JPS63308302A - Oxide semiconductor for thermistor - Google Patents

Oxide semiconductor for thermistor

Info

Publication number
JPS63308302A
JPS63308302A JP62144669A JP14466987A JPS63308302A JP S63308302 A JPS63308302 A JP S63308302A JP 62144669 A JP62144669 A JP 62144669A JP 14466987 A JP14466987 A JP 14466987A JP S63308302 A JPS63308302 A JP S63308302A
Authority
JP
Japan
Prior art keywords
atomic
thermistor
constant
oxide semiconductor
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62144669A
Other languages
Japanese (ja)
Inventor
Takuoki Hata
畑 拓興
Kaori Okamoto
岡本 香織
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62144669A priority Critical patent/JPS63308302A/en
Publication of JPS63308302A publication Critical patent/JPS63308302A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To obtain negative resistance temperature coefficient having lower specific resistance and higher B constant than those of a 4-ingredient material by adding specific amounts of cobalt, copper, lithium, nickel and further zirconium. CONSTITUTION:A sintered mixture of metal oxide is provided by containing as metal elements 68.0-94.5 atomic % of cobalt Co, 0.4-5.5 atomic % of copper Cu, 2.5-22.0 atomic % of lithium Li, 0.5-6.0 atomic % of nickel Ni and 0.5-4.0 atomic % of zirconium Zr, totally 100 atomic %. Thus, a thermistor material which has low specific resistance and high B constant for the purpose of improving its responsiveness as a water temperature meter for an automobile or a temperature sensor for an iron is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高応答性の温度センサとして利用できるとこ
ろの負の抵抗温度係数を有するサーミスタ用酸化物半導
体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an oxide semiconductor for a thermistor having a negative temperature coefficient of resistance and which can be used as a highly responsive temperature sensor.

従来の技術 従来、汎用ディスク型サーミスタとしては、Mn−Go
−Ni−Cu酸化物系サーミスタ材料であって、しかも
その結晶構造がスピネル構造をとるものが主に用いられ
てきた。サーミスタ材料の電気的特性としては、一般的
に、比抵抗およびサーミスタ定数Bで示される。サーミ
スタ定数(以下B定数と記す)は抵抗の温度勾配を表す
もので、具体的にはサーミスタ材料のバンドギャップに
相当する活性化エネルギーにより決定される。従ってB
定数が大きい程、温度に対する抵抗値変化が大きく、す
なわち応答性が良くなる。また、比抵抗とB定数には図
に示すように相関性があり、現在の汎用サーミスタ材料
は図中2で囲んだ領域、つまり比抵抗が数10〜数10
0にΩ・(7)、B定数2500〜5000にのものが
用いられている。
Conventional technology Conventionally, Mn-Go has been used as a general-purpose disk type thermistor.
-Ni-Cu oxide-based thermistor materials whose crystal structure is a spinel structure have been mainly used. The electrical characteristics of a thermistor material are generally expressed as specific resistance and thermistor constant B. The thermistor constant (hereinafter referred to as B constant) represents the temperature gradient of resistance, and is specifically determined by the activation energy corresponding to the band gap of the thermistor material. Therefore B
The larger the constant, the larger the change in resistance value with respect to temperature, that is, the better the response. In addition, there is a correlation between specific resistance and B constant as shown in the figure, and current general-purpose thermistor materials have a specific resistance in the area surrounded by 2 in the figure, that is, a specific resistance of several 10 to several 10
0 and a B constant of 2,500 to 5,000 are used.

また、酸化コバルトとリチウムを組合わせた酸化物半導
体としては、一般的に酸化物半導体材料の導電機構の1
つとして説明される原子価制御理論の実例で、古(vE
RWEY  らにより取り上げられている。
In addition, as an oxide semiconductor that combines cobalt oxide and lithium, it is generally known that one of the conductive mechanisms of oxide semiconductor materials is
This is a practical example of valence control theory explained as one
Covered by RWEY et al.

