コンデンサを挾着させる場合、取出し電
極9,10がリード線7,8の開放端7a,8a
間に圧接するように挾着させることができるか
ら、リード線7,8に対する当該積層磁器コンデ
ンサの取付け作業が容易になり、取付け強度が増
大する。
With such a structure, when connecting the capacitors, as shown in FIG.
When the multilayer ceramic capacitor is clamped between the lead wires 7 and 8 taped above, the extraction electrodes 9 and 10 are connected to the open ends 7a and 8a of the lead wires 7 and 8.
Since the multilayer ceramic capacitor can be clamped so as to be in pressure contact between the lead wires 7 and 8, the work of attaching the multilayer ceramic capacitor to the lead wires 7 and 8 is facilitated, and the attachment strength is increased.

しかも取出し電極9,10の間隔は、たとえば
1mm程度と薄いから、開放端7a,8aを無理に
拡張するような事態を招くこともなく、安定に挾
持することができる。
Moreover, since the interval between the extraction electrodes 9 and 10 is as thin as, for example, about 1 mm, the open ends 7a and 8a can be held stably without being forced to expand.

また取出し電極9,10の電極面積を広くとる
ことができるから、これに対応してリード線7,
8の開放端7a,8aの形状も、最も効果的に挾
持できるようなものに自由に加工することができ
るし、半田付け面の拡大による取付け強度増大の
効果をも得ることができる。しかしながら、上述
の積層磁器コンデンサには、次のような欠点もあ
つた。
In addition, since the electrode area of the extraction electrodes 9 and 10 can be increased, the lead wires 7 and
The shapes of the open ends 7a, 8a of 8 can also be freely processed into shapes that can be clamped most effectively, and the effect of increasing the mounting strength by enlarging the soldering surface can also be obtained. However, the above-described multilayer ceramic capacitor also had the following drawbacks.

(1) 内部電極2a1〜2a4、2b1〜2b3の電極材料
費が高価で、製品が高価なものになつていた。
すなわち、内部電極2a1〜2a4、2b1〜2b3
は、1100〜1400℃の焼成温度に耐え得る高融点
の貴金属、たとえば白金−パラジウム等を使用
して構成されるのであるが、その一端部を端部
電極3,4のある側面まで延長して設ける必要
があり、電極面積が大きくなるからである。
(1) The electrode materials for the internal electrodes 2a 1 to 2a 4 and 2b 1 to 2b 3 are expensive, making the product expensive.
That is, internal electrodes 2a 1 to 2a 4 , 2b 1 to 2b 3
is constructed using a noble metal with a high melting point that can withstand a firing temperature of 1100 to 1400°C, such as platinum-palladium. This is because it is necessary to provide the electrode, which increases the electrode area.

(2) 端部電極3,4の電極材料費が高く、製品が
高価なものとなる。すなわち端部電極3,4は
誘電体磁器1の両側面のほぼ全面に設ける必要
があり、電極面積が大きいうえに、半田付けを
良好にするためにAg−Pd系合金等の高価な電
極材料を使用する必要があり、このため端部電
極3,4の電極形成費が高価なものとなつてい
た。
(2) The cost of electrode materials for the end electrodes 3 and 4 is high, making the product expensive. In other words, the end electrodes 3 and 4 must be provided on almost the entire surface of both sides of the dielectric ceramic 1, and the electrode area is large, and expensive electrode materials such as Ag-Pd alloys are used to ensure good soldering. Therefore, the cost of forming the end electrodes 3 and 4 was high.

(3) 容量のバラツキ、容量落ちなどの問題を生じ
易い。すなわち従来の積層磁器コンデンサは、
誘電体磁器1の両側面に、誘電体磁器層a1〜a6
を仕切る如く、内部電極2a1〜2a4、2b1〜2
b3が長く露出しており、この部分の密着結合力
が弱くなつている。しかも内部電極2a1〜2
a4、2b1〜2b3と誘電体磁器1の熱膨張率に差
異があるため、焼成時またはその後に両者の接
触面に熱的ストレスを発生する。このため、内
部電極2a1〜2a4、2b1〜2b3が誘電体磁器層
a1〜a6から剥離して隙間をつくり、または誘電
体磁器層a1〜a6内に埋設し、容量のバラツキま
たは容量落ちを招いてしまう。
(3) Problems such as capacity variation and capacity drop are likely to occur. In other words, the conventional multilayer ceramic capacitor is
Dielectric ceramic layers a 1 to a 6 are provided on both sides of the dielectric ceramic 1 .
Internal electrodes 2a 1 to 2a 4 and 2b 1 to 2
b 3 is exposed for a long time, and the tight bonding force in this part is weakened. Moreover, the internal electrodes 2a 1 to 2
Since there is a difference in coefficient of thermal expansion between a 4 , 2b 1 to 2b 3 and the dielectric ceramic 1, thermal stress is generated on the contact surface between them during or after firing. Therefore, the internal electrodes 2a 1 to 2a 4 and 2b 1 to 2b 3 are made of dielectric ceramic layers.
It peels off from a 1 to a 6 to create a gap, or it is embedded in the dielectric ceramic layers a 1 to a 6 , causing variations in capacity or a drop in capacity.

(4) バレル研磨時に誘電体磁器1にクラツクを発
生することがある。
(4) Cracks may occur in the dielectric ceramic 1 during barrel polishing.

