JPS63318752A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS63318752A
JPS63318752A JP15464587A JP15464587A JPS63318752A JP S63318752 A JPS63318752 A JP S63318752A JP 15464587 A JP15464587 A JP 15464587A JP 15464587 A JP15464587 A JP 15464587A JP S63318752 A JPS63318752 A JP S63318752A
Authority
JP
Japan
Prior art keywords
film
cavity
wirings
plasma
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15464587A
Other languages
Japanese (ja)
Inventor
Shozo Okada
岡田 昌三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15464587A priority Critical patent/JPS63318752A/en
Publication of JPS63318752A publication Critical patent/JPS63318752A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To obtain aluminum-wiring isolation structure, in which electrical interaction among aluminum wirings on the same layer is reduced, by using a cavity having a small dielectric constant as at least one part of isolation among the wirings formed onto a semiconductor substrate. CONSTITUTION:An insulator is buried between wirings 11 shaped onto a semiconductor substrate 17, and at least one part of the insulator consists of a cavity 100. A plasma CVDSiN film, a plasma CVDSiO film, a normal pressure CVDSiO film, a normal pressure CVDPSG film, etc., formed while selecting conditions, in which the cavity 100 is shaped only in a narrow region, in which a space between the aluminum wirings 11 extends over 2mum or less, are employed as an insulating film 13 on the aluminum wirings 11. For form said cavity, the film may be shaped under the conditions of the inferior stepped coat-ability. Accordingly, a mean free path lambda in the vapor phase of an intermediate product or atoms and an atomic group (a reactant) and the mean free path sigma of the surface motion of the reactant reaching the surface of the semiconductor substrate are reduced normally in a plasma CVD method and a normal pressure CVD method.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体装置に関し、特に高集積化が可能な半導
体装置における同一層上のアルミ配線間の分離構造を提
供するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor device, and in particular provides a structure for separating aluminum wiring on the same layer in a semiconductor device that can be highly integrated.

従来の技術 従来の半導体装置における同一層上のアルミ配線間の分
離構造は、第6図に示すようにアルミ配線61上に形成
したプラズマSiO膜、プラズマSiN膜、バイアスス
パ、7ターSiO[なトノ一種類の絶縁膜62をアルミ
配a51間に埋めたり、゛または第6図に示すようにプ
ラズマSiO膜やプラズマSiN  膜などの薄い絶縁
膜62の上に5oG(スピンオングラス)膜63などを
形成した二種類以上の絶縁膜をアルミ配線61間に埋め
ることによって形成していた。54.64は絶縁膜、5
5.65は半導体基板である。
BACKGROUND OF THE INVENTION The isolation structure between aluminum interconnects on the same layer in a conventional semiconductor device includes a plasma SiO film, a plasma SiN film, a bias spa, a 7-ter SiO film formed on an aluminum interconnect 61, as shown in FIG. An insulating film 62 of one type may be buried between the aluminum layers 51, or a 5oG (spin-on glass) film 63 or the like may be formed on a thin insulating film 62 such as a plasma SiO film or a plasma SiN film as shown in FIG. The two or more types of insulating films formed are buried between the aluminum wiring lines 61. 54.64 is an insulating film, 5
5.65 is a semiconductor substrate.

発明が解決しようとする問題点 しかし、このような構造ではアルミ配線61゜61の間
隔が狭くなるに従ってアルミ配線間の電気的相互作用が
大きくなることが考えられ、半導体装置の高集積微細化
への大きな妨げとなる。
Problems to be Solved by the Invention However, in such a structure, as the spacing between the aluminum wiring lines 61°61 becomes narrower, the electrical interaction between the aluminum wiring lines will increase, making it difficult to achieve high integration and miniaturization of semiconductor devices. This is a major hindrance.

本発明はこのような問題点に鑑み、同一層上のアルミ配
線間の電気的相互作用を減少させたアルミ配線分離構造
を提供するものである。
In view of these problems, the present invention provides an aluminum wiring isolation structure that reduces electrical interaction between aluminum wirings on the same layer.

