JPS63296304A - Oxide semiconductor for thermistor - Google Patents

Oxide semiconductor for thermistor

Info

Publication number
JPS63296304A
JPS63296304A JP62132447A JP13244787A JPS63296304A JP S63296304 A JPS63296304 A JP S63296304A JP 62132447 A JP62132447 A JP 62132447A JP 13244787 A JP13244787 A JP 13244787A JP S63296304 A JPS63296304 A JP S63296304A
Authority
JP
Japan
Prior art keywords
thermistor
atom
constant
oxide semiconductor
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62132447A
Other languages
Japanese (ja)
Inventor
Kaori Okamoto
岡本 香織
Takuoki Hata
畑 拓興
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62132447A priority Critical patent/JPS63296304A/en
Publication of JPS63296304A publication Critical patent/JPS63296304A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To lower resistivity, and to increase the B constant by composing an oxide semiconductor for a thermistor of the sintered mixture of a metallic oxide and containing five kinds of cobalt, copper, lithium, zirconium and silicon at a specific rate as constituent metallic elements for the sintered mixture. CONSTITUTION:An oxide semiconductor for a thermistor consists of the sintered mixture of a metallic oxide, and five kinds of 75.3-96.5 atom % cobalt (Co), 1.0-4.5 atom % copper (Cu), 1.0-15.0 atom % lithium (Li), 1.0-12.5 atom % zirconium (Zr) and 0.0-2.0 atom % silicon (Si) (where except 0.0 atom %) are contained at 100 atom % in total as metallic elements for the sintered mixture. Consequently, the oxide semiconductor for the thermistor having low resistivity in a region 1 and a high B constant can be acquired. Cobalt oxide (CoO) is used as a basic composition in the semiconductor, and the high B constant can not be attained by the contribution of hopping conduction when tricobalt tetraoxide (Co3O4) is formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高応答性の温度センサとして利用できるとこ
ろの負の抵抗温度係数を有するサーミスタ用酸化物半導
体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an oxide semiconductor for a thermistor having a negative temperature coefficient of resistance and which can be used as a highly responsive temperature sensor.

従来の技術 従来、汎用ディスク型サーミスタとしては、kn−Co
−NニーCu 酸化物系サーミスタ材料であって、しか
もその結晶構造がスピネル構造をとるものが主に用いら
れてきた。サーミスタ材料の電気的特性としては、一般
的に、比抵抗およびサーミスタ定数Bで示される。サー
ミスタ定数(以下B定数と記す)は抵抗の温度勾配を表
すもので、具体的にはサーミスタ材料のバンドギャップ
に相当する活性化エネルギーによシ決定される。従って
B定数が大きい程、温度に対する抵抗値変化が犬きく、
すなわち、応答性が良くなる。また、比抵抗とB定数に
は図に示すように相関性があり、現在の汎用サーミスタ
材料は図中2で囲んだ領域、つまり比抵抗が数10〜数
100にΩ・1、B定数25oO〜5000にのものが
用いられている。
Conventional technology Conventionally, kn-Co was used as a general-purpose disk type thermistor.
-N-Cu oxide-based thermistor materials whose crystal structure is a spinel structure have been mainly used. The electrical characteristics of a thermistor material are generally expressed as specific resistance and thermistor constant B. The thermistor constant (hereinafter referred to as B constant) represents the temperature gradient of resistance, and is specifically determined by the activation energy corresponding to the band gap of the thermistor material. Therefore, the larger the B constant, the greater the resistance change with temperature.
In other words, responsiveness is improved. In addition, there is a correlation between specific resistance and B constant as shown in the figure, and current general-purpose thermistor materials are in the area surrounded by 2 in the figure, that is, the specific resistance is in the range of several 10 to several 100 Ω・1, and the B constant is 25 oO ~5000 are used.