(Philips  Re5erch  Report
  5j73しかしながら、vEnwxy  らの検討
はあくまでも学究的な段階で終っており、サーミスタと
しての用途開発以前のものであって、サーミスタ材料と
しての検討は二本入夫によって記載されたもの(■日立
製作所、中央研究所創立二十周年記念論文集、P30〜
46、昭和37年)があるだけである。この二本の検討
結果によれば比抵抗およびB定数とも低く、サーミスタ
として適するものではなく、これに準するものと記載さ
れている。
(Philips Re5erch Report
5j73 However, the study by vEnwxy et al. was only at the academic stage, and was before the development of its use as a thermistor, and the study on its use as a thermistor material was based on the one described by Nimoto Irio (■Hitachi, Ltd. Collected papers commemorating the 20th anniversary of the founding of the Central Research Institute, P30~
46, 1960). According to the results of these two studies, both the specific resistance and the B constant are low, and it is not suitable as a thermistor, but is described as similar to this.

発明が解決しようとする問題点 従来よシ、自動車の水温計用あるいはアイロンの温度セ
ンサ用などとして、応答性を良くすることを目的にした
比抵抗が低く、B定数の高いサーミスタ材料が要望され
てきたが、上記図の汎用サーミスタ材料ではこの要望を
満足することができなかった。
Problems to be Solved by the Invention Conventionally, there has been a demand for thermistor materials with low resistivity and high B constant for the purpose of improving responsiveness, such as for use in water temperature gauges in automobiles or temperature sensors in irons. However, the general-purpose thermistor material shown in the figure above could not meet this demand.

本発明は、この要望を満足できるサーミスタ材料、すな
わちサーミスタ用酸化物半導体を提供することを目的と
するものである。
An object of the present invention is to provide a thermistor material that can satisfy this demand, that is, an oxide semiconductor for thermistor.

問題点を解決するための手段 上記要望を達成するために、本発明は前述のCo−Li
系酸化物半導体を見直し、改良を加えることによって解
決できたものである。本発明のサーミスタ用酸化物半導
体は、金属酸化物の焼結混合体よりなり、その金属元素
としてコバルト(Co)68.0〜94.5原子%、銅
(Cu)0.4〜5.5原子%、リチウム(Li)2.
s〜22.0原子%、ニッケ#(Ni)0.5〜6.0
およびジルコニウム(Zr)O,S〜4.0原子%の5
種を合計100原子%含有してなるものである。
Means for Solving the Problems In order to achieve the above-mentioned needs, the present invention provides the above-mentioned Co-Li
This problem was solved by reviewing the oxide semiconductor and making improvements. The oxide semiconductor for thermistor of the present invention is made of a sintered mixture of metal oxides, and the metal elements thereof include cobalt (Co) of 68.0 to 94.5 atomic % and copper (Cu) of 0.4 to 5.5 atomic %. Atomic %, lithium (Li)2.
s ~ 22.0 at%, Nickel # (Ni) 0.5 ~ 6.0
and zirconium (Zr)O,S~4.0 at% 5
It contains 100 atomic percent of seeds in total.

作用 この構成によシ、図の実線で囲まれた領域1の比抵抗が
低くB定数の高いサーミスタ用酸化物半導体を得ること
となる。ここで、この半導体は酸化コバルト (Coo
)が基本組成であって、四三酸化コバルト (Co、0
4)が生成される場合には、ホッピング伝導の寄与によ
シ、高B定数を達成することができない。
Effect: With this configuration, an oxide semiconductor for a thermistor is obtained in which the region 1 surrounded by the solid line in the figure has a low resistivity and a high B constant. Here, this semiconductor is cobalt oxide (Coo
) is the basic composition, and tricobalt tetroxide (Co, 0
4), a high B constant cannot be achieved due to the contribution of hopping conduction.

実施例 以下、本発明の実施例について説明する。Example Examples of the present invention will be described below.