問題点を解決するための手段 前記問題点を解決する本発明の技術的な手段は、半導体
基板上に形成した配線間の分離の少なくとも一部に誘電
率の小さい空洞を用いることにより、配線間の電気的相
互作用の小さな構造にすることである。
Means for Solving the Problems The technical means of the present invention for solving the above-mentioned problems is to use a cavity with a small dielectric constant in at least a part of the separation between the wirings formed on the semiconductor substrate. The goal is to create a structure with small electrical interaction.

作用 この技術的手段によると、配線の配線間隔が狭くなった
時に問題となる配線間の寄生容量を小さくできる為、配
線間の電気的相互作用の影響を小さくできる。
Effect: According to this technical means, it is possible to reduce the parasitic capacitance between the wirings, which becomes a problem when the spacing between the wirings becomes narrow, so that the influence of electrical interaction between the wirings can be reduced.

実施例 以下、本発明の第1の実施例を第1図にもとづいて説明
する。第1図において、アルミ配線11上の絶縁膜13
はアルミ配線の間隔が2μm以下の狭い領域上にのみ空
洞100ができるよう条件を選んで形成したプラズマ(
jVDsiN膜、プラズマCV D SiO膜、常圧C
VD5iO膜、常圧CjVDPSG膜などである。前記
空洞形成を行なうには、段差被覆性の悪い条件で膜形成
をすればよい。このためには一般にプラズマCvD法や
常圧CVO法では、中間生成物または原子、原子団(以
後、反応物と呼ぶ)の気相中の平均自由行程λと、半導
体基板表面に到達した反応物の表面運動の平均自由行程
σを小さくすればよい。λは堆積圧力が大きいほど小さ
くなり、σは単位時間当りの基板表面吸着分子濃度が大
きいほど、また基板温度が低いほど小さくなる傾向があ
る。そこで前記空洞100を形成するには、プラズマC
vD法では、堆積圧力を数rorr以上にしたり、プラ
ズマ電力を大きくすればよく、常圧CVD法では、主に
反応ガス流量を大きくすればよい。このような条件で前
記絶縁膜13をアルミ配線11上に形成すると、膜厚が
0.8〜1μm1間隔が2〜1μmのアルミ配線の場合
、空洞の大きさ18が0.5±0.3μm、また間隔が
1μm以下のアルミ配線11においては配線間隔の約A
−%の大きさとなる。空洞の大きさ18は、ムl配線1
1の配線間隔が一定の場合、ムl配線11の膜厚が大き
いほど、また絶縁膜13の形成条件ではλやσが小さく
なる条件はど大きくできる。またムl配線11に関して
も側壁の形状が逆テーパ状になるほど空洞13を大きく
できる。14は平坦化の為の5OG(スピンオングラス
)膜、16は常圧CVD法やプラズマCvD法で形成し
た絶縁膜である。
EXAMPLE A first example of the present invention will be described below with reference to FIG. In FIG. 1, an insulating film 13 on an aluminum wiring 11
is a plasma (
jVDsiN film, plasma CVD SiO film, normal pressure C
These include a VD5iO film, a normal pressure CjVDPSG film, and the like. In order to form the cavity, the film may be formed under conditions that provide poor step coverage. For this purpose, in general, in the plasma CvD method and atmospheric pressure CVO method, the mean free path λ of intermediate products, atoms, or atomic groups (hereinafter referred to as reactants) in the gas phase, and the reactants that have reached the surface of the semiconductor substrate are determined. It is sufficient to reduce the mean free path σ of the surface motion of . λ tends to decrease as the deposition pressure increases, and σ tends to decrease as the concentration of adsorbed molecules on the substrate surface per unit time increases and as the substrate temperature decreases. Therefore, in order to form the cavity 100, plasma C
In the vD method, it is sufficient to increase the deposition pressure to several rorr or more or to increase the plasma power, and in the atmospheric pressure CVD method, it is sufficient to mainly increase the reaction gas flow rate. When the insulating film 13 is formed on the aluminum wiring 11 under these conditions, the cavity size 18 will be 0.5±0.3 μm in the case of aluminum wiring with a film thickness of 0.8 to 1 μm and an interval of 2 to 1 μm. , and in the aluminum wiring 11 with a spacing of 1 μm or less, the wiring spacing is approximately A
−%. The size of the cavity 18 is equal to the mul wiring 1
1, the larger the film thickness of the multilayer wiring 11, and the conditions for forming the insulating film 13, the conditions under which λ and σ become smaller can be made larger. Also, regarding the multilayer wiring 11, the cavity 13 can be made larger as the shape of the side wall becomes inversely tapered. 14 is a 5OG (spin-on-glass) film for planarization, and 16 is an insulating film formed by atmospheric pressure CVD or plasma CVD.