また、酸化コバルトとリチウムを組合わせた酸化物半導
体としては、一般的に酸化物半導体材料の導電機構の1
つとして説明される原子価制御理論の実例で、古(lf
iRWKYらによシ取υ上けられている( Ph1li
ps  Re5arch Report  5173(
1950,)   ) しかしながら、VKRWEY らの検討はあくまでも研
究的な段階で終っており、サーミスタとじての用途開発
以前のものであって、サーミスタ材料としての検討は二
本入夫によって記載されたもの(■日立製作所、中央研
究所創立二十周年記念論文集、P30〜46、昭和37
年)があるだけである。この二本の恢討結果によれば、
比抵抗およびB定数とも低く、サーミスタとして適する
ものではなく、これに準するものと記載されている。
In addition, as an oxide semiconductor that combines cobalt oxide and lithium, it is generally known that one of the conductive mechanisms of oxide semiconductor materials is
This is an example of valence control theory explained as one
It has been taken up by iRWKY and others ( Ph1li
ps Re5arch Report 5173 (
(1950, )) However, the study by VKRWEY et al. was only at the research stage, and it was before the development of its use as a thermistor, and the study of it as a thermistor material was based on the one described by Nihoniri ( ■Hitachi, Ltd., Collection of papers commemorating the 20th anniversary of the founding of the Central Research Institute, P30-46, 1952
year). According to the results of these two studies,
The specific resistance and B constant are both low, and it is not suitable as a thermistor, but is described as similar to thermistor.

発明が解決しようとする問題点 従来より、自動車の水温計用あるいはアイロンの温度セ
ンサ用などとして、応答性を良くすることを目的にしだ
比抵抗が低く、B定数の高いサーミスタ材料が要望され
てきたが、上記図の汎用サーミスタ材料ではこの要望を
満足することができなかった。
Problems to be Solved by the Invention There has been a demand for thermistor materials with low resistivity and high B constant for use in automobile water temperature gauges, iron temperature sensors, etc., with the aim of improving responsiveness. However, the general-purpose thermistor material shown in the figure above could not satisfy this demand.

本発明は、この要望を満足できるサーミスタ材料、すな
わちサーミスタ用酸化物半導体を提供することを目的と
するものである。
An object of the present invention is to provide a thermistor material that can satisfy this demand, that is, an oxide semiconductor for thermistor.

問題点を解決するだめの手段 上記要望を達成するために1本発明は前述のGo−Ll
l散散化物半導体見直し、改良を加えることによって解
決できたものである。本発明のサーミスタ用酸化物半導
体は、金属Y化物の焼結混合体よりなり、その金鵡元累
としてコバルト(co)75.3〜96.51M子%、
銅(Cu)1.0〜486原子%、’) fつh (L
i)1.o〜1ts、o原子%、ジルコニウム(Zr)
 1.0〜12.6原子%およびケイ素(S工)0.0
〜2.0原子%(但し0.0原子%は除く)の5種を合
計1oO原子%含有してなるものである。
Means for Solving the Problems In order to achieve the above-mentioned needs, the present invention provides the above-mentioned Go-Ll
This problem was solved by reviewing and improving the dispersion semiconductor. The oxide semiconductor for a thermistor of the present invention is made of a sintered mixture of metal Y oxides, and contains 75.3 to 96.51 M% of cobalt (co) as its gold component.
Copper (Cu) 1.0 to 486 atomic%,') f h (L
i)1. o~1ts, o atom%, zirconium (Zr)
1.0 to 12.6 at% and silicon (S) 0.0
-2.0 at.% (excluding 0.0 at.%) in a total of 100 at.%.

作用 この構成により図の実線で囲まれた領域1の比抵抗が低
(、B定数の高いサーミスタ用酸化物半導体を得ること
となる。ここで、この半導体は酸化コバル) (CoO
)が基本組成であって、四酸化二コバルト(GO504
)が生成される場合には、ホッピング伝導の寄与によシ
、高B定数を達成することができない。
Effect: With this configuration, an oxide semiconductor for a thermistor is obtained in which the specific resistance of the region 1 surrounded by the solid line in the figure is low (and the B constant is high.Here, this semiconductor is cobal oxide) (CoO
) is the basic composition, and dicobalt tetroxide (GO504
), a high B constant cannot be achieved due to the contribution of hopping conduction.

実施例 以下1本発明の実施例について説明する。Example An embodiment of the present invention will be described below.

