JPS63316402A - Oxide semiconductor for thermistor use - Google Patents

Oxide semiconductor for thermistor use

Info

Publication number
JPS63316402A
JPS63316402A JP15187987A JP15187987A JPS63316402A JP S63316402 A JPS63316402 A JP S63316402A JP 15187987 A JP15187987 A JP 15187987A JP 15187987 A JP15187987 A JP 15187987A JP S63316402 A JPS63316402 A JP S63316402A
Authority
JP
Japan
Prior art keywords
oxide semiconductor
thermistor
constant
specific resistance
resistance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15187987A
Other languages
Japanese (ja)
Inventor
Isao Shimono
功 下野
Masatsune Oguro
小黒 正恒
Junji Kawachi
河内 純二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15187987A priority Critical patent/JPS63316402A/en
Publication of JPS63316402A publication Critical patent/JPS63316402A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To keep a B constant nearly definite and to change only a specific resistance value by a method wherein ZrO2 as a high-resistance oxide is compounded to an Mn-Ni-Cr-related oxide semiconductor which is composed mainly of Mn. CONSTITUTION:5-25atomic% zirconium is added externally to a total of 100 atomic% of a composition where manganese as a main component, 15-20atomic% nickel and 1-5atomic% chromium are contained as metal elements. For this composition the amount of ZrO2 is changed variously. By this setup, because an oxide semiconductor for thermistor use keeps a B constant nearly definite and changes only its specific resistance value, it is possible to form a desired shape of a thermistor device with a desired thermistor characteristic.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、温度センサーとして利用できるところの負の
抵抗温度係数を有するサーミスタ用酸化物半導体に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an oxide semiconductor for a thermistor, which has a negative temperature coefficient of resistance and can be used as a temperature sensor.

従来の技術 従来この穂のサーミスタ用酸化物半導体は、スピネル構
造をしたMn−Go系酸化物半導体に抵抗値制御原子で
あるNiおよびCuを含有させて構成された組成を有す
るものであった。
BACKGROUND OF THE INVENTION Conventionally, the oxide semiconductor for a thermistor of the present invention has a composition composed of an Mn--Go based oxide semiconductor having a spinel structure and containing Ni and Cu, which are resistance value controlling atoms.

発明が解決しようとする問題点 サーミスタ素子のある温度Tにおける抵抗値Rτは、そ
れを構成するサーミスタ用酸化物半導体の比抵抗ρ!に
より RT = (t/S ) Xρ!で決まる。
Problem to be Solved by the Invention The resistance value Rτ of a thermistor element at a certain temperature T is the specific resistance ρ! of the oxide semiconductor for the thermistor that constitutes the thermistor element. Therefore, RT = (t/S) Xρ! It is determined by

ここでSは電極面積、tは電極間距離である。従ってブ
ーミスタ素子形状、B定数を変えずKある温度Tにおけ
る抵抗値R1のみを変えたい場合はブーミスタ用酸化物
半導体の比抵抗ρ〒ftそれに合うよう変化させる必要
がある〇 ところが上述した従来の組成では、N1およびCuji
を変え比抵抗を変化させた場合、B定数も変化してしま
うため、サーミスタ用酸化物半導体のB定数をほぼ一定
に保ち、比抵抗のみ全変化させることはできないという
問題があった0本発明はこのような問題点全解決するも
ので同一 B定数を持った。柿々の比抵抗値を有するサ
ーミスタ用酸化物半導体を提供することを目的とするも
のである。
Here, S is the electrode area and t is the distance between the electrodes. Therefore, if you want to change only the resistance value R1 at a certain temperature T without changing the shape of the boomister element or the B constant, it is necessary to change the specific resistance ρ〒ft of the oxide semiconductor for the boomister to match it.However, the conventional composition described above Now, N1 and Cuji
If the resistivity is changed by changing the resistivity, the B constant also changes, so there is a problem in that it is not possible to keep the B constant of the oxide semiconductor for thermistor almost constant and change only the resistivity completely. solves all of these problems and has the same B constant. An object of the present invention is to provide an oxide semiconductor for a thermistor having a specific resistance value of 100%.

問題点を解決するだめの手段 この問題点を解決するだめに1本発明はサーミスタ用酸
化物半導体をスピネル(4造tしたMn’z主成分とす
る一n−NニーOr系酸化物半導体と、高抵抗酸化物で
あるZrO□乞複合化させ、さらにZrO2童を柱4変
化させた組成としたものである。
Means to Solve the Problem In order to solve this problem, the present invention uses an oxide semiconductor for a thermistor as a spinel (1n-N-Or based oxide semiconductor mainly composed of Mn'z). The composition is made by combining ZrO□, which is a high resistance oxide, and further changing ZrO2 into four pillars.