焼成後、内部電極2a1〜2a4、2b1〜2b3
端部電極3,4との間の電気的結合を良好にす
るため、バレル研磨処理を施すことがある。と
ころが誘電体磁器1の両側面に内部電極2a1
2a4、2b1〜2b3の一端縁が長く露出している
ため、バレル研磨時に誘電体磁器1同志に引つ
掛りを生じ、クラツクが入り、歩留まりの低下
や容量のバラツキを生じる。
After firing, a barrel polishing process may be performed to improve the electrical connection between the internal electrodes 2a 1 to 2a 4 and 2b 1 to 2b 3 and the end electrodes 3 and 4. However, there are internal electrodes 2a 1 ~ on both sides of the dielectric ceramic 1.
Since one end edge of 2a 4 , 2b 1 to 2b 3 is exposed for a long time, the dielectric ceramic 1 gets stuck during barrel polishing, causing cracks, resulting in a decrease in yield and variations in capacity.

(5) コンデンサ連化する場合、リード線7,8に
対する端部電極3,4の方向性を確認しながら
リード線7−8間に挿入しなければならず、作
業性が悪い。即ち、コンデンサ連化するに当
り、当該積層磁器コンデンサをリード線7−8
間に挿入する場合、第5図に示すように、端部
電極3,4のある側端面がリード線7,8と平
行する方向に挿入する必要がある。これを仮
に、端部電極3,4のある側端面がリード線
7,8と直交する方向、つまり、第5図の位置
から90度回転させた状態で挿入させた場合は、
リード線7または8が、電位的に異なる端部電
極4または3の上を、極めて接近した状態で通
ることになる。このため、電位的に異なるリー
ド線7と端部電極4との間、及び、リード線8
と端部電極3との間に、充分な絶縁距離が確保
できなくなり、絶縁耐圧が低下するのみなら
ず、リード線7,8の曲がりや、半田付着情況
によつては、リード線7と端部電極4またはリ
ード線8と端部電極3とが電気的に短絡しまう
等の問題点を生じる。このような問題点を回避
するために、第5図に示したように、端部電極
3,4のある側端面がリード線7,8と平行す
る方向となるように、その方向性を確認しなが
ら、当該電子部品をリード線7−8間に挿入し
なければならないのである。
(5) When connecting capacitors, it is necessary to insert the end electrodes 3 and 4 between the lead wires 7 and 8 while checking the directionality of the end electrodes 3 and 4 with respect to the lead wires 7 and 8, resulting in poor work efficiency. That is, when connecting the capacitors, the multilayer ceramic capacitors are connected to the lead wires 7-8.
When inserted between them, it is necessary to insert them in a direction in which the side end surfaces of the end electrodes 3 and 4 are parallel to the lead wires 7 and 8, as shown in FIG. If this is inserted with the side end surfaces of the end electrodes 3 and 4 perpendicular to the lead wires 7 and 8, that is, rotated 90 degrees from the position shown in FIG.
The leads 7 or 8 will pass in close proximity over the potentially different end electrodes 4 or 3. Therefore, between the lead wire 7 and the end electrode 4 which are different in potential, and between the lead wire 8
It becomes impossible to secure a sufficient insulation distance between the terminal electrode 3 and the end electrode 3, which not only lowers the dielectric strength voltage, but also causes the lead wire 7 and the end This causes problems such as electrical short circuit between the end electrode 4 or the lead wire 8 and the end electrode 3. In order to avoid such problems, as shown in FIG. At the same time, the electronic component must be inserted between the lead wires 7 and 8.

しかるに、この種の積層磁器コンデンサは、
小型、かつ、薄型であり、目視による端部電極
3,4の識別が困難である。このため、方向性
確認作業が困難で、しばしば方向性誤認を生じ
てしまうという難点がある。誘電体磁器1の
縦:横の比を大きくとつた場合は、縦方向長さ
及び横方向長さの違いが大きくなるので、方向
性確認は比較的容易であるが、縦:横の比が
1:1に近づく程、方向確認作業が困難にな
る。
However, this type of multilayer ceramic capacitor
It is small and thin, and it is difficult to visually identify the end electrodes 3 and 4. Therefore, it is difficult to confirm the direction, and the direction is often misperceived. When the length:width ratio of the dielectric ceramic 1 is increased, the difference between the length in the vertical direction and the length in the horizontal direction becomes large, so it is relatively easy to check the directionality. The closer the ratio is to 1:1, the more difficult it becomes to confirm direction.

(6) 取出し電極9と端部電極3とを電気的に隔て
る絶縁ギヤツプ、及び、取出し電極10と端部
電極4とを電気的に隔てる絶縁ギヤツプは、取
出し電極9,10と同一の誘電体磁器1の表面
上に、平面状に形成されている。このため、誘
電体磁器1の表面の性状、例えばリード線7,
8を半田付けする際の半田、フラツクス飛沫の
付着等によつて、絶縁ギヤツプにおける絶縁性
が劣化し易く、また、シルバーマイグレーシヨ
ンによる電気的短絡等も招き易い。
(6) The insulating gap that electrically separates the extraction electrode 9 and the end electrode 3 and the insulating gap that electrically separates the extraction electrode 10 and the end electrode 4 are made of the same dielectric material as the extraction electrodes 9 and 10. It is formed in a planar shape on the surface of the porcelain 1. For this reason, the surface properties of the dielectric ceramic 1, for example, the lead wires 7,
The insulation in the insulating gap is likely to deteriorate due to adhesion of solder and flux droplets when soldering 8, and electrical short circuits due to silver migration are likely to occur.

