JPH01235202A - Oxide semiconductor for thermistor - Google Patents

Oxide semiconductor for thermistor

Info

Publication number
JPH01235202A
JPH01235202A JP6104988A JP6104988A JPH01235202A JP H01235202 A JPH01235202 A JP H01235202A JP 6104988 A JP6104988 A JP 6104988A JP 6104988 A JP6104988 A JP 6104988A JP H01235202 A JPH01235202 A JP H01235202A
Authority
JP
Japan
Prior art keywords
thermistor
oxide semiconductor
constant
oxide
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6104988A
Other languages
Japanese (ja)
Inventor
Kaori Okamoto
岡本 香織
Takuoki Hata
畑 拓興
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6104988A priority Critical patent/JPH01235202A/en
Publication of JPH01235202A publication Critical patent/JPH01235202A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To obtain oxide semiconductor for thermistor having low resistivity and high B constants, by baking mixture of metal oxide whose constituting metal elements are specified. CONSTITUTION:The title semiconductor is composed of sintered mixture of metal oxide, and contains the following four kind of constituting metal elements whose sum is 100atom%; cobalt 75.5-98.0atom%, copper 0.5-7.0atom%, lithium 1.0-15.0atom% and titanium 0.5-2.5atom%. Thus oxide semiconductor for thermistor having low resistivity, high B constants and negative temperature coefficient of resistance is obtained, and high response to temperature as a sensor can be realized.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高応答性の温度センサとして利用できるとζ
ろの負の抵抗温度係数を有するサーミスタ用酸化物半導
体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention can be used as a highly responsive temperature sensor.
The present invention relates to an oxide semiconductor for a thermistor having a negative temperature coefficient of resistance.

従来の技術 従来、汎用ディスク型サーミスタとしては、Mn−Co
−Ni−Cu 酸化物系サーミスタ材料でろって、しか
もその結晶構造がスピネル構造をとるものが主に用いら
れてきた。サーミスタ材料の電気的特性としては、一般
的に、比抵抗及びサーミスタ定数Bで示される。サーミ
スタ定数(以下B定数と記す)は抵抗の温度勾配を表す
もので、具体的にはサーミスタ材料のバンドギャップに
相−当する活性化エネルギーにより決定される0従って
、B定数が大きい程、温度に対する抵抗値変化が大きく
、即ち応答性が良くなる。また、比抵抗とB定数には第
1図に示すように相関性があり、現在の汎用サーミスタ
材料は図中1で囲んだ領域、つまり比抵抗が数10〜数
100にΩ、(7j、B定数2500〜6000ICの
ものが用いられている。
Conventional technology Conventionally, Mn-Co has been used as a general-purpose disk type thermistor.
-Ni-Cu oxide-based thermistor materials, and those whose crystal structure has a spinel structure have been mainly used. The electrical characteristics of a thermistor material are generally expressed as specific resistance and thermistor constant B. The thermistor constant (hereinafter referred to as the B constant) represents the temperature gradient of resistance. Specifically, it is determined by the activation energy corresponding to the band gap of the thermistor material. Therefore, the larger the B constant, the higher the temperature The change in resistance value is large, that is, the responsiveness is improved. In addition, there is a correlation between specific resistance and B constant as shown in Figure 1, and current general-purpose thermistor materials have specific resistances in the area surrounded by 1 in the figure, that is, in the range of several tens to hundreds of Ω, (7j, Those with a B constant of 2,500 to 6,000 IC are used.

また酸化コバルトとリチウムを組合せせた酸化物半導体
としては、一般的に酸化物半導体材料の導電機構の1つ
として説明される原子価制御理論の実例で、古(VKR
WIEYらにより取シ上げらレテイる。(Philip
!! Re!!6r6h Report 5173しか
しながら、VIRWICYらの検討はあくまでも研究的
な段階で終っており、サーミスタとしての用途開発以前
のものであって、サーミスタ材料としての検討は二本に
よって記載されたもの((株)日立製作所、中央研究所
創立二十周年記念論文集、P30〜46、昭和37年)
があるだけである。二本の検討結果によnば、比抵抗及
びB定数とも低く、サーミスタとして適するものではな
く、これに準するものと記載されている。
In addition, as an oxide semiconductor that combines cobalt oxide and lithium, it is an example of the valence control theory that is generally explained as one of the conductive mechanisms of oxide semiconductor materials.
It was picked up and published by WIEY et al. (Philip
! ! Re! ! 6r6h Report 5173 However, the study by VIRWICY et al. was only at the research stage, and was before the development of use as a thermistor, and the study as a thermistor material was described in two books (Hitachi, Ltd.). Seisakusho, Collection of papers commemorating the 20th anniversary of the founding of the Central Research Institute, pages 30-46, 1960)
There is only. According to the results of the two studies, both the specific resistance and the B constant are low, and it is not suitable as a thermistor, but is described as similar to this.

