JPH0578921B2 - - Google Patents

Info

Publication number
JPH0578921B2
JPH0578921B2 JP23570884A JP23570884A JPH0578921B2 JP H0578921 B2 JPH0578921 B2 JP H0578921B2 JP 23570884 A JP23570884 A JP 23570884A JP 23570884 A JP23570884 A JP 23570884A JP H0578921 B2 JPH0578921 B2 JP H0578921B2
Authority
JP
Japan
Prior art keywords
thermistor
oxide
resistance value
sensor
over time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23570884A
Other languages
Japanese (ja)
Other versions
JPS61113203A (en
Inventor
Takuoki Hata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23570884A priority Critical patent/JPS61113203A/en
Priority to PCT/JP1985/000616 priority patent/WO1986003051A1/en
Priority to DE8585905664T priority patent/DE3581807D1/en
Priority to US06/902,445 priority patent/US4891158A/en
Priority to EP85905664A priority patent/EP0207994B1/en
Publication of JPS61113203A publication Critical patent/JPS61113203A/en
Publication of JPH0578921B2 publication Critical patent/JPH0578921B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、200℃〜500℃で利用できる中・高温
用のサーミスタ用酸化物半導体の製造方法に関す
るものである。 従来例の構成とその問題点 従来から良く知られているMn−Co−Ni−Cu
酸化物系サーミスタ材料は、汎用デイスク型サー
ミスタとして主に用いられてきたが、高温使用下
での抵抗値変動が大きいため、300℃を超えるよ
うな高温度では使用することができず、300℃以
下の温度で使用されてきた。一方、700℃〜1000
℃の高温で使用できる材料としては、安定化ジル
コニア(ZrO2−Y2O3、ZrO2−CaO等)、Mg−Al
−Cr−Fe酸化物スピネル系等が開発されている
(特公昭48−705号公報、特公昭49−63995号公報、
特公昭50−16894号公報、特公昭50−16895号公
報、特開昭53−33756号公報)。しかし、これらの
酸化物材料も、焼成温度が1600℃を超える高温で
なければならず、通常の電気炉(最高1600℃)を
用いたのでは焼成できないものであつた。その
上、これら酸化物の焼結体であつても抵抗値の経
時変化が大きく、きわめて安定なものでさえ10%
(1000時間後)程度であり、経時安定性に問題が
あつた。 また、センサ市場から200℃〜500℃で安定性に
優れたサーミスタの要望が一段と高くなり、これ
に対応したサーミスタ材料{Mn−Ni−Al酸化物
系:特開昭57−95603号公報、(NixMgyZnz
Mn2O4スピネル系:特開昭57−88701号公報、
(NipCogFerAlsMnt)O4スピネル系:特開昭57−
88702号公報等}が提案されてきたが、まだ評価
段階である。本発明者も、上記要望に対して、
Mn−Ni−Cr−Zr酸化物系(特願昭58−131265
号)を提案してきた。 発明の目的 本発明は上記問題点に鑑みてなされたもので、
その目的とするところは、300℃〜500℃でも適当
な抵抗値を示し、安定に使用できるサーミスタ用
酸化物半導体の製造方法を提供することにある。 発明の構成 上記目的を達成するために、本発明のサーミス
タ酸化物半導体の製造方法は、マンガン、ニツケ
ル、クロム、ジルコニウムおよびランタンの5種
を含むサーミスタ用酸化物半導体を得るために、
出発原料としてマンガン、ニツケル、クロム、酸
化ランタン含有安定化ジルコニアを用い、混合、
焼成するサーミスタ用酸化物半導体の製造方法と
する。 実施例の説明 以下、本発明の実施例について添付図面も参照
して説明する。 市販の原料MnCO3、NiO、Cr2O3および、メー
カから提供されたLa2O33mol含有ZrO2をMn:
Ni:Cr:Zr=76.0:2.0:2.0:20.0原子%になる
ように配合した。サーミスタ製造工程を例示する
と、これらの配合組成物をボールミルで湿式混合
し、そのスラリーを乾燥後1000℃で仮焼し、その
仮焼物を再びボールミルで湿式粉砕混合した。得
られたスラリーを乾燥後、ポリビニルアルコール
をバインダとして添加混合し、所要量取つて30mm
〓×15mmtのブロツクに成形する。この成形体を
1400℃で2時間空気中で焼成した。こうして得ら
れたブロツクから、スライス、研磨を経て厚みが
150〜400μmのウエハを取出し、スクリーン印刷
法により白金電極を設ける。この電極付されたウ
エハから所望の寸法のチツプにカツテイングす
る。この素子をアルゴンガス中もしくは空気中で
ガラス管に封入し外気から密封遮断する。 このようにして製造されたサーミスタセンサの
500℃における抵抗値経時変化率を図面のグラフ
に実線1で示した。また、同グラフには併せて比
較用として、既に提案済のMn−Ni−Cr−Zr酸化
物系材料を用いたサーミスタセンサの抵抗値経時
変化率を一点鎖線3に、そして本実施例と同一組
成比のものを安定化ジルコニアでなく、それぞれ
ジルコニアと酸化ランタンを原料とし、同様の製
造工程を経て得られたセンサの抵抗値経時変化率
を破線2に示した。なお、センサに用いた素子の
寸法は、400μm×400μm×300μmである。 センサの25℃における初期抵抗値と、300℃と
500℃の2点の抵抗値から求めたサーミスタ定数
Bを併せて次表に示した。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for manufacturing an oxide semiconductor for a medium to high temperature thermistor that can be used at 200°C to 500°C. Conventional structure and its problems Conventionally well-known Mn-Co-Ni-Cu
Oxide-based thermistor materials have been mainly used as general-purpose disk-type thermistors, but they cannot be used at temperatures exceeding 300°C because their resistance values fluctuate significantly when used at high temperatures. It has been used at the following temperatures: Meanwhile, 700℃~1000
Materials that can be used at high temperatures of ℃ include stabilized zirconia (ZrO 2 −Y 2 O 3 , ZrO 2 −CaO, etc.), Mg−Al
-Cr-Fe oxide spinel systems etc. have been developed (Japanese Patent Publication No. 48-705, Japanese Patent Publication No. 49-63995,