(7) 絶縁ギヤツプを大きくして絶縁耐圧を上げよ
うとすると、取出し電極9,10の面積が縮小
され、取得容量が減少する。反対に、取出し電
極9,10の面積を広げて取得容量を増大させ
ようとすると、絶縁ギヤツプが縮小され、絶縁
耐圧が低下する。即ち、従来の構造では、絶縁
耐圧の向上と、取得容量の増大とを同時に満た
すことはできない。
(7) If an attempt is made to increase the dielectric strength voltage by increasing the insulation gap, the area of the extraction electrodes 9 and 10 will be reduced, and the acquired capacity will be reduced. On the other hand, if an attempt is made to increase the acquisition capacity by increasing the area of the extraction electrodes 9 and 10, the insulation gap will be reduced and the dielectric strength voltage will be lowered. That is, with the conventional structure, it is not possible to simultaneously improve the dielectric strength and increase the acquired capacity.

本考案は上述する諸欠点を除去し、積層磁器コ
ンデンサの電極形成費を大幅に節減でき、容量の
バラツキ、容量落ち等の問題点がなく、しかも、
コンデンサ連化する際の方向性がなく、製造が容
易で、電気絶縁性に優れた高品質、高信頼度かつ
安価な積層磁器コンデンサ連を提供することを目
的とする。
The present invention eliminates the above-mentioned drawbacks, significantly reduces the electrode formation cost of multilayer ceramic capacitors, eliminates problems such as capacitance variation and capacitance drop, and
The purpose of the present invention is to provide a high-quality, highly reliable, and inexpensive multilayer porcelain capacitor series that is easy to manufacture, has excellent electrical insulation properties, and has no direction when connecting capacitors.

上記目的を達成するため、本考案は、帯状のテ
ーピング部材上に、間隔をおいてリード線を多数
個保持させ、隣り合う一対のリード線間に積層磁
器コンデンサを挟持させた積層磁器コンデンサ連
において、前記積層磁器コンデンサは、誘電体磁
器の厚み方向に誘電体磁器層介して複数の内部電
極を層状に埋設すると共に、該内部電極の隔一毎
に前記誘電体磁器層の内部を厚み方向に通る導電
部によつてそれぞれ導通接続し、更に該導電部を
前記誘電体磁器の厚み方向の二表面に設けた取出
し電極にそれぞれ導通接続させてなり、前記内部
電極は外周縁の全周と前記誘電体磁器の外周縁と
の間にギヤツプが生じるように前記誘電体磁器の
外周縁よりは内側に形成し、前記取出し電極は外
周縁の全周と前記誘電体磁器の外周縁との間にギ
ヤツプが生じるように前記誘電体磁器の外周縁よ
りは内側に形成し、前記取出し電極のそれぞれに
対して前記リード線を面付け固定したことを特徴
とする。
In order to achieve the above object, the present invention provides a multilayer ceramic capacitor series in which a large number of lead wires are held at intervals on a strip-shaped taping member, and a multilayer ceramic capacitor is sandwiched between a pair of adjacent lead wires. , the multilayer ceramic capacitor has a plurality of internal electrodes embedded in a layered manner through dielectric ceramic layers in the thickness direction of the dielectric ceramic, and the inside of the dielectric ceramic layer is buried in the thickness direction at every interval of the internal electrodes. The conductive parts are electrically connected to each other by conductive parts, and the conductive parts are electrically connected to lead-out electrodes provided on two surfaces of the dielectric ceramic in the thickness direction. The electrode is formed inside the outer periphery of the dielectric porcelain so that a gap is formed between the outer periphery of the dielectric porcelain and the outer periphery of the dielectric porcelain. It is characterized in that it is formed inside the outer periphery of the dielectric ceramic so as to create a gap, and the lead wires are surface-fixed to each of the extraction electrodes.

以下実施例たる添付図面を参照し、本考案の内
容を具体的に詳説する。第6図は本考案に係る積
層磁器コンデンサ連に組込まれる積層磁器コンデ
ンサの断面図、第7図A1は同じく平面図、第7
図A2〜A5は第6図X1−X1〜X4−X4線上の断面図
である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The content of the present invention will be specifically explained in detail below with reference to the accompanying drawings, which are examples. FIG. 6 is a sectional view of a multilayer ceramic capacitor incorporated in a multilayer ceramic capacitor series according to the present invention, FIG .
Figures A2 to A5 are cross-sectional views taken along lines X1 - X1 to X4 - X4 in Figure 6.

