JP2578807B2 - Oxide semiconductor for thermistor - Google Patents

Oxide semiconductor for thermistor

Info

Publication number
JP2578807B2
JP2578807B2 JP62132451A JP13245187A JP2578807B2 JP 2578807 B2 JP2578807 B2 JP 2578807B2 JP 62132451 A JP62132451 A JP 62132451A JP 13245187 A JP13245187 A JP 13245187A JP 2578807 B2 JP2578807 B2 JP 2578807B2
Authority
JP
Japan
Prior art keywords
thermistor
oxide semiconductor
constant
specific resistance
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62132451A
Other languages
Japanese (ja)
Other versions
JPS63296305A (en
Inventor
香織 岡本
拓興 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62132451A priority Critical patent/JP2578807B2/en
Publication of JPS63296305A publication Critical patent/JPS63296305A/en
Application granted granted Critical
Publication of JP2578807B2 publication Critical patent/JP2578807B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、温度検出精度に優れ、しかも高応答性の温
度センサとして利用できるころの負の抵抗温度係数を有
するサーミスタ用酸化物半導体に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide semiconductor for a thermistor having a negative temperature coefficient of resistance which is excellent in temperature detection accuracy and can be used as a highly responsive temperature sensor. .

従来の技術 従来、汎用ディスク型サーミスタとしては、Mn-Co-Ni
-Cu酸化物系サーミスタ材料であって、しかもその結晶
構造がスピネル構造をとるものが主に用いられてきた。
サーミスタ材料の電気的特性としては、一般的に、比抵
抗およびサーミスタ定数Bで示される。サーミスタ定数
(以下B定数と記す)は抵抗の温度勾配を表すもので、
具体的にはサーミスタ材料のバンドギャップに相当する
活性化エネルギーにより決定される。従ってB定数が大
きい程、温度に対する抵抗値変化が大きく、逆に抵抗値
変化から見れば温度検出精度が高く、しかも応答性も良
くなる。また、比抵抗とB定数には図に示すように相関
性があり、現在の汎用サーミスタ材料は図中2で囲んだ
領域、つまり比抵抗が数10〜数100KΩ・cm、B定数2500
〜5000Kのものが用いられている。
Conventional technology Conventionally, Mn-Co-Ni
-Cu oxide thermistor materials whose crystal structure has a spinel structure have been mainly used.
The electrical characteristics of the thermistor material are generally represented by the specific resistance and the thermistor constant B. The thermistor constant (hereinafter referred to as B constant) indicates the temperature gradient of the resistance.
Specifically, it is determined by the activation energy corresponding to the band gap of the thermistor material. Therefore, the larger the B constant, the larger the change in resistance value with respect to temperature. Conversely, from the viewpoint of the change in resistance value, the temperature detection accuracy is higher and the response is better. Also, there is a correlation between the specific resistance and the B constant as shown in the figure, and the current general-purpose thermistor material has an area surrounded by 2 in the figure, that is, a specific resistance of several tens to several hundreds KΩ · cm, and a B constant of 2500.
~ 5000K is used.

また、酸化コバルトとリチウムを組合わせた酸化物半
導体としては、一般的に酸化物半導体材料の導電機構の
一つとして説明される原子価制御理論の実例で古くVERW
EYらにより取り上げられている。(Philips Reserch Re
port 5173(1950)) しかしながら、VERWEYらの検討はあくまでも研究的な
段階で終っており、サーミスタとしての用途開発以前の
ものであって、サーミスタ材料としての検討は二木久夫
によって記載されたもの((株)日立製作所、中央研究
所創立二十周年記念論文集、P30〜46、昭和37年)があ
るだけである。この二木の検討結果によれば比抵抗およ
びB定数とも低く、サーミスタとして適するものではな
く、これに準ずるものと記載されている。
In addition, as an oxide semiconductor that combines cobalt oxide and lithium, an example of the valence control theory generally described as one of the conduction mechanisms of an oxide semiconductor material is an old example of VERW.
Featured by EY et al. (Philips Reserch Re
port 5173 (1950)) However, the study by VERWEY et al. is at the research stage only, before the application development as a thermistor, and the study as a thermistor material was described by Hisao Niki ( (Hitachi, Ltd., Central Research Laboratory, 20th anniversary commemorative papers, pp. 30-46, Showa 37). According to the examination results of Futaki, both the specific resistance and the B constant are low, and are not suitable as a thermistor but are described as being equivalent thereto.

発明が解決しようとする問題点 従来より、自動車の水温計用あるいはアイロンの温度
センサ用などとして、温度検出精度が高く、しかも応答
性を良くすることを目的とした比抵抗が低く、B定数の
高いサーミスタ材料が要望されてきたが、上記図の汎用
サーミスタ材料ではこの要望を満足することができなか
った。
Problems to be Solved by the Invention Conventionally, for a water temperature gauge of an automobile or for a temperature sensor of an iron, the temperature detection accuracy is high, and the specific resistance for the purpose of improving the response is low. Although a high thermistor material has been demanded, the general purpose thermistor material shown in the above figure could not satisfy this demand.