市販の原料酸化コバルト、酸化銅、酸化リチウム、酸化
ニッケルおよびジルコニアを後述する表に示すようにそ
れぞれの原子%の組成になるように配合した。サーミス
タ製造工程を例示すると、これらの配合組成物をボール
ミルで湿式混合し、そのスラリーを乾燥後800℃の温
度で仮焼し、その仮焼物を再びボールミルで湿式粉砕混
合を行った。こうして得られたスラリーを乾燥し、ポリ
ビニルアルコールをバインダーとして添加混合し、所要
量採って円板状に加圧成形し成形品を多数作り、これら
を窒素ガスフロー中1200℃〜1300’Cで2時間
焼成した。こうして得られた円板状焼結体の両面にムg
を主成分とする電極を設けた。これらの試料について2
6℃および60℃での抵抗値(それぞれのR25および
R58)を測定し、26℃での比抵抗ρ25を下記(1
)式より、またB定数を下記(2)式より算出した。
Commercially available raw materials cobalt oxide, copper oxide, lithium oxide, nickel oxide, and zirconia were blended to have the respective atomic % compositions as shown in the table below. To illustrate the thermistor manufacturing process, these blended compositions were wet mixed in a ball mill, the slurry was dried and calcined at a temperature of 800°C, and the calcined product was wet-pulverized and mixed again in a ball mill. The slurry thus obtained is dried, polyvinyl alcohol is added and mixed as a binder, the required amount is taken and pressure molded into a disk shape to make a number of molded products, and these are heated at 1200°C to 1300'C in a nitrogen gas flow for 2 hours. Baked for an hour. Mug was applied to both sides of the disk-shaped sintered body thus obtained.
An electrode whose main component is About these samples2
The resistance values (R25 and R58, respectively) at 6℃ and 60℃ were measured, and the specific resistance ρ25 at 26℃ was calculated as follows (1
), and the B constant was calculated from the following equation (2).

25  25  d−−”  (1) (S=電極面積、d=電極間距離) これらの結果を下表にまとめて示す。25 25 d--” (1) (S=electrode area, d=interelectrode distance) These results are summarized in the table below.

(以 下金 白) (注)*は比較例であり、請求範囲外である。(Hereinafter referred to as Shimokin White) (Note) * is a comparative example and is outside the scope of the claims.

上述したように図中の実線で囲んだ領域1が本発明の目
的とする低比抵抗、高B定数の領域である。この領域は
、センサとして高応答性を達成するために機器側から要
望された電気特性をサーミスタ材料の特性(比抵抗およ
びB定数)として置き換えたものである。
As described above, the region 1 surrounded by the solid line in the figure is the region of low resistivity and high B constant that is the object of the present invention. In this region, the electrical characteristics required by the device to achieve high responsiveness as a sensor are replaced by the characteristics (specific resistance and B constant) of the thermistor material.

画表において、試料番号1.5,6,8,9,12゜1
3、f5.j7は、この実線で囲んだ領域1に含まれな
い。つまり機器メーカの要望を満足しないという点から
、本発明の範囲外とした。また、試料番号16について
は本発明者らがすでに提案法のものである。
In the chart, sample numbers 1.5, 6, 8, 9, 12゜1
3, f5. j7 is not included in region 1 surrounded by this solid line. In other words, it is outside the scope of the present invention because it does not satisfy the demands of equipment manufacturers. In addition, sample number 16 has already been proposed by the present inventors.

今回の試料は、乾式成形後焼成したものを用いたが、ピ
ードタイプの素子でもよく、素子製造方法に何ら拘束さ
れるものではない。また、混合。
Although the sample used this time was one that was dry formed and then fired, a peed type element may also be used, and there are no restrictions on the element manufacturing method. Also mixed.

粉砕にはジルコニア玉石を用いた。Zirconia boulders were used for crushing.

発明の効果 以上のように本発明によれば、コバルト、銅。Effect of the invention As described above, according to the present invention, cobalt and copper.

リチウム、ニッケルにさらにジルコニウムを加えること
により、4成分系材料よりさらに低比抵抗、高B定数化
を狙ったものであるが、ジルコニアの添加によりセラミ
ックの焼結性と多量に製造した場合の抵抗値の変動係数
が少さくなった。低比抵抗、高B定数化については著し
い効果は見られないものの、Co、Cu、Li、Niの
4成分系とほぼ同等と考えられるが前述の効果を確認し
たものである。
By adding zirconium to lithium and nickel, the aim is to achieve lower resistivity and higher B constant than the four-component material, but the addition of zirconia improves the sinterability of the ceramic and its resistance when manufactured in large quantities. The coefficient of variation of the value has become smaller. Although no remarkable effects were observed in terms of low resistivity and high B constant, it is thought to be almost equivalent to the four-component system of Co, Cu, Li, and Ni, and the above-mentioned effects were confirmed.