第2の実施例を第2図にもとづいて説明する。A second embodiment will be explained based on FIG.

本実施例は、前記第1の実施例に相当するアルミ配線2
1と絶縁膜23の間にプラズマ8iN膜22を薄く形成
して半導体装置の信頼性をさらに高めたものであり、こ
れ以外の点は第1の実施例と同じである。24はSOG
膜、25.26は絶縁膜、27は半導体基板である。
This embodiment uses aluminum wiring 2 corresponding to the first embodiment.
This embodiment further improves the reliability of the semiconductor device by forming a thin plasma 8iN film 22 between the semiconductor device 1 and the insulating film 23, and other points are the same as the first embodiment. 24 is SOG
25 and 26 are insulating films, and 27 is a semiconductor substrate.

第3の実施例を第3図にもとづいて説明する。A third embodiment will be explained based on FIG.

アルミ配線31上の絶縁膜形成までは第1.第2の実施
例と同様である。この後、本実施例ではエッチバック法
で絶縁膜33に平坦化処理をし、その上に絶縁膜33と
同種、または異種の絶縁膜34を形成する。36は下地
の絶縁膜、37は半導体基板である。
The steps up to the formation of the insulating film on the aluminum wiring 31 are as follows. This is similar to the second embodiment. Thereafter, in this embodiment, the insulating film 33 is planarized by an etch-back method, and an insulating film 34 of the same type or different type as the insulating film 33 is formed thereon. 36 is an underlying insulating film, and 37 is a semiconductor substrate.

第4の実施例を第4図a、bにもとづいて説明する。本
実施例では、第3の実施例に相当するアルミ配線41と
絶縁膜43の間にプラズマSiN膜42を形成したもの
であり、これ以外の点は第3の実施例と同じである。実
施例aではエッチパック法でアルミ配線41上部のプラ
ズマ81N膜42をエツチングしており、実施例すでは
プラズマ8iN 膜42を残す。44.46は絶縁膜、
47は半導体基板である。
The fourth embodiment will be explained based on FIGS. 4a and 4b. In this example, a plasma SiN film 42 is formed between an aluminum wiring 41 and an insulating film 43 corresponding to the third example, and other points are the same as the third example. In Example A, the plasma 81N film 42 on the top of the aluminum wiring 41 is etched by the etch pack method, and in the second example, the plasma 8iN film 42 is left. 44.46 is an insulating film,
47 is a semiconductor substrate.

以上のように第1から第4の実施例の装置構造によれば
、アルミ配線間の狭い領域にのみプラズマ3i)1  
(誘電率〜6)やプラズマ810  、常圧cvnsi
o、常圧cvnpse  (いずれも誘電率〜4)の絶
縁膜に比べて誘電率の低い空気や窒素(誘電率〜1)の
空洞100を形成することが可能となるので、前記領域
でのアルミ配線間の寄生容量を低減できる。またアルミ
配線間の絶縁耐圧に関しても、従来の配線間に絶縁膜を
埋めた構造より空洞を形成した構造の方が大きくなる。
As described above, according to the device structures of the first to fourth embodiments, plasma 3i)1 is applied only to the narrow area between the aluminum wirings.
(permittivity ~6), plasma 810, atmospheric pressure CVNSI
o, atmospheric pressure cvnpse (both have a dielectric constant of ~4), it is possible to form a cavity 100 of air or nitrogen (dielectric constant ~1), which has a lower dielectric constant than an insulating film with a dielectric constant of ~1, Parasitic capacitance between wiring lines can be reduced. Also, regarding the dielectric strength between aluminum wiring lines, the structure in which a cavity is formed has a higher voltage than the conventional structure in which an insulating film is buried between the wiring lines.