本発明は、この要望を満足できるサーミスタ材料、す
なわちサーミスタ用酸化物半導体を提供することを目的
とするものである。
An object of the present invention is to provide a thermistor material that satisfies this demand, that is, an oxide semiconductor for a thermistor.

問題点を解決するための手段 上記要望を達成するために、本発明は前述のCo-Li系
酸化物半導体を見直し、改良を加えることによって解決
できたものである。本発明のサーミスタ用酸化物半導体
は、金属酸化物の焼結混合体よりなり、その金属元素と
してコバルト(Co)67.5〜97.8原子%、銅(Cu)1.0〜
7.0原子%,リチウム(Li)2.0〜22.0原子%,ニッケル
(Ni)0.1〜0.5原子%(但し0.5原子%は除く)の4種
を合計100原子%含有してなるものである。
Means for Solving the Problems In order to achieve the above-mentioned demands, the present invention has been achieved by reviewing and improving the aforementioned Co-Li-based oxide semiconductor. The oxide semiconductor for a thermistor of the present invention is composed of a sintered mixture of a metal oxide, and its metal element is cobalt (Co) 67.5 to 97.8 atomic% and copper (Cu) 1.0 to 1.0.
It contains four types of 7.0 at%, lithium (Li) 2.0 to 22.0 at%, and nickel (Ni) 0.1 to 0.5 at% (excluding 0.5 at%), for a total of 100 at%.

作用 この構成により、図の実線で囲まれた領域1の比抵抗
が低くB定数の高いサーミスタ用酸化物半導体を得る事
となる。ここで、この半導体は酸化コバルト(CoO)が
基本組成であって、四酸化三コバルト(Co3O4)が生成
される場合には、ホッピング伝導の寄与により、高B定
数を達成することができない。
Action With this configuration, an oxide semiconductor for a thermistor having a low specific resistance and a high B constant in the region 1 surrounded by the solid line in the figure can be obtained. Here, this semiconductor has a basic composition of cobalt oxide (CoO), and when tricobalt tetroxide (Co 3 O 4 ) is generated, a high B constant can be achieved by the contribution of hopping conduction. Can not.

実施例 以下、本発明の実施例について説明する。Examples Hereinafter, examples of the present invention will be described.

市販の原料酸化コバルト、酸化銅,酸化リチウムおよ
び酸化ニッケルを後述する表に示すようにそれぞれの原
子%の組成になるように配合した。サーミスタ製造工程
を例示すると、これらの配合組成物をボールミルで湿式
混合し、そのスラリーを乾燥後800℃の温度で仮焼し、
その仮焼物を再びボールミルで湿式粉砕混合を行った。
こうして得られたスラリーを乾燥し、ポリビニルアルコ
ールをバインダーとして添加混合し、所要量採って円板
状に加圧成形し成形品を多数作り、これらを窒素ガスフ
ロー中1200℃〜1300℃で2時間焼成した。こうして得ら
れた円板状焼結体の両面にAgを主成分とする電極を設け
た。これらの試料について25℃および50℃での抵抗値
(それぞれのR25およびR50)を測定し、25℃での比抵抗
ρ25を下記(1)式より、またB定数を下記(2)式よ
り算出した。
Commercial raw materials such as cobalt oxide, copper oxide, lithium oxide and nickel oxide were blended so as to have a composition of each atomic% as shown in the table below. To illustrate the thermistor manufacturing process, these compounded compositions are wet-mixed with a ball mill, and the slurry is dried and calcined at a temperature of 800 ° C.
The calcined product was again wet-pulverized and mixed by a ball mill.
The slurry thus obtained is dried, polyvinyl alcohol is added and mixed as a binder, a required amount is taken and pressure-molded into a disc shape to form a large number of molded products, and these are subjected to a nitrogen gas flow at 1200 ° C. to 1300 ° C. for 2 hours. Fired. Electrodes mainly composed of Ag were provided on both surfaces of the disk-shaped sintered body thus obtained. The resistance values (R 25 and R 50 ) at 25 ° C. and 50 ° C. of these samples were measured, and the specific resistance ρ 25 at 25 ° C. was obtained from the following equation (1), and the B constant was obtained according to the following (2). It was calculated from the equation.

これらの結果を下表にまとめて示す。 The results are summarized in the table below.

上述したように図中実線で囲んだ領域1が本発明の目
的とする低比抵抗、高B定数の領域である。この領域
は、センサとして高検出精度・高応答性を達成するため
に機器側から要望された電気特性をサーミスタ材料の特
性(比抵抗およびB定数)として置き換えたものであ
る。
As described above, a region 1 surrounded by a solid line in the drawing is a region having a low specific resistance and a high B constant which are the objects of the present invention. This area is obtained by replacing the electrical characteristics requested by the device side with the thermistor material characteristics (specific resistance and B constant) in order to achieve high detection accuracy and high response as a sensor.