この実施例では、矩形状の誘電体磁器1の厚み
方向に、誘電体磁器層B2〜B4を間に介して、複
数の内部電極2A1〜2A4を層状に埋設してあ
る。該内部電極2A1〜2A4は1100〜1400℃の焼
成温度に耐え得る高融点の基金属、たとえば白金
−パラジウム等の電極材料を使用して構成される
ものであるが、第7図A2〜A5に示すように、誘
電体磁器層B2〜B5の外周縁よりギヤツプg1だけ内
側に形成されている。したがつて、内部電極2
A1〜2A4の全周縁が誘電体磁器1の内部に埋没
し、外部に露出することがない。このような構造
であると、誘電体磁器1の外周が、誘電体磁器層
同志の焼成結合となるから、焼成結合力が極めて
強固になり、たとえ内部電極2A1〜2A4と誘電
体磁器1との間に、熱膨張率の差異に基づく熱的
ストレスが発生したとしても、内部電極2A1
2A4の剥離事故が防止され、容量のバラツキが
なくなる。
In this embodiment, a plurality of internal electrodes 2A 1 to 2A 4 are embedded in layers in the thickness direction of a rectangular dielectric ceramic 1 with dielectric ceramic layers B 2 to B 4 interposed therebetween. The internal electrodes 2A 1 to 2A 4 are constructed using an electrode material such as a base metal with a high melting point that can withstand a firing temperature of 1100 to 1400°C, such as platinum-palladium . As shown in ~ A5 , the gap g1 is formed inward from the outer periphery of the dielectric ceramic layers B2 ~ B5 . Therefore, internal electrode 2
The entire peripheries of A 1 to 2A 4 are buried inside the dielectric ceramic 1 and are not exposed to the outside. With such a structure, the outer periphery of the dielectric ceramic 1 becomes a firing bond between the dielectric ceramic layers, so the firing bonding force becomes extremely strong, and even if the internal electrodes 2A 1 to 2A 4 and the dielectric ceramic 1 Even if thermal stress occurs due to the difference in thermal expansion coefficient between the internal electrodes 2A 1 ~
2A 4 peeling accidents are prevented and variations in capacity are eliminated.

内部電極2A1〜2A4の幅方向の中間部におけ
る端縁部には、隣り合う内部電極2A1〜2A4
で交互配列となる半円弧状のギヤツプg2を設けて
あり、該ギヤツプg2を貫通する導電部C1,C2
よつて、内部電極2A1〜2A4を隔一毎に導通接
続してある。すなわち、内部電極2A1と2A3
を導電部C2によつて互いに導通接続し、また内
部電極2A2と2A4とを導電部C1によつて互いに
導通接続するわけである。この導電部C1,C2
は、さらに誘電体磁器層B1,B5を貫通して、誘
電体磁器1の厚み方向の二表面に設けた取出し電
極9,10に導通接続してある。
Semicircular arc-shaped gaps g 2 are provided at the edge portions of the internal electrodes 2A 1 to 2A 4 at intermediate portions in the width direction, and are arranged alternately between the adjacent internal electrodes 2A 1 to 2A 4 . The internal electrodes 2A 1 to 2A 4 are electrically connected to each other by conductive portions C 1 and C 2 passing through the internal electrodes 2A 1 to 2A 4 at intervals. That is, the internal electrodes 2A 1 and 2A 3 are electrically connected to each other by the conductive portion C 2 , and the internal electrodes 2A 2 and 2A 4 are electrically connected to each other by the conductive portion C 1 . These conductive parts C 1 , C 2
further penetrates the dielectric ceramic layers B 1 and B 5 and is electrically connected to extraction electrodes 9 and 10 provided on two surfaces of the dielectric ceramic 1 in the thickness direction.

上述のように、内部電極2A1〜2A4の相互間
およびこれと取出し電極9,10とを、誘電体磁
器1の内部を通る導電部C1,C2によつて導通接
続してあるから、内部電極2A1〜2A4を従来の
ように誘電体磁器1の端部まで延長する必要がな
く、ギヤツプg1だけ内側に形成することができる
こととなり、電極材料費をそれだけ節減すること
ができる。
As described above, the internal electrodes 2A 1 to 2A 4 and the extraction electrodes 9 and 10 are electrically connected to each other by the conductive parts C 1 and C 2 passing through the inside of the dielectric ceramic 1. , it is not necessary to extend the internal electrodes 2A 1 to 2A 4 to the end of the dielectric ceramic 1 as in the conventional case, and the gap g 1 can be formed inside, and the cost of electrode materials can be reduced accordingly. .

また従来の端部電極に対応する部分を、これに
よりは面積が遥かに小さい導電部C1,C2によつ
て形成できるので、この部分の電極材料費も大幅
に節減することができる。
Further, since the portion corresponding to the conventional end electrode can be formed by the conductive portions C 1 and C 2 having a much smaller area, the electrode material cost for this portion can be reduced significantly.

さらに上述のような構造であると、バレル研
磨、端部電極塗布工程が不要となるので、工程を
短縮しコストダウンを達成すると同時に、誘電体
磁器1にクラツクが発生するのを防止することが
できる。
Furthermore, with the above-described structure, barrel polishing and end electrode coating steps are not required, so the process can be shortened and costs can be reduced, and at the same time, it is possible to prevent cracks from occurring in the dielectric ceramic 1. can.