市販の原料酸化コバルト、酸化銅、酸化リチウム、酸化
ジルコニウムおよび二酸化ケイ素を後述する表に示すよ
うにそれぞれの原子%の組成になるように配合した。サ
ーミスタ製造工程を例示すると、これらの配合組成物を
ボールミルで湿式混合し、そのスラリーを乾燥後aoo
’Cの温度で仮焼し、その仮焼物を再びボールミルで湿
式粉砕混合を行った。こうして得られたスラリーを乾燥
し。
Commercially available raw materials cobalt oxide, copper oxide, lithium oxide, zirconium oxide, and silicon dioxide were blended to have the respective atomic % compositions as shown in the table below. To illustrate the thermistor manufacturing process, these compounded compositions are wet mixed in a ball mill, and the slurry is dried and then aoo
The calcined product was calcined at a temperature of 'C, and the calcined product was wet-pulverized and mixed again in a ball mill. Dry the slurry thus obtained.

ポリビニルアルコールをバインダーとして添加混合し、
所要遺採って円板状に加圧成形し成形品を多数作り、こ
れらを望素ガスフロー中1200℃〜1300℃で2時
間焼成した。こうして得られだ円板状焼結体の両面に五
gを主成分とする電極を設けた。これらの試料について
26℃および60℃での抵抗値(それぞれのR25およ
びR,、。)全測定し、25℃での比抵抗ρ25を下記
(1)式より、またB定数を下記(2)式より算出した
Add and mix polyvinyl alcohol as a binder,
A large number of molded products were prepared by taking the required material and press-molding it into a disk shape, and firing these products at 1200° C. to 1300° C. for 2 hours in a desired gas flow. Electrodes containing 5g as a main component were provided on both sides of the disk-shaped sintered body thus obtained. For these samples, the resistance values (R25 and R, respectively) at 26℃ and 60℃ were all measured, and the specific resistance ρ25 at 25℃ was calculated from the following formula (1), and the B constant was calculated using the following formula (2). Calculated from the formula.

これらの結果を下表にまとめて示す。These results are summarized in the table below.

(米印試料は沈毅用であり1本発明の請求外である。)
上述したように図中実線で囲んだ領域1が本発明の目面
とする低比抵抗、高B定数の領域である。
(The American and Indian samples are for precipitation and are not claimed by the present invention.)
As described above, the region 1 surrounded by the solid line in the figure is the region of low resistivity and high B constant that is the focus of the present invention.

この領域はセンサとして高応答性を達成するために機器
側から要望された電気特性をサーミスタ材料の特性(比
抵抗およびB定数)として置き換えたものである。
In this region, the electrical characteristics requested by the device in order to achieve high responsiveness as a sensor are replaced by the characteristics (specific resistance and B constant) of the thermistor material.

前夫において試料番号1.6,6,9,10゜13.1
4.16は、この実線で曲んだ領域1に含まれない。つ
まり機器メーカの要望を満足しないという点から、本発
明の範囲外とした。
Sample number 1.6, 6, 9, 10゜13.1 in my ex-husband
4.16 is not included in region 1 curved by this solid line. In other words, it is outside the scope of the present invention because it does not satisfy the demands of equipment manufacturers.

今回の試料は、乾式成形後焼成したものを用いたが、ビ
ードタイプの素子でもよく、素子製造方法に何ら拘束さ
れるものではない。また、混合。
Although the sample used this time was one that was dry formed and then fired, a bead type element may also be used, and there are no restrictions on the element manufacturing method. Also mixed.

粉砕にはジルコニア玉石を用いた。Zirconia boulders were used for crushing.

発明の効果 以上のように本発明によれば、コバルト、銅。Effect of the invention As described above, according to the present invention, cobalt and copper.

リチウム、ジルコニウムにさらにケイ素を加えることに
より、三成分系材料よりさらに低比抵抗。
By adding silicon to lithium and zirconium, the resistivity is even lower than that of ternary materials.

高B定数化を狙ったものである。また、ケイ素はリチウ
ムとガラス化しやすいため、コバルトに固溶するリチウ
ム量を補う必要がある。そして、ケイ累添加による効果
として若干のB定数アップが見られるが、ガラス相の寄
与があるかどうかは不明である。
This is aimed at achieving a high B constant. Furthermore, since silicon easily vitrifies with lithium, it is necessary to supplement the amount of lithium dissolved in cobalt. Although a slight increase in the B constant is seen as an effect of adding silica, it is unclear whether the glass phase contributes.