以上述べたように、本発明は低比抵抗、高B定数を有す
る負の抵抗温度係数を有するサーミスタ用酸化物半導体
を提供するものであるが、センサとして温度に対して高
応答性がはかれること、またこれにより節電できる等の
効果を発現するものである。また、従来にない低比抵抗
、高B定数のサーミスタ材料であることから、センサと
して全く新しい用途が展開されることが期待できるもの
である。
As described above, the present invention provides an oxide semiconductor for a thermistor that has a low specific resistance, a high B constant, and a negative temperature coefficient of resistance. , This also brings about effects such as power saving. Furthermore, since it is a thermistor material with unprecedented low resistivity and high B constant, it is expected that it will be used in completely new applications as a sensor.

【図面の簡単な説明】[Brief explanation of drawings]

鱗−図は負の抵抗温度係数を持つサーミスタ材料の特性
相関図を示す図である。 1・・・・・・低比抵抗、高B定数の本発明の特性範囲
The scale diagram is a diagram showing a characteristic correlation diagram of a thermistor material having a negative temperature coefficient of resistance. 1...Characteristic range of the present invention with low resistivity and high B constant.

Claims (1)

【特許請求の範囲】[Claims]  金属酸化物の焼結混合体からなり、その構成金属元素
として、コバルト68.0〜94.5原子%、銅0.4
〜5.5原子%、リチウム2.5〜22.0原子%、ニ
ッケル0.6〜6.0原子%及びジルコニウム0.5〜
4.0原子%の5種を合計100原子%含有することを
特徴とするサーミスタ用酸化物半導体。
Consisting of a sintered mixture of metal oxides, its constituent metal elements include 68.0 to 94.5 atomic percent cobalt and 0.4 atomic percent copper.
~5.5 at%, lithium 2.5~22.0 at%, nickel 0.6~6.0 at%, and zirconium 0.5~
An oxide semiconductor for a thermistor, comprising a total of 100 atom % of five types of 4.0 atom %.
JP62144669A 1987-06-10 1987-06-10 Oxide semiconductor for thermistor Pending JPS63308302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62144669A JPS63308302A (en) 1987-06-10 1987-06-10 Oxide semiconductor for thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62144669A JPS63308302A (en) 1987-06-10 1987-06-10 Oxide semiconductor for thermistor

Publications (1)

Publication Number Publication Date
JPS63308302A true JPS63308302A (en) 1988-12-15

Family

ID=15367479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62144669A Pending JPS63308302A (en) 1987-06-10 1987-06-10 Oxide semiconductor for thermistor

Country Status (1)

Country Link
JP (1) JPS63308302A (en)

Similar Documents

Publication Publication Date Title
CN107056273A (en) A kind of double-deck negative tempperature coefficient thermistor and preparation method thereof
JP2968458B2 (en) Sintered ceramics for highly stable thermistors and method for producing the same
JPH06263518A (en) Sintering ceramics for high-temperature stable thermistor and its preparation
CN102964119B (en) Low-temperature-sintered BiFeO3-based high-performance negative-temperature-coefficient thermosensitive ceramic material and preparation method thereof
JPS6022302A (en) Oxide semiconductor for thermistor
JPH02143502A (en) Manufacture of ntc thermistor
CN113979728A (en) Preparation method of double perovskite type and yttrium oxide compounded negative temperature coefficient thermistor material
JPS63308302A (en) Oxide semiconductor for thermistor
JP2578805B2 (en) Oxide semiconductor for thermistor
JP2578804B2 (en) Oxide semiconductor for thermistor
JPS63285903A (en) Oxide semiconductor for thermistor
JPS63296304A (en) Oxide semiconductor for thermistor
JPS63296303A (en) Oxide semiconductor for thermistor
JP2578806B2 (en) Oxide semiconductor for thermistor
JP2583935B2 (en) Oxide semiconductor for thermistor
JPS63285904A (en) Oxide semiconductor for thermistor
JP2578807B2 (en) Oxide semiconductor for thermistor
JPH01233703A (en) Oxide semiconductor for thermistor
JPH01235201A (en) Oxide semiconductor for thermistor
JPS63284801A (en) Oxide semiconductor for thermistor
KR970007509B1 (en) Ntc thermistor
JPS60106107A (en) Method of producing oxide semiconductor porcelain for thermistor
JPS6196702A (en) Manufacture of oxide semiconductor ceramics for thermistor
JPH0559064B2 (en)
JPH07211514A (en) Production of thermistor element