第8図は第6図及び第7図に示した積層磁器コ
ンデンサを用いた本考案に係る積層磁器コンデン
サ連の一部平面図であり、保持帯5aと接着テー
プ5bとより構成される帯状のテーピング部材5
上に、リード線を間隔をおいて多数個保持させ、
隣り合う一対のリード線7−8間に積層磁器コン
デンサを挟持させてある。ここで、積層磁器コン
デンサは、誘電体磁器1の厚み方向の相対向二表
面に、取出し電極9,10を設けてあるので、テ
ーピング部材5上にテーピングされたリード線
7,8間に、取出し電極9,10がリード線7,
8の開放端7a−8a間に圧接するように挾着さ
せることができる。このため、リード線7,8に
対する当該積層磁器コンデンサの取付け作業が容
易になり、取付け強度が増大する。しかも、リー
ド線7−8間の間隔は、誘電体磁器1の厚み、た
とえば1mm程度と小さくなるから、開放端7a,
8aを無理に拡張するような事態を招くこともな
く、安定に挾持することができる。また、取出し
電極9,10は誘電体磁器1の厚み方向の表面に
設けられるものであり、その電極面積を広くとる
ことができるから、これに対応してリード線7,
8の開放端7a,8aの形状も、最も効果的に挾
持できるようなものに自由に加工することができ
るし、半田付け面の拡大による取付け強度増大の
効果をも得ることができる。
FIG. 8 is a partial plan view of a series of multilayer ceramic capacitors according to the present invention using the multilayer ceramic capacitors shown in FIGS. 6 and 7. Taping member 5
A large number of lead wires are held at intervals on the top,
A multilayer ceramic capacitor is sandwiched between a pair of adjacent lead wires 7-8. Here, since the multilayer ceramic capacitor has lead electrodes 9 and 10 provided on two opposing surfaces in the thickness direction of the dielectric ceramic 1, the lead wires 7 and 8 taped on the taping member 5 are connected between the lead wires 7 and 8. The electrodes 9 and 10 are the lead wires 7,
It can be clamped so as to be in pressure contact between the open ends 7a and 8a of 8. Therefore, the work of attaching the multilayer ceramic capacitor to the lead wires 7 and 8 becomes easy, and the attachment strength increases. Moreover, since the distance between the lead wires 7-8 is as small as the thickness of the dielectric ceramic 1, for example, about 1 mm, the open end 7a,
8a can be held stably without causing a situation where it is forcibly expanded. Further, since the extraction electrodes 9 and 10 are provided on the surface of the dielectric ceramic 1 in the thickness direction, and the area of the electrodes can be widened, the lead wires 7 and 10 can be provided correspondingly.
The shapes of the open ends 7a, 8a of 8 can also be freely processed into shapes that can be clamped most effectively, and the effect of increasing the mounting strength by enlarging the soldering surface can also be obtained.

更に、取出し電極9,10は、第7図A1に示
すように、外周縁の全周と誘電体磁器1の外周縁
との間にギヤツプg3が生じるように、誘電体磁器
1の外周縁よりは内側に形成してあるから、誘電
体磁器1の側端面に対する取出し電極9,10の
関係が、誘電体磁器1の側端面の全周において同
じになり、コンデンサ連化する際、リード線8,
7に対する取出し電極9,10の方向性がなくな
る。従つて、方向性を確かめる必要がなくなり、
リード線7,8に対する当該積層磁器コンデンサ
の挿入作業を自動化し、量産性を向上させること
ができる。
Further, the extraction electrodes 9 and 10 are attached to the outer periphery of the dielectric ceramic 1 so that a gap g3 is created between the entire circumference of the outer periphery and the outer periphery of the dielectric ceramic 1, as shown in FIG. 7A1. Since the lead wires are formed on the inner side, the relationship between the lead electrodes 9 and 10 with respect to the side end surface of the dielectric ceramic 1 is the same over the entire circumference of the side end surface of the dielectric ceramic 1, and when connecting the capacitors, the lead wires 8,
The directionality of the extraction electrodes 9 and 10 with respect to 7 is eliminated. Therefore, there is no need to check the direction,
The work of inserting the multilayer ceramic capacitor into the lead wires 7 and 8 can be automated, and mass productivity can be improved.

また、取出し電極9,10は、その外周縁の全
周と誘電体磁器1の外周縁との間にギヤツプg3
生じるように、誘電体磁器1の外周縁よりは内側
に形成してあるから、取出し電極9−10間の絶
縁ギヤツプは、取出し電極9のある一面側から側
端面を通り、取出し電極10のある他面側に至る
立体的な経路となる。この立体的な絶縁ギヤツプ
のため、取出し電極9,10のある誘電体磁器1
の表面性状による絶縁抵抗の低下等を招くことが
なくなると同時に、取出し電極9−10間の絶縁
距離が長くなり、絶縁耐圧が高くなる。また、絶
縁ギヤツプが立体的になることによつて、シルバ
ーマイグレーシヨンによる電極間短絡等も起きに
くくなり、信頼性が向上する。
Further, the extraction electrodes 9 and 10 are formed inside the outer periphery of the dielectric ceramic 1 so that a gap g 3 is created between the entire circumference of the outer periphery thereof and the outer periphery of the dielectric ceramic 1. Therefore, the insulating gap between the extraction electrodes 9 and 10 becomes a three-dimensional path from one side of the extraction electrode 9, passing through the side end face, to the other side where the extraction electrode 10 is located. Because of this three-dimensional insulation gap, the dielectric porcelain 1 with the extraction electrodes 9 and 10
At the same time, the insulation distance between the lead electrodes 9 and 10 becomes longer, and the dielectric strength voltage becomes higher. Furthermore, since the insulating gap is three-dimensional, short circuits between electrodes due to silver migration are less likely to occur, improving reliability.

第9図は本考案に係る積層磁器コンデンサ連に
使用される積層磁器コンデンサの製造方法の一例
を示している。
FIG. 9 shows an example of a method for manufacturing a multilayer ceramic capacitor used in a multilayer ceramic capacitor series according to the present invention.