作用 このような構成により、ブーミスタ用酸化物半導体はB
定数をほぼ一定に保ち比抵抗のみを変化させることがで
きるため、所望のブーミスタ特性金有した所望の形状の
サーミスタ素子を得ることができるものである。
Function: Due to this structure, the oxide semiconductor for the boomister is B
Since the constant can be kept substantially constant and only the specific resistance can be changed, a thermistor element having a desired shape and having desired boomister characteristics can be obtained.

実施例 以下1本発明の実施例について説明する。Example An embodiment of the present invention will be described below.

予備検討として、Mn−NニーOr系醒化物半導体の組
成範囲を決定した0Mn504酸化物半導体はよく知ら
れているようにスピネル構造を形成しており、その両隅
イオンサイトであるBブイト中にはMn  イオンが配
置しており、これが原因でこのスピネル構造は正方晶に
歪んでいる。
As a preliminary study, we determined the composition range of the Mn-N-Or based oxide semiconductor. As is well known, the 0Mn504 oxide semiconductor forms a spinel structure, and there are is arranged by Mn ions, which causes the spinel structure to be distorted into a tetragonal structure.

このBフィト中のMn  イオンと置侠可能なイオンは
、その位置選択エネルギーから考え、 Ni2+イオン
、 Cr  イオ/が上げられる。これらの元素を酸化
物の形でαΣ力口していき、X線回折で調べたところN
i15原子%以上、 Or 1.0原子%以上でこのス
ピネル構造は立方晶単相となった。
Considering the positional selection energy of the ions that can be placed with the Mn ions in this B-phyto, Ni2+ ions and Cr ions are listed. When these elements were extracted into αΣ in the form of oxides and examined by X-ray diffraction, N
When i was 15 atomic % or more and Or was 1.0 atomic % or more, this spinel structure became a cubic single phase.

以下の表に代表的組成を有す試料の熱処理による抵抗値
変化およびその結晶構造を示す。
The table below shows changes in resistance values due to heat treatment of samples with typical compositions and their crystal structures.

本発明者はこの抵抗値変化が結晶構造に基因していると
考え、Ni15原子%未満、 Cr 1.0原子9c未
満の組成全本発明の請求範囲外とした。また、N12o
原子%を超える範囲ではNiOが析出し、またCr s
原子%を超える範囲では焼結体が多孔質となシミ気特性
的に不安定なため、やはシ本発明の請求範囲外とした。
The inventor of the present invention believes that this change in resistance value is due to the crystal structure, and therefore all compositions containing less than 15 atomic % of Ni and 1.0 atomic % of Cr and less than 9 c of Cr are outside the scope of the claims of the present invention. Also, N12o
NiO precipitates in a range exceeding atomic %, and Cr s
If the amount exceeds atomic percent, the sintered body becomes porous and unstable in terms of stain resistance, and therefore is outside the scope of the claims of the present invention.

以上の予備検討にもとすき、以下の表に示す組成の試料
を作製した。
In preparation for the above preliminary study, samples having the compositions shown in the table below were prepared.

(′*:zrは外割添加) 製造工程を例示すると、これらの配合組成物をボールミ
ルで湿式混合し、そのスラリーを乾燥後800’Cで仮
焼し、その仮焼物を再びボールミルで湿式粉砕した0得
られたスラリーを乾燥させた後、ポリビニールアルコー
ル全バインダーとして添加混合し、直径12ts、;γ
み2MMのディスク状に成形した。この成形体(i−1
300’Cで2時間空気中で焼成した。このディスク状
焼結体に銀電極を設けた。このようにして製造されたブ
ーミスタの26℃における比抵抗値ムおよび26℃と6
0℃によるB定数のZr fmによる変化B′jt図面
シて示す。
('*: zr is an external addition) To illustrate the manufacturing process, these blended compositions are wet mixed in a ball mill, the slurry is dried and calcined at 800'C, and the calcined product is wet-pulverized again in a ball mill. After drying the obtained slurry, polyvinyl alcohol was added and mixed as a total binder, and a diameter of 12ts; γ
It was molded into a 2 MM disk shape. This molded body (i-1
Calcined in air at 300'C for 2 hours. A silver electrode was provided on this disc-shaped sintered body. The specific resistance value of the boomister manufactured in this way at 26°C and 6°C and 26°C
The diagram shows the change in B constant due to Zr fm at 0°C.