以上述べたように本発明は、低比抵抗、高B定数を有す
る負の抵抗温度係数を有するサーミスタ用酸化物半導体
を提供するものであるが、センサとして温度に対して高
応答性が図れること、またこれによシ節電できることに
なる。そして、従来にない低比抵抗、高B定数のサーミ
スタ材料であることから、センサとして全く新しい用途
が展開されることが期待できるものである。
As described above, the present invention provides an oxide semiconductor for a thermistor having a low specific resistance, a high B constant, and a negative temperature coefficient of resistance. This also allows for power savings. Since it is a thermistor material with unprecedented low resistivity and high B constant, it can be expected to be used in completely new applications as a sensor.

【図面の簡単な説明】[Brief explanation of drawings]

図は負の抵抗温度係数を持つサーミスタ材料の特性相関
を示す図である。
The figure shows the characteristic correlation of a thermistor material having a negative temperature coefficient of resistance.

Claims (1)

【特許請求の範囲】[Claims]  金属酸化物の焼結混合体からなり、その構成金属元素
として、コバルト75.3〜96.5原子%、銅1.0
〜4.5原子%、リチウム1.0〜15.0原子%、ジ
ルコニウム1.0〜12.5原子%およびケイ素0.0
〜2.0原子%(但し0.0原子%を除く)の5種を合
計100原子%含有することを特徴とするサーミスタ用
酸化物半導体。
Consisting of a sintered mixture of metal oxides, its constituent metal elements include cobalt 75.3 to 96.5 at%, copper 1.0
~4.5 at.%, 1.0-15.0 at.% lithium, 1.0-12.5 at.% zirconium and 0.0 at.% silicon.
An oxide semiconductor for a thermistor, characterized in that it contains a total of 100 atom % of five types of 100 atom % to 2.0 atom % (excluding 0.0 atom %).
JP62132447A 1987-05-28 1987-05-28 Oxide semiconductor for thermistor Pending JPS63296304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62132447A JPS63296304A (en) 1987-05-28 1987-05-28 Oxide semiconductor for thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62132447A JPS63296304A (en) 1987-05-28 1987-05-28 Oxide semiconductor for thermistor

Publications (1)

Publication Number Publication Date
JPS63296304A true JPS63296304A (en) 1988-12-02

Family

ID=15081575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62132447A Pending JPS63296304A (en) 1987-05-28 1987-05-28 Oxide semiconductor for thermistor

Country Status (1)

Country Link
JP (1) JPS63296304A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02276203A (en) * 1989-04-18 1990-11-13 Matsushita Electric Ind Co Ltd Laminated type thermistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02276203A (en) * 1989-04-18 1990-11-13 Matsushita Electric Ind Co Ltd Laminated type thermistor

Similar Documents

Publication Publication Date Title
JPH082962A (en) Sintering ceramics for highly stable thermistor and its preparation
JPH02143502A (en) Manufacture of ntc thermistor
JPS63296304A (en) Oxide semiconductor for thermistor
JP2578805B2 (en) Oxide semiconductor for thermistor
JP2583935B2 (en) Oxide semiconductor for thermistor
JPS63296303A (en) Oxide semiconductor for thermistor
JP2578806B2 (en) Oxide semiconductor for thermistor
JP2578804B2 (en) Oxide semiconductor for thermistor
JP2578807B2 (en) Oxide semiconductor for thermistor
JPS63285903A (en) Oxide semiconductor for thermistor
JPS63308302A (en) Oxide semiconductor for thermistor
JPH01233703A (en) Oxide semiconductor for thermistor
JP2578803B2 (en) Oxide semiconductor for thermistor
JPH01235201A (en) Oxide semiconductor for thermistor
JPH07505857A (en) Sintered ceramics for highly stable thermistors and their manufacturing method
JPH01235202A (en) Oxide semiconductor for thermistor
JPS63284801A (en) Oxide semiconductor for thermistor
JP2578891B2 (en) Thermistor
JPH0543161B2 (en)
JP2578889B2 (en) Thermistor
JPH0578921B2 (en)
JPH0559064B2 (en)
JPS5927081B2 (en) Oxide semiconductor for thermistor
JPH0750641B2 (en) Oxide semiconductor for thermistor
JPS5933242B2 (en) Manufacturing method of oxide semiconductor material for thermistor