(Japanese Patent Publication No. 50-16894, Japanese Patent Publication No. 16895-1980, Japanese Patent Publication No. 33756-1983). However, these oxide materials also require firing at a high temperature exceeding 1600°C, and cannot be fired using an ordinary electric furnace (maximum 1600°C). Furthermore, even in the case of sintered bodies of these oxides, the resistance value changes significantly over time, and even those that are extremely stable have a resistance value of 10%.
(after 1000 hours), and there was a problem with stability over time. In addition, the demand for thermistors with excellent stability at temperatures between 200°C and 500°C has increased in the sensor market, and thermistor materials that meet this demand {Mn-Ni-Al oxide system: JP-A No. 57-95603, ( Ni x Mg y Zn z )
Mn 2 O 4 spinel system: JP-A-57-88701,
(Ni p Co g Fe r Al s Mn t ) O 4 spinel system: JP-A-57-
Publication No. 88702, etc.] have been proposed, but they are still in the evaluation stage. In response to the above request, the inventor also
Mn-Ni-Cr-Zr oxide system (patent application 1987-131265)
No.) was proposed. Purpose of the invention The present invention has been made in view of the above problems, and
The purpose is to provide a method for producing an oxide semiconductor for a thermistor that exhibits an appropriate resistance value even at 300°C to 500°C and can be stably used. Structure of the Invention In order to achieve the above object, the method for manufacturing a thermistor oxide semiconductor of the present invention includes the steps of:
Using manganese, nickel, chromium, and stabilized zirconia containing lanthanum oxide as starting materials, mixing,
A method for producing an oxide semiconductor for a thermistor by firing. DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. Commercially available raw materials MnCO 3 , NiO, Cr 2 O 3 and Mn ZrO 2 containing 3 mol of La 2 O 3 provided by the manufacturer:
They were blended so that Ni:Cr:Zr=76.0:2.0:2.0:20.0 atomic%. To illustrate the thermistor manufacturing process, these blended compositions were wet mixed in a ball mill, the slurry was dried and calcined at 1000°C, and the calcined product was wet-pulverized and mixed again in a ball mill. After drying the obtained slurry, add and mix polyvinyl alcohol as a binder, take the required amount and make a 30mm
Form into a block of 〓×15mm t . This molded body
It was fired in air at 1400°C for 2 hours. The blocks obtained in this way are then sliced and polished to reduce the thickness.
A 150-400 μm wafer is taken out and platinum electrodes are provided by screen printing. This electroded wafer is cut into chips of desired dimensions. This element is sealed in a glass tube in argon gas or air and hermetically isolated from the outside air. The thermistor sensor manufactured in this way
The rate of change in resistance value over time at 500°C is shown in the graph of the drawing by solid line 1. In addition, for comparison, the graph also shows the resistance value change rate over time of the thermistor sensor using the already proposed Mn-Ni-Cr-Zr oxide material as the dashed line 3, which is the same as this example. Broken line 2 shows the rate of change in resistance value over time of a sensor obtained through the same manufacturing process using zirconia and lanthanum oxide instead of stabilized zirconia as raw materials. Note that the dimensions of the element used in the sensor are 400 μm x 400 μm x 300 μm. Initial resistance value of sensor at 25℃ and 300℃
The thermistor constant B determined from the resistance values at two points at 500°C is also shown in the following table.