発明の効果 以上のように、本発明によれば、アルミ等の配線間隔が
微細な配線の配線間の寄生容量を低減できるので、微細
な配線間の電気的相互作用の影響を小さくすることが可
能となり、半導体装置の微細化へ大きく寄与する。
Effects of the Invention As described above, according to the present invention, it is possible to reduce the parasitic capacitance between wirings made of aluminum or the like with fine wiring intervals, thereby reducing the influence of electrical interaction between fine wirings. This will greatly contribute to the miniaturization of semiconductor devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第4図は本発明の第1から第4の実施例にお
ける半導体装置の構造断面図、第6図。 第6図は従来の半導体装置の構造断面図である。 11.21.31 .41・・・・・・アルミ配線、2
2゜42・・・・・・プラズマSiN膜、13,15,
16゜23.25,26,33,34,36,43゜4
4.46・・・・・・絶縁膜、14.24・・・・・・
5OG(スピンオングラス)膜、7,27,37.47
・・・・・・半導体基板、18.28,38.48・・
・・・・空洞の大きさ、1oo・・・・・・空洞。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名#−
7rLミロzi’jc
1 to 4 are structural cross-sectional views of semiconductor devices according to first to fourth embodiments of the present invention, and FIG. FIG. 6 is a structural sectional view of a conventional semiconductor device. 11.21.31. 41... Aluminum wiring, 2
2゜42...Plasma SiN film, 13, 15,
16゜23.25, 26, 33, 34, 36, 43゜4
4.46... Insulating film, 14.24...
5OG (spin-on glass) film, 7, 27, 37.47
・・・・・・Semiconductor substrate, 18.28, 38.48...
...Cavity size, 1oo...Cavity. Name of agent: Patent attorney Toshio Nakao and 1 other person #-
7rL miro zi'jc

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に形成した配線間に絶縁物が埋められてお
り、この絶縁物の少なくとも一部が空洞よりなることを
特徴とする半導体装置。
A semiconductor device characterized in that an insulating material is buried between wirings formed on a semiconductor substrate, and at least a portion of the insulating material is formed as a cavity.
JP15464587A 1987-06-22 1987-06-22 Semiconductor device Pending JPS63318752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15464587A JPS63318752A (en) 1987-06-22 1987-06-22 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15464587A JPS63318752A (en) 1987-06-22 1987-06-22 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS63318752A true JPS63318752A (en) 1988-12-27