発明が解決しようとする課題 従来より、自動車の水温計用あるいはアイロンの温度セ
ンサ用等として、応答性を良くすることを目的にした、
比抵抗が低(、B定数の高いサーミスタ材料が要望され
てきたが、上記第1図の汎用サーミスタ材料では仁の要
望を満足することができなかった。
Problems to be Solved by the Invention Conventionally, there have been devices designed to improve responsiveness for use in automobile water temperature gauges, iron temperature sensors, etc.
There has been a demand for a thermistor material with low specific resistance (and high B constant), but the general-purpose thermistor material shown in FIG. 1 above could not satisfy these demands.

本発明は、この要望を満足できるサーミスタ材料、すな
わちサーミスタ用酸化物半導体を提供する仁とを目的と
するものである。
The object of the present invention is to provide a thermistor material that can satisfy this demand, that is, an oxide semiconductor for thermistor.

課題を解決するための手段 本発明は上記要望を達成するために、前述のCo −L
i系酸化物半導体を見直し、改良を加えることによって
解決できたものである。本発明のサーミスタ用酸化物半
導体は、金属酸化物の焼結混合体よりなり、その金属元
素としてコバルト(Co)75.5〜98.0原子%、
銅(Cu)0.5〜5.0原子%、リチウム(Li) 
1.O〜16.0原子%及びチタ:/ (Ti) 0.
2〜2.5原子%■4種を合計1oO原子%含有してな
るものである。
Means for Solving the Problems In order to achieve the above-mentioned needs, the present invention aims to solve the above-mentioned Co-L
This problem was solved by reviewing the i-based oxide semiconductor and making improvements. The oxide semiconductor for a thermistor of the present invention is made of a sintered mixture of metal oxides, and the metal elements thereof include cobalt (Co) of 75.5 to 98.0 at%,
Copper (Cu) 0.5 to 5.0 atomic%, lithium (Li)
1. O~16.0 at% and titanium:/(Ti) 0.
It contains 2 to 2.5 atom % of four types in total of 100 atom %.

作用 この構成により、第1図の実線で囲まれた領域2の比抵
抗が低く、B定数の高いサーミスタ用酸化物半導体を得
ることができることとなる。ここで、仁の半導体は酸化
コバル) (Coo)が基本組成であって、四酸化二コ
バル) (Co、04)  が生成される場合には、ホ
ッピング伝導の寄与により、高B定数を達成することが
できない。
Effect: With this configuration, it is possible to obtain an oxide semiconductor for a thermistor having a low resistivity in the region 2 surrounded by the solid line in FIG. 1 and a high B constant. Here, the basic composition of the nickel semiconductor is cobal oxide (Coo), and when dicobal tetroxide (Co, 04) is produced, a high B constant is achieved due to the contribution of hopping conduction. I can't.

実施例 以下、本発明の実施例について説明する。Example Examples of the present invention will be described below.

市販の原料である酸化コバルト、酸化銅、酸化リチウム
及び酸化チタンを後述する表に示すようにそれぞれの原
子%の組成になるように配合した。
Commercially available raw materials, such as cobalt oxide, copper oxide, lithium oxide, and titanium oxide, were blended to have the respective atomic % compositions as shown in the table below.

ここで、サーミスタ製造工程を例示すると、これらの配
合組成部をボールミルで湿式混合し、そのスラリーヲ乾
燥後800’Cの温度で仮焼し、その仮焼物を再びボー
ルミルで湿式粉砕混合を行った。
Here, to illustrate the thermistor manufacturing process, these composition parts were wet mixed in a ball mill, the slurry was dried and calcined at a temperature of 800'C, and the calcined product was wet-pulverized and mixed again in a ball mill.

こうして得られたスラリーを乾燥し、ポリビニルアルコ
ールをバインダーとして添加混合し、所要量採って円板
状に加圧成形し成形品を多数作り、これらを窒素ガス7
0−中1200’C〜1300°Cで2時間焼成した。
The slurry obtained in this way is dried, polyvinyl alcohol is added and mixed as a binder, the required amount is taken and pressure molded into disk shapes to make a large number of molded products, and these are heated under nitrogen gas
It was baked at 0-1200°C to 1300°C for 2 hours.

こうして得られた円板状焼結体O両面にムgt”主成分
とする電極を設けた。
Electrodes containing Mgt'' as a main component were provided on both sides of the disk-shaped sintered body O thus obtained.

これらの試料について26°C及び6o″Cでの抵抗値
(それぞれ0R25及びR50)を測定し、26°Cで
の比抵抗ρ25を下記(1)式より、またB定数金(2
)式より算出した。
The resistance values (0R25 and R50, respectively) at 26°C and 6o''C were measured for these samples, and the specific resistance ρ25 at 26°C was calculated from the following equation (1) and the B constant gold (2
) Calculated from the formula.

ρ25=R25×−・・・・・・(1)(S=電極面積
、d−電極間距離) ・・・・・・(2) これらの結果を下表にまとめて示す。
ρ25=R25×- (1) (S=electrode area, d-interelectrode distance) (2) These results are summarized in the table below.