【表】 グラフから明らかなように、本発明の製造方法
によれば、試料No.2およびNo.3のものと比較し、
高温での安定性に特に優れている。 試料の微細構造に注目すると、酸化ランタン含
有安定化ジルコニアは、Mn−Ni−Cr系酸化物ス
ピネル結晶に固溶するのではなく、結晶の接合部
もしくは、結晶粒そのものとして存在する。一
方、La2O3とZrO2を同時に配合したものも、
ZrO2はやはりスピネル結晶の接合部、もしくは
結晶粒そのものとして存在するが、LaはZrO2
優先的に固溶するのではなく、全体にほぼ均一分
散して存在していることが、焼結体断面のX線微
小解析により明らかになつた。また、X線回折法
によつても、Mn−Ni−Cr−La系酸化物を同定
することができなかつた。 今回のセンサ作成は、ブロツクから切り出した
素子を封入して得たものであるが、ビードタイプ
の素子でも可能であり、センサ作成法により何ら
拘束されるものではない。 本実施例で用いた安定化ジルコニアは、シユウ
酸塩を出発原料として共沈法により得たものであ
り、組成範囲については現在検討中である。 なお、本発明の実施例においては原料混合およ
び仮焼物粉砕混合にジルコニア玉石を用いた。上
記実施例の試料(焼結体)について元素分析を行
なつた結果、Zrの混入量はサーミスタ構成元素
の100原子%に対して0.5原子%以下であつた。ま
た、メノウ玉石を用いた場合には、Siの混入量は
1.0原子%以下であつた。 発明の効果 以上で説明したように、本発明のサーミスタ用
酸化物半導体の製造方法を用いれば、200℃〜500
℃の範囲で抵抗値経時変化の小さい温度センサを
得ることができ、高温で高い信頼性が要求されて
いる。例えば電子レンジや石油燃焼器における温
度制御等の利用分野での貢献が期待できるもので
ある。
[Table] As is clear from the graph, according to the manufacturing method of the present invention, compared to samples No. 2 and No. 3,
It has particularly excellent stability at high temperatures. Focusing on the microstructure of the sample, the stabilized zirconia containing lanthanum oxide does not form a solid solution in the Mn-Ni-Cr-based oxide spinel crystal, but exists as a joint between the crystals or as the crystal grain itself. On the other hand, those containing La 2 O 3 and ZrO 2 at the same time,
ZrO 2 still exists in the joints of spinel crystals or as crystal grains themselves, but La is not preferentially dissolved in ZrO 2 but is almost uniformly dispersed throughout the sintering process. This was revealed through X-ray microanalysis of body cross sections. Further, even by X-ray diffraction, it was not possible to identify the Mn-Ni-Cr-La based oxide. In this case, the sensor was created by enclosing an element cut out from a block, but it is also possible to use a bead type element, and there are no restrictions on the sensor manufacturing method. The stabilized zirconia used in this example was obtained by a coprecipitation method using oxalate as a starting material, and the composition range is currently under consideration. In the examples of the present invention, zirconia boulders were used for mixing raw materials and pulverizing and mixing calcined products. As a result of elemental analysis of the sample (sintered body) of the above example, the amount of Zr mixed was 0.5 atomic % or less based on 100 atomic % of the thermistor constituent elements. In addition, when using agate cobblestone, the amount of Si mixed in is
It was less than 1.0 at%. Effects of the Invention As explained above, if the method for manufacturing an oxide semiconductor for a thermistor of the present invention is used, it is possible to
It is possible to obtain a temperature sensor with a small change in resistance value over time in the temperature range of ℃, and high reliability is required at high temperatures. For example, it can be expected to contribute to application fields such as temperature control in microwave ovens and oil burners.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はガラス封入型サーミスタの抵抗値経時変
化特性を示すグラフである。
The drawing is a graph showing the resistance value change characteristics over time of a glass-encapsulated thermistor.