Family

ID=15588751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15464587A Pending JPS63318752A (en) 1987-06-22 1987-06-22 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS63318752A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03237721A (en) * 1990-02-15 1991-10-23 Fujitsu Ltd Method of flattening multilayer wiring
US5407860A (en) * 1994-05-27 1995-04-18 Texas Instruments Incorporated Method of forming air gap dielectric spaces between semiconductor leads
JPH0936226A (en) * 1995-07-18 1997-02-07 Nec Corp Semiconductor device and its manufacture
EP0766290A3 (en) * 1995-09-27 1997-05-14 Sgs Thomson Microelectronics
JPH1012730A (en) * 1996-06-27 1998-01-16 Nec Corp Semiconductor integrated circuit device and manufacture thereof
US5728631A (en) * 1995-09-29 1998-03-17 Taiwan Semiconductor Manufacturing Company, Ltd. Method for forming a low capacitance dielectric layer
US6054381A (en) * 1997-06-20 2000-04-25 Nec Corporation Semiconductor device, and method of manufacturing same
US6239016B1 (en) 1997-02-20 2001-05-29 Nec Corporation Multilevel interconnection in a semiconductor device and method for forming the same
JP2006222410A (en) * 2004-11-10 2006-08-24 Ricoh Co Ltd Semiconductor device and manufacturing method thereof
JP2007081420A (en) * 2004-11-10 2007-03-29 Ricoh Co Ltd Semiconductor device and method of manufacturing same
JP2007234961A (en) * 2006-03-02 2007-09-13 Fujitsu Ltd Method for manufacturing semiconductor device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03237721A (en) * 1990-02-15 1991-10-23 Fujitsu Ltd Method of flattening multilayer wiring
US5407860A (en) * 1994-05-27 1995-04-18 Texas Instruments Incorporated Method of forming air gap dielectric spaces between semiconductor leads
JPH0936226A (en) * 1995-07-18 1997-02-07 Nec Corp Semiconductor device and its manufacture
US5847464A (en) * 1995-09-27 1998-12-08 Sgs-Thomson Microelectronics, Inc. Method for forming controlled voids in interlevel dielectric
EP0766290A3 (en) * 1995-09-27 1997-05-14 Sgs Thomson Microelectronics
US5960311A (en) * 1995-09-27 1999-09-28 Stmicroelectronics, Inc. Method for forming controlled voids in interlevel dielectric
US5728631A (en) * 1995-09-29 1998-03-17 Taiwan Semiconductor Manufacturing Company, Ltd. Method for forming a low capacitance dielectric layer
JPH1012730A (en) * 1996-06-27 1998-01-16 Nec Corp Semiconductor integrated circuit device and manufacture thereof
US6239016B1 (en) 1997-02-20 2001-05-29 Nec Corporation Multilevel interconnection in a semiconductor device and method for forming the same
US6054381A (en) * 1997-06-20 2000-04-25 Nec Corporation Semiconductor device, and method of manufacturing same
JP2006222410A (en) * 2004-11-10 2006-08-24 Ricoh Co Ltd Semiconductor device and manufacturing method thereof
JP2007081420A (en) * 2004-11-10 2007-03-29 Ricoh Co Ltd Semiconductor device and method of manufacturing same
JP2007234961A (en) * 2006-03-02 2007-09-13 Fujitsu Ltd Method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
KR0171582B1 (en) Fabrication process of a semiconductor device with a wiring structure
US6812109B2 (en) Integrated decoupling capacitors
JPH1022457A (en) Capacitance device and semiconductor device, and manufacture thereof
JPS63318752A (en) Semiconductor device
JPS6276653A (en) Semiconductor integrated circuit
JPH1074834A (en) Semiconductor device and manufacture thereof
JPH0656865B2 (en) Adhesive substrate for high voltage devices
JP3526289B2 (en) Method for manufacturing semiconductor device
JPS63188959A (en) Semiconductor device and its manufacture
JPS58213449A (en) Semiconductor integrated circuit device
JPH0254960A (en) Manufacture of semiconductor device
JPS62172732A (en) Manufacture of semiconductor device
JPH0230137A (en) Method forming wiring of semiconductor device
JPS63299142A (en) Manufacture of semiconductor device having multilayer interconnection structure
JPH07226437A (en) Semiconductor device and its manufacture
JPH0642481B2 (en) Manufacturing method of semiconductor device
JPS60244045A (en) Semiconductor device
JPS63226041A (en) Manufacture of semiconductor integrated circuit device
JPH03112151A (en) Active layer stacked element
JP2001351972A (en) Semiconductor device and its manufacturing method
JPH04109655A (en) Semiconductor device and manufacture thereof
JPH1022389A (en) Semiconductor device
JPS60180143A (en) Semiconductor device
JPS6276650A (en) Manufacture of semiconductor device
JPS60195950A (en) Multilayer interconnection members