(*印は比較用試料) 上述したように、第1図中実線で囲んだ領域2が本発明
の目的とする低比抵抗、高B定数の領域である。この領
域は、センサとして高応答性を達成するために機器側か
ら要望された電気特性をサーミスタ材料の特性(比抵抗
及びB定数)として置き換えたものである。
(The * mark is a sample for comparison) As mentioned above, the region 2 surrounded by the solid line in FIG. 1 is the region of low resistivity and high B constant that is the object of the present invention. In this region, the electrical characteristics requested by the device in order to achieve high responsiveness as a sensor are replaced by the characteristics (specific resistance and B constant) of the thermistor material.

前夫において、試料番号1,5,6,9,10゜14.
15.18は、この実線で囲んだ領域2に含まれない。
For my ex-husband, sample numbers 1, 5, 6, 9, 10°14.
15.18 is not included in region 2 surrounded by this solid line.

つまり機器メーカの要望を満足しないという点から、本
発明の範囲外とした。
In other words, it is outside the scope of the present invention because it does not satisfy the demands of equipment manufacturers.

今回の試料は、乾式成形後焼成したものを用いたが、ビ
ードタイプの素子でもよく、素子製造方法に何ら拘束さ
れるものではない。
Although the sample used this time was one that was dry formed and then fired, a bead type element may also be used, and there are no restrictions on the element manufacturing method.

発明の効果 以上のように本発明によれば、低比抵抗、高B定数を有
する負の抵抗温度係数を有するサーミスタ用酸化物半導
体を提供するものであるが、センサとして温度に対して
高応答性が図れること、またこれにより節電できること
になる。また、従来にはない低比抵抗、高B定数のサー
ミスタ材料であることから、センサとして全く新しい用
途が展開されることが期待できるものである。
Effects of the Invention As described above, the present invention provides an oxide semiconductor for a thermistor that has a low specific resistance, a high B constant, and a negative temperature coefficient of resistance. This will improve performance and save power. Furthermore, since it is a thermistor material with unprecedented low resistivity and high B constant, it can be expected to be used in completely new applications as a sensor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は負の抵抗温度係数を持つサーミスタ材料の特性
相関図を示す図である。
FIG. 1 is a diagram showing a characteristic correlation diagram of a thermistor material having a negative temperature coefficient of resistance.

Claims (1)

【特許請求の範囲】[Claims] 金属酸化物の焼結混合体からなり、その構成金属元素と
して、コバルト75.5〜98.0原子%、銅0.5〜
7.0原子%、リチウム1.0〜15.0原子%、及び
チタン0.5〜2.5原子%の4種を合計100原子%
含有することを特徴とするサーミスタ用酸化物半導体。
Consisting of a sintered mixture of metal oxides, its constituent metal elements include 75.5 to 98.0 atomic percent cobalt and 0.5 to 98.0 atomic percent copper.
A total of 100 at% of four types: 7.0 at%, 1.0 to 15.0 at% of lithium, and 0.5 to 2.5 at% of titanium.
An oxide semiconductor for a thermistor comprising:
JP6104988A 1988-03-15 1988-03-15 Oxide semiconductor for thermistor Pending JPH01235202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6104988A JPH01235202A (en) 1988-03-15 1988-03-15 Oxide semiconductor for thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6104988A JPH01235202A (en) 1988-03-15 1988-03-15 Oxide semiconductor for thermistor

Publications (1)

Publication Number Publication Date
JPH01235202A true JPH01235202A (en) 1989-09-20

Family

ID=13159976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6104988A Pending JPH01235202A (en) 1988-03-15 1988-03-15 Oxide semiconductor for thermistor

Country Status (1)

Country Link
JP (1) JPH01235202A (en)

Similar Documents

Publication Publication Date Title
JPS6022302A (en) Oxide semiconductor for thermistor
JPH02143502A (en) Manufacture of ntc thermistor
JPH01235202A (en) Oxide semiconductor for thermistor
JPH01233703A (en) Oxide semiconductor for thermistor
JPS63296301A (en) Oxide semiconductor for thermistor
JPS63285903A (en) Oxide semiconductor for thermistor
JPH01235201A (en) Oxide semiconductor for thermistor
JPS63285905A (en) Oxide semiconductor for thermistor
JP2583935B2 (en) Oxide semiconductor for thermistor
JPS63285904A (en) Oxide semiconductor for thermistor
JPS63308302A (en) Oxide semiconductor for thermistor
JPS63296305A (en) Oxide semiconductor for thermistor
JPS63296303A (en) Oxide semiconductor for thermistor
JPS63296304A (en) Oxide semiconductor for thermistor
JPS63284801A (en) Oxide semiconductor for thermistor
JPS63296302A (en) Oxide semiconductor for thermistor
JPH03271154A (en) Composition for thermistor
JPS6236602B2 (en)
JPS62145603A (en) Dielectric porcelain compound
JPH02262301A (en) Varistor
JPS62243208A (en) Dielectric porcelain compound
JPS60106107A (en) Method of producing oxide semiconductor porcelain for thermistor
JPS6015124B2 (en) Oxide semiconductor for thermistor
JPS586102A (en) Oxide semiconductor for thermistor
JPH0355710A (en) Low temperature sintered porcelain material