Claims (1)

【特許請求の範囲】[Claims] 1 マンガン、ニツケル、クロム、ジルコニウム
およびランタンの5種を含むサーミスタ用酸化物
半導体を得るために、出発原料としてマンガン、
ニツケル、クロム、酸化ランタン含有安定化ジル
コニアを用い、混合、焼成することを特徴とする
サーミスタ用酸化物半導体の製造方法。
1. Manganese,
A method for producing an oxide semiconductor for a thermistor, which comprises mixing and firing stabilized zirconia containing nickel, chromium, and lanthanum oxide.
JP23570884A 1984-11-08 1984-11-08 Manufacture of oxide semiconductor for thermistor Granted JPS61113203A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP23570884A JPS61113203A (en) 1984-11-08 1984-11-08 Manufacture of oxide semiconductor for thermistor
PCT/JP1985/000616 WO1986003051A1 (en) 1984-11-08 1985-11-06 Oxide semiconductor for thermistor and a method of producing the same
DE8585905664T DE3581807D1 (en) 1984-11-08 1985-11-06 SEMICONDUCTOR OXIDE FOR THERMISTOR AND THEIR PRODUCTION.
US06/902,445 US4891158A (en) 1984-11-08 1985-11-06 Oxide semiconductor for thermistor and manufacturing method thereof
EP85905664A EP0207994B1 (en) 1984-11-08 1985-11-06 Oxide semiconductor for thermistor and a method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23570884A JPS61113203A (en) 1984-11-08 1984-11-08 Manufacture of oxide semiconductor for thermistor

Publications (2)

Publication Number Publication Date
JPS61113203A JPS61113203A (en) 1986-05-31
JPH0578921B2 true JPH0578921B2 (en) 1993-10-29

Family

ID=16990049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23570884A Granted JPS61113203A (en) 1984-11-08 1984-11-08 Manufacture of oxide semiconductor for thermistor

Country Status (1)

Country Link
JP (1) JPS61113203A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009059755A (en) * 2007-08-30 2009-03-19 Oizumi Seisakusho:Kk Electrode for ntc thermistor
JP5158487B2 (en) * 2008-01-23 2013-03-06 三菱マテリアル株式会社 Metal oxide sintered body for thermistor, thermistor element, and method for producing metal oxide sintered body for thermistor

Also Published As

Publication number Publication date
JPS61113203A (en) 1986-05-31

Similar Documents

Publication Publication Date Title
EP0207994B1 (en) Oxide semiconductor for thermistor and a method of producing the same
JPH0799103A (en) Porcelain composition for thermistor, and thermistor element
EP0149681B1 (en) Oxide semiconductor for thermistor
JPH0578921B2 (en)
JPH02143502A (en) Manufacture of ntc thermistor
JPH0541304A (en) Metallic oxide group thermistor material
JPH0578922B2 (en)
JPH0543161B2 (en)
JPS61113205A (en) Manufacture of oxide semiconductor for thermistor
JPS61113204A (en) Manufacture of oxide semiconductor for thermistor
JPH0559064B2 (en)
JPS61168205A (en) Manufacture of oxide semiconductor for thermistor
JPS61113206A (en) Manufacture of oxide semiconductor for thermistor
JPS61113210A (en) Manufacture of oxide semiconductor for thermistor
JPS61113208A (en) Manufacture of oxide semiconductor for thermistor
JPS61168204A (en) Manufacture of oxide semiconductor for thermistor
JPS6097601A (en) Oxide semiconductor porcelain for thermistor
JPS61113207A (en) Manufacture of oxide semiconductor for thermistor
JPS62108505A (en) Oxide semiconductor for thermistor
JP3559911B2 (en) Thermistor
JPS62108503A (en) Oxide semiconductor for thermistor
JPH0766007A (en) Thermistor for high temperature
JPH0750641B2 (en) Oxide semiconductor for thermistor
JPH0773081B2 (en) Method for manufacturing oxide semiconductor porcelain for thermistor
JPS62108502A (en) Oxide semiconductor for thermistor