前表において、試料番号1,4,5,6は、この実線で囲ん
だ領域1に含まれない。つまり機器メーカの要望を満足
しないという点から、本発明の範囲外とした。
In the preceding table, sample numbers 1, 4, 5, and 6 are not included in the area 1 surrounded by the solid line. That is, it is out of the scope of the present invention because it does not satisfy the demands of the device maker.

今回の試料は、乾式成形後焼成したものを用いたが、
ビードタイプの素子でもよく、素子製造方法に何ら拘束
されるものではない。
For this sample, we used what was fired after dry molding,
The device may be a bead type device and is not limited by the device manufacturing method.

発明の効果 以上のように本発明によれば、低比抵抗、高B定数を
有する負の抵抗温度係数を有するサーミスタ用酸化物半
導体を提供するものであるが、センサとして温度に対し
て高検出精度及び高応答性が図れること、またこれによ
り節電できることになる。また、従来にはない低比抵
抗、高B定数のサーミスタ材料であることから、センサ
として全く新しい用途が展開されることが期待できるも
のである。
As described above, according to the present invention, an oxide semiconductor for a thermistor having a low specific resistance, a high B constant and a negative temperature coefficient of resistance is provided. Accuracy and high response can be achieved, and power can be saved. Further, since it is a thermistor material having a low specific resistance and a high B constant, which has never existed in the past, it is expected that a completely new use as a sensor will be developed.

【図面の簡単な説明】[Brief description of the drawings]

図は負の抵抗温度係数を持つサーミスタ材料の特性相関
を示す図である。
The figure shows the characteristic correlation of a thermistor material having a negative temperature coefficient of resistance.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】金属酸化物の焼結混合体からなり、その構
成金属元素として、コバルト67.5〜97.8原子%,銅1.0
〜7.0原子%,リチウム2.0〜22.0原子%,ニッケル0.1
〜0.5原子%(但し0.5原子%を除く)の4種を合計100
原子%含有することを特徴とするサーミスタ用酸化物半
導体。
1. A sintered mixture of a metal oxide, comprising 67.5 to 97.8 atomic% of cobalt and 1.0% of copper as constituent metal elements.
~ 7.0 atomic%, lithium 2.0 ~ 22.0 atomic%, nickel 0.1
100 kinds of 4 kinds of up to 0.5 atom% (excluding 0.5 atom%)
An oxide semiconductor for a thermistor, characterized by containing at least atomic%.
JP62132451A 1987-05-28 1987-05-28 Oxide semiconductor for thermistor Expired - Lifetime JP2578807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62132451A JP2578807B2 (en) 1987-05-28 1987-05-28 Oxide semiconductor for thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62132451A JP2578807B2 (en) 1987-05-28 1987-05-28 Oxide semiconductor for thermistor

Publications (2)

Publication Number Publication Date
JPS63296305A JPS63296305A (en) 1988-12-02
JP2578807B2 true JP2578807B2 (en) 1997-02-05

Family

ID=15081661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62132451A Expired - Lifetime JP2578807B2 (en) 1987-05-28 1987-05-28 Oxide semiconductor for thermistor

Country Status (1)

Country Link
JP (1) JP2578807B2 (en)

Also Published As

Publication number Publication date
JPS63296305A (en) 1988-12-02

Similar Documents

Publication Publication Date Title
JPH082962A (en) Sintering ceramics for highly stable thermistor and its preparation
EP0028510B1 (en) Oxide thermistor compositions and thermistors containing them
JPS6022302A (en) Oxide semiconductor for thermistor
JP2578807B2 (en) Oxide semiconductor for thermistor
JP2578805B2 (en) Oxide semiconductor for thermistor
JP2578804B2 (en) Oxide semiconductor for thermistor
JP2578806B2 (en) Oxide semiconductor for thermistor
JP2578803B2 (en) Oxide semiconductor for thermistor
JP2583935B2 (en) Oxide semiconductor for thermistor
JPH07231122A (en) Oxide thermoelectric conversion material
JP5995096B2 (en) Metal oxide material for thermistor, method for producing the same, and thermistor element
JPS63296304A (en) Oxide semiconductor for thermistor
JP2578889B2 (en) Thermistor
JPS63296303A (en) Oxide semiconductor for thermistor
JP2578891B2 (en) Thermistor
JP2621314B2 (en) Thermistor
JPS63308302A (en) Oxide semiconductor for thermistor
JPH01233703A (en) Oxide semiconductor for thermistor
JPS63284801A (en) Oxide semiconductor for thermistor
JPS63285903A (en) Oxide semiconductor for thermistor
JP2612247B2 (en) Manufacturing method of NTC thermistor
JPS63102202A (en) Manufacture of positive characteristics thermistor
JPH03271154A (en) Composition for thermistor
JPH01235202A (en) Oxide semiconductor for thermistor
JPH07211514A (en) Production of thermistor element