まずグリーンシートと呼ばれる矩形状の誘電体
磁器シートB1〜B5を用意し、該誘電体磁器シー
トB1〜B5の端部の同一位置に、導電部C1,C2
構成するためのスルーホールD1,D2を設けてお
く。そして該誘電体磁器シートB1〜B5の表面に
内部電極となる導電パタン2A1〜2A4および取
出し電極となる導電パタン9,10を印刷形成す
る。この印刷形成時にスルーホールD1,D2にも
印刷ペーストを垂れ込ませる。
First, rectangular dielectric ceramic sheets B 1 to B 5 called green sheets are prepared, and conductive parts C 1 and C 2 are formed at the same positions at the ends of the dielectric ceramic sheets B 1 to B 5 . Through holes D 1 and D 2 are provided. Then, conductive patterns 2A 1 to 2A 4 that will become internal electrodes and conductive patterns 9 and 10 that will become extraction electrodes are printed on the surfaces of the dielectric ceramic sheets B 1 to B 5 . During this print formation, the printing paste is also dripped into the through holes D 1 and D 2 .

次に誘電体磁器シートB1〜B5を互いのスルー
ホールD1,D2が一致するように重ね合わせ、加
熱圧着することにより、第6図に示した構造の積
層磁器コンデンサを完成する。
Next, the dielectric ceramic sheets B 1 to B 5 are stacked so that their through holes D 1 and D 2 coincide with each other, and are heat-pressed to complete a multilayer ceramic capacitor having the structure shown in FIG. 6.

ただし、このような製造方法に限らず、誘電体
磁器層と電極とを交互に印刷して積層化する方法
やキヤリアフイルム方式などによつても、同様に
実現が可能である。
However, the present invention is not limited to such a manufacturing method, and can be similarly realized by a method in which dielectric ceramic layers and electrodes are alternately printed and laminated, a carrier film method, or the like.

以上詳説したように、本考案に係る積層磁器コ
ンデンサ連によれば、次のような効果が得られ
る。
As described in detail above, the multilayer ceramic capacitor series according to the present invention provides the following effects.

(イ) 積層磁器コンデンサの内部電極は外周縁の全
周と誘電体磁器の外周縁との間にギヤツプが生
じるように誘電体磁器の外周縁よりは内側に形
成したから、誘電体磁器の外周縁が誘電体磁器
層同志の焼成結合となり、内部電極と誘電体磁
器との間に熱膨張係数の差異に基づく熱的スト
レスが発生しても、内部電極の剥離事故が防止
され、容量のバラツキがなくなる。
(a) The internal electrodes of the multilayer ceramic capacitor are formed inside the outer periphery of the dielectric porcelain so that a gap is created between the entire periphery of the outer periphery and the outer periphery of the dielectric porcelain. The periphery becomes a sintered bond between the dielectric ceramic layers, and even if thermal stress occurs between the internal electrode and the dielectric ceramic due to the difference in thermal expansion coefficient, it prevents the internal electrode from peeling off and reduces the variation in capacity. disappears.

(ロ) 積層磁器コンデンサの内部電極の相互間及び
これと取出し電極とを誘電体磁器の内部を厚み
方向に通る導電部で導通接続させたから、電極
材料費を節減できる。
(b) Since the internal electrodes of the laminated ceramic capacitor are electrically connected to each other and the lead-out electrode by a conductive portion that runs through the inside of the dielectric ceramic in the thickness direction, the cost of electrode materials can be reduced.

(ハ) 積層磁器コンデンサのバレル研磨、端部電極
塗布工程が不要になり、工程を短縮してコスト
ダウンを達成すると同時に、誘電体磁器にクラ
ツクが発生するのを防止できる。
(c) Barrel polishing and end electrode coating processes for laminated ceramic capacitors are no longer necessary, which shortens the process and reduces costs, while at the same time preventing cracks from occurring in the dielectric ceramic.

(ニ) 積層磁器コンデンサの取出し電極は、誘電体
磁器の厚み方向の二表面に設けてあるので、コ
ンデンサ連を得る場合、テーピング部材上にテ
ーピングされたリード線間に、取出し電極がリ
ード線開放端間に圧接するように、挾着させる
ことができる。このため、リード線に対する当
該積層磁器コンデンサの取付け作業が容易にな
り、取付け強度が増大する。しかも、リード線
間の間隔は、誘電体磁器の厚み、たとえば1mm
程度と小さくなるから、リード線開放端を無理
に拡張するような事態を招くこともなく、安定
に挾持することができる。
(d) The take-out electrodes of a multilayer ceramic capacitor are provided on two surfaces of the dielectric ceramic in the thickness direction, so when obtaining a capacitor series, the take-out electrodes are placed between the lead wires taped on the taping member. It can be clamped so that it is pressed between the ends. Therefore, the work of attaching the multilayer ceramic capacitor to the lead wire becomes easy, and the attachment strength increases. Moreover, the distance between the lead wires is determined by the thickness of the dielectric porcelain, for example, 1 mm.
Since the lead wire is small in size, the lead wire can be held stably without causing a situation where the open end of the lead wire is forcibly expanded.