図面から明らかなように1本発明による酸化物半導体は
そのZr量を変えることによシ、B定数をほぼ一定に保
ち、比抵抗のみを変化させることができる。なお、Zr
5原子%未満では比抵抗上昇の効果が顕著ではなく、ま
た、Zr26原子%を超える範囲ではB定数の変化が顕
著となり出したため1本発明の請求範囲外とした。
As is clear from the drawings, by changing the amount of Zr in the oxide semiconductor according to the present invention, the B constant can be kept almost constant and only the specific resistance can be changed. In addition, Zr
If the Zr content is less than 5 atomic %, the effect of increasing the specific resistance is not significant, and if the Zr content exceeds 26 atomic %, the change in the B constant becomes noticeable, so this is outside the scope of the claims of the present invention.

発明の効果 以上のように本発明てよれば、Mnを主成分とするla
n −Ni −Or系酸化物半導体に高抵抗酸化物であ
るZrO□を複合化させたサーミスタ用酸化物半導体と
することによシ、B定数をほぼ一定に保ち、比抵抗のみ
を変化させることができるという効果が得られた0すな
わち1本発明は所望のサーミスタ特性を有した所望の形
状のサーミスタ素子を提供するにあたシ、多大な貢献が
できるものである。
Effects of the Invention As described above, according to the present invention, la containing Mn as a main component
By using an oxide semiconductor for a thermistor that is a combination of an n-Ni-Or-based oxide semiconductor and ZrO□, which is a high-resistance oxide, the B constant can be kept almost constant and only the specific resistance can be changed. The present invention can greatly contribute to providing a thermistor element having a desired shape and having desired thermistor characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明によって得られたサーミスタ用酸化物半導体
のZr量による比抵抗、B定数の変化念示すグラフであ
る0 代理人の氏名 弁理士 中 尾 敏 男 ほか1名5 
   10    75     fi     !Z
r  (at、%)
The figure is a graph illustrating the change in specific resistance and B constant depending on the Zr content of the oxide semiconductor for thermistor obtained by the present invention0 Name of agent Patent attorney Toshio Nakao and 1 other person5
10 75 fi! Z
r (at,%)

Claims (1)

【特許請求の範囲】[Claims] 金属元素として、マンガンを主成分とし、ニッケル15
〜20原子%、クロム1〜5原子%の3種を合計100
原子%含有する組成に対し、外割でジルコニウムを5〜
25原子%含有することを特徴とするサーミスタ用酸化
物半導体。
As a metal element, manganese is the main component, and nickel 15
~20 at%, chromium 1-5 at%, total 100
Zirconium is 5 to 5% in terms of the composition containing atomic%.
An oxide semiconductor for a thermistor, characterized by containing 25 at%.
JP15187987A 1987-06-18 1987-06-18 Oxide semiconductor for thermistor use Pending JPS63316402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15187987A JPS63316402A (en) 1987-06-18 1987-06-18 Oxide semiconductor for thermistor use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15187987A JPS63316402A (en) 1987-06-18 1987-06-18 Oxide semiconductor for thermistor use

Publications (1)

Publication Number Publication Date
JPS63316402A true JPS63316402A (en) 1988-12-23

Family

ID=15528202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15187987A Pending JPS63316402A (en) 1987-06-18 1987-06-18 Oxide semiconductor for thermistor use

Country Status (1)

Country Link
JP (1) JPS63316402A (en)

Similar Documents

Publication Publication Date Title
JPS63316402A (en) Oxide semiconductor for thermistor use
JPH02143502A (en) Manufacture of ntc thermistor
JPS6252922B2 (en)
JPS6396902A (en) Manufacture of oxide semiconductor device for thermistor
JPH0578921B2 (en)
JPS63104305A (en) Oxide semiconductor for thermistor
JPS61113208A (en) Manufacture of oxide semiconductor for thermistor
JPS63296304A (en) Oxide semiconductor for thermistor
JPS6055964B2 (en) Manufacturing method of thermistor
JPS59107968A (en) Manufacture of zirconia ceramics
JPS5933242B2 (en) Manufacturing method of oxide semiconductor material for thermistor
JPS63315555A (en) Thermistor porcelain composition
JPS6015124B2 (en) Oxide semiconductor for thermistor
JPS63104304A (en) Manufacture of oxide semiconductor for thermistor
JPS63308302A (en) Oxide semiconductor for thermistor
JPS60106107A (en) Method of producing oxide semiconductor porcelain for thermistor
JPH04180201A (en) Oxide semiconductor for thermistor and its material
JPS61168205A (en) Manufacture of oxide semiconductor for thermistor
JPS62263606A (en) Manufacture of oxide semiconductor porcelain for thermistor
JPS63315552A (en) Thermistor porcelain composition
JPH0578922B2 (en)
JPS63285903A (en) Oxide semiconductor for thermistor
JPS6013285B2 (en) Oxide semiconductor for thermistor
JPS62108504A (en) Oxide semiconductor for thermistor
JPH01233703A (en) Oxide semiconductor for thermistor