(ホ) 取出し電極は誘電体磁器の厚み方向の表面に
設けてあるので、その電極面積を広くとること
ができる。このため、コンデンサ連化する際、
リード線開放端の形状を、最も効果的に挾持で
きるようなものに自由に加工することができる
し、半田付け面の拡大による取付け強度増大の
効果をも得ることができる。
(e) Since the extraction electrode is provided on the surface of the dielectric ceramic in the thickness direction, the electrode area can be increased. For this reason, when connecting capacitors,
The shape of the open end of the lead wire can be freely processed into a shape that can be clamped most effectively, and the effect of increasing the mounting strength by expanding the soldering surface can also be obtained.

(ヘ) 取出し電極は、外周縁の全周と誘電体磁器の
外周縁との間にギヤツプが生じるように、誘電
体磁器の外周縁よりは内側に形成してあるか
ら、コンデンサ連化する際、リード線に対する
取出し電極の方向性がなくなる。従つて、方向
性を確かめる必要がなくなり、リード線に対す
る積層磁器コンデンサの挿入作業を自動化し、
量産性を向上させることができる。
(F) The extraction electrode is formed inside the outer periphery of the dielectric porcelain so that a gap is created between the entire periphery of the outer periphery and the outer periphery of the dielectric porcelain. , the directionality of the extraction electrode with respect to the lead wire is lost. Therefore, there is no need to check the directionality, and the process of inserting the multilayer ceramic capacitor into the lead wire can be automated.
Mass productivity can be improved.

(ト) 取出し電極は、その外周縁の全周と誘電体磁
器の外周縁との間にギヤツプが生じるように、
誘電体磁器の外周縁よりは内側に形成してある
から、取出し電極間の絶縁ギヤツプは、取出し
電極のある一面側から側端面を通り、取出し電
極のある他面側に至る立体的な経路となる。こ
の立体的な絶縁ギヤツプのため、取出し電極の
ある誘電体磁器の表面性状による絶縁抵抗の低
下を招くことがなくなると同時に、取出し電極
間の絶縁距離が長くなり、絶縁耐圧が高くな
る。
(G) The extraction electrode should be arranged so that a gap is created between the entire circumference of its outer periphery and the outer periphery of the dielectric ceramic.
Since it is formed inside the outer periphery of the dielectric ceramic, the insulation gap between the extraction electrodes is a three-dimensional path from one side where the extraction electrode is located, passing through the side end face to the other side where the extraction electrode is located. Become. Because of this three-dimensional insulation gap, a decrease in insulation resistance due to the surface texture of the dielectric ceramic on which the lead-out electrodes are located is prevented, and at the same time, the insulation distance between the lead-out electrodes is increased, and the dielectric strength voltage is increased.

(チ) 取出し電極間の絶縁ギヤツプが、前述のよう
に、立体的になることによつて、シルバーマイ
グレーシヨンによる電極間短絡が起きにくくな
り、信頼性が向上する。
(H) As described above, by making the insulation gap between the extraction electrodes three-dimensional, short circuits between the electrodes due to silver migration are less likely to occur, and reliability is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の積層磁器コンデンサの断面図、
第2図は電子部品連の斜視図、第3図A,Bは第
1図に示した従来の積層磁器コンデンサを用いて
積層磁器コンデンサ連を得る場合の欠点を説明す
る図、第4図Aは先に提案された積層磁器コンデ
ンサの斜視図、第4図Bは同じくその断面図、第
5図は第4図に示した積層磁器コンデンサを使用
した積層磁器コンデンサ連の一部を示す正面図、
第6図は本考案に係る積層磁器コンデンサ連に組
み込まれる積層磁器コンデンサの断面図、第7図
A1は同じくその平面図、第7図A2〜A5は第6図
X1−X1〜X4−X4における平面断面図、第8図は
本考案に係る積層磁器コンデンサ連の一部におけ
る正面図、第9図は本考案に係る積層磁器コンデ
ンサ連に組み込まれる積層磁器コンデンサの製造
方法を説明する図である。 1……誘電体磁器、B1〜B5……誘電体磁器
層、2A1〜2A4……内部電極、C1,C2……導電
部、5……テーピング部材、7,8……リード
線、9,10……取出し電極。
Figure 1 is a cross-sectional view of a conventional multilayer ceramic capacitor.
FIG. 2 is a perspective view of an electronic component series, FIGS. 3A and 3B are diagrams illustrating the disadvantages of obtaining a multilayer ceramic capacitor series using the conventional multilayer ceramic capacitor shown in FIG. 1, and FIG. 4A is a perspective view of the previously proposed multilayer ceramic capacitor, FIG. 4B is a cross-sectional view thereof, and FIG. 5 is a front view showing part of a multilayer ceramic capacitor series using the multilayer ceramic capacitor shown in FIG. ,
Fig. 6 is a cross-sectional view of a multilayer ceramic capacitor incorporated in a multilayer ceramic capacitor series according to the present invention, and Fig. 7
A 1 is the same plan view, and Fig. 7 A 2 to A 5 are Fig. 6.
A cross-sectional plan view at X 1 -X 1 to X 4 -X 4 , Fig. 8 is a front view of a part of the multilayer ceramic capacitor series according to the present invention, and Fig. 9 is a cross-sectional view of a part of the multilayer ceramic capacitor series according to the present invention. It is a figure explaining the manufacturing method of a laminated ceramic capacitor. DESCRIPTION OF SYMBOLS 1...Dielectric ceramic , B1-B5...Dielectric ceramic layer, 2A1-2A4 ... Internal electrode , C1 , C2 ...Conductive part, 5...Taping member, 7, 8... Lead wires, 9, 10...extracting electrodes.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 帯状のテーピング部材5上に、間隔をおいてリ
ード線を多数個保持させ、隣り合う一対のリード
線7,8間に積層磁器コンデンサを挟持させた積
層磁器コンデンサ連において、前記積層磁器コン
デンサは、誘電体磁器1の厚み方向に誘電体磁器
層B1〜B5を介して複数の内部電極2A1〜2A4
層状に埋設すると共に、該内部電極2A1〜2A4
の隔一毎に前記誘電体磁器層B1〜B5の内部を厚
み方向に通る導電部C1,C2によつてそれぞれ導
通接続し、更に該導電部C1,C2を前記誘電体磁
器1の厚み方向の二表面に設けた取出し電極9,
10にそれぞれ導通接続させてなり、前記内部電
極2A1〜2A4は外周縁の全周と前記誘電体磁器
1の外周縁との間にギヤツプg1が生じるように前
記誘電体磁器1の外周縁よりは内側に形成し、前
記取出し電極9,10は外周縁の全周と前記誘電
体磁器1の外周縁との間にギヤツプg3が生じるよ
うに前記誘電体磁器1の外周縁よりは内側に形成
し、前記取出し電極9,10のそれぞれに対して
前記リード線7,8を面付け固定したことを特徴
とする積層磁器コンデンサ連。
In a series of multilayer ceramic capacitors in which a large number of lead wires are held at intervals on a strip-shaped taping member 5 and a multilayer ceramic capacitor is sandwiched between a pair of adjacent lead wires 7 and 8, the multilayer ceramic capacitor is A plurality of internal electrodes 2A 1 to 2A 4 are embedded in a layered manner through dielectric ceramic layers B 1 to B 5 in the thickness direction of the dielectric ceramic 1, and the internal electrodes 2A 1 to 2A 4
The dielectric ceramic layers B 1 to B 5 are electrically connected to each other by conductive portions C 1 and C 2 passing through the interior of the dielectric ceramic layers B 1 to B 5 in the thickness direction, and the conductive portions C 1 and C 2 are connected to the dielectric Take-out electrodes 9 provided on two surfaces in the thickness direction of the porcelain 1;
The internal electrodes 2A 1 to 2A 4 are connected to the outside of the dielectric ceramic 1 so that a gap g 1 is created between the entire circumference of the outer periphery and the outer periphery of the dielectric ceramic 1. The extraction electrodes 9 and 10 are formed on the inner side of the outer circumference of the dielectric ceramic 1 so that a gap g3 is created between the entire circumference of the outer circumference and the outer circumference of the dielectric ceramic 1. A series of multilayer ceramic capacitors characterized in that the lead wires 7 and 8 are formed on the inside and fixed to the lead wires 7 and 8 in a surface manner to each of the extraction electrodes 9 and 10.
JP1979069843U 1979-05-24 1979-05-24 Expired JPS6214668Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1979069843U JPS6214668Y2 (en) 1979-05-24 1979-05-24

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1979069843U JPS6214668Y2 (en) 1979-05-24 1979-05-24

Publications (2)

Publication Number Publication Date
JPS55169839U JPS55169839U (en) 1980-12-05
JPS6214668Y2 true JPS6214668Y2 (en) 1987-04-15

Family

ID=29303624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1979069843U Expired JPS6214668Y2 (en) 1979-05-24 1979-05-24

Country Status (1)

Country Link
JP (1) JPS6214668Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311702Y2 (en) * 1981-01-21 1988-04-05
WO2022070862A1 (en) * 2020-09-30 2022-04-07 株式会社村田製作所 High-frequency module and communication device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5088840U (en) * 1973-12-17 1975-07-28

Also Published As

Publication number Publication date
JPS55169839U (en) 1980-12-05

Similar Documents

Publication Publication Date Title
US6715197B2 (en) Laminated ceramic electronic component and method for manufacturing same
US11670456B2 (en) Multilayer ceramic capacitor and method of manufacturing the same
JP3440883B2 (en) Chip type negative characteristic thermistor
JPS5923458B2 (en) composite parts
JPS6214668Y2 (en)
JP2000340448A (en) Laminated ceramic capacitor
JP2000106320A (en) Laminated ceramic capacitor
JPS6333289B2 (en)
JPH0855727A (en) Laminated electronic parts
JP2836303B2 (en) Square chip resistor and method of manufacturing the same
JPS609653B2 (en) Manufacturing method for composite electrical components
JP2000106321A (en) Laminated ceramic capacitor
JP2000049037A (en) Laminated ceramic capacitor
JPS6214669Y2 (en)
JP2663270B2 (en) Resonator and manufacturing method thereof
JPH0945830A (en) Chip electronic component
JP2002343640A (en) Laminated ceramic electronic component
JPS6120740Y2 (en)
JPH02101714A (en) Chip type inductance element and manufacture thereof
JPH04206910A (en) Manufacture of laminated coil
JPS6333288B2 (en)
JP3166158B2 (en) Structure of multilayer circuit components
JPH07106144A (en) Surface mounting type electron part and manufacture thereof
JPH0260109A (en) Chip type inductance element and manufacture thereof
JP3423445B2 (en) LAMINATED COMPONENT AND ITS MANUFACTURING METHOD