JPH04180201A - Oxide semiconductor for thermistor and its material - Google Patents

Oxide semiconductor for thermistor and its material

Info

Publication number
JPH04180201A
JPH04180201A JP2309754A JP30975490A JPH04180201A JP H04180201 A JPH04180201 A JP H04180201A JP 2309754 A JP2309754 A JP 2309754A JP 30975490 A JP30975490 A JP 30975490A JP H04180201 A JPH04180201 A JP H04180201A
Authority
JP
Japan
Prior art keywords
thermistor
constant
low
resistivity
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2309754A
Other languages
Japanese (ja)
Inventor
Masami Koshimura
正己 越村
Moriyasu Asami
浅見 守康
Naoyuki Ochi
越智 直行
Koji Oi
幸二 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2309754A priority Critical patent/JPH04180201A/en
Publication of JPH04180201A publication Critical patent/JPH04180201A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To lower a thermistor constant with reference to a resistivity and to make a resistance value variable in a wide temperature range by a method wherein three kinds of cobalt, copper and iron as constituent metal elements are mixed in respectively specific ratios. CONSTITUTION:This material is composed of the sintered mixed substance of metal compounds; and mixture ratios of its constituent metal elements are set within a hexagonal bold-line frame. That is to say, it is formed by mixing the following as main components: a spinel oxide which contains three kinds of metal elements of iron(Fe), cobalt(Co) and copper(Cu) in ratios indicated by this hexagon and which uses iron and cobalt, both having a high thermistor constant and a high resistivity as main components; and a spinel oxide which uses cobalt and copper, both having a low thermistor constant and a low resistivity, as main components. Thereby, it is possible to produce an oxide semiconductor, for thermistor use, whose thermistor constant B is low with reference to a resistivity rho.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、利用できる温度範囲が大きいサーミスタ用酸
化物半導体に関する。本発明はサーミスタ定数Bが低く
、比抵抗ρが大きいサーミスタの製造に利用する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an oxide semiconductor for a thermistor that can be used in a wide temperature range. The present invention is utilized for manufacturing a thermistor with a low thermistor constant B and a large specific resistance ρ.

本発明は、温度範囲一50℃〜+400℃の広い範囲に
わたり使用できるサーミスタに利用する。
The present invention is applied to a thermistor that can be used over a wide temperature range of -50°C to +400°C.

本発明は、解凍用および調理用としての二つの温度範囲
を包括させることができる電子レンジ用のサーミスタに
利用するに適する。
The present invention is suitable for use in a thermistor for a microwave oven that can cover two temperature ranges, one for defrosting and one for cooking.

〔概要〕〔overview〕

本発明は、金属酸化物の焼結混合体からなるサーミスタ
用酸化物半導体において、 その構成金属元素としてコノくルト、銅、および鉄の3
種をそれぞれ実験的に得られた特定の割合で混合するこ
とにより、 比抵抗ρに対しサーミスタ定数Bが低くなるようにし、
広範な温度領域で抵抗値が変化するようにしたものであ
る。
The present invention provides an oxide semiconductor for a thermistor made of a sintered mixture of metal oxides, which has three constituent metal elements: konolte, copper, and iron.
By mixing each species in a specific proportion obtained experimentally, the thermistor constant B is made low relative to the resistivity ρ,
The resistance value changes over a wide temperature range.

〔従来の技術〕[Conventional technology]

従来、汎用ディスク型サーミスタとしては、Mn sC
o 、Niなどの金属元素を有する複合酸化物系サーミ
スタ材料であって、その結晶構造がスピネル構造をとる
ものが主として用いられてきた。
Conventionally, as a general-purpose disk type thermistor, Mn sC
Composite oxide thermistor materials containing metal elements such as O 2 and Ni, whose crystal structure is a spinel structure have been mainly used.

サーミスタ材料の電気的特性としては、比抵抗ρおよび
サーミスタ定数Bで示され、サーミスタ定数Bは抵抗の
温度勾配を表し、サーミスタ材料のバンドギャップに相
当する活性化エネルギーにより決定される。したがって
、サーミスタ定数Bが大きくなれば温度に対する抵抗値
変化が大きくなる。
The electrical characteristics of the thermistor material are represented by a specific resistance ρ and a thermistor constant B, where the thermistor constant B represents the temperature gradient of resistance and is determined by the activation energy corresponding to the band gap of the thermistor material. Therefore, as the thermistor constant B increases, the change in resistance value with respect to temperature increases.

また、比抵抗ρとサーミスタ定数Bとの関係は第2図の
A′の範囲に示すように相関性があり、従来から利用さ
れている汎用サーミスタ材料は、比抵抗ρが数10〜数
100にΩ・cm、サーミスタ定数Bが2500〜50
00 Kのものが用いられてきた。
In addition, there is a correlation between the specific resistance ρ and the thermistor constant B, as shown in the range A' in Figure 2, and the conventionally used general-purpose thermistor materials have a specific resistance ρ of several 10 to several 100. Ω・cm, thermistor constant B is 2500 to 50
00K has been used.

一般用のサーミスタでは、回路での抵抗値との関係から
センサとしての抵抗値は100Ω〜IMΩ、望ましくは
500Ω〜500にΩの範囲にある。この場合、−50
℃〜+400℃の広い温度範囲で使用するには上記材料
の温度係数であるB定数が一般に3000 K以上と大
きくなってしまう。例えばB定数3000 Kの材料を
用い一50℃、500にΩとした場合は、使用可能な抵
抗値が500Ω以上である温度は200℃以下となって
しまう。このため、従来のセンサでは、温度範囲を一5
0℃〜+400℃とするには2本以上の個別の素子が必
要であった。
In a general thermistor, the resistance value as a sensor is in the range of 100Ω to IMΩ, preferably 500Ω to 500Ω, in relation to the resistance value in the circuit. In this case, -50
In order to use the material in a wide temperature range from .degree. C. to +400.degree. C., the B constant, which is the temperature coefficient of the above-mentioned material, generally becomes as large as 3000 K or more. For example, if a material with a B constant of 3000 K is used and the resistance is -50°C and 500Ω, the temperature at which the usable resistance value is 500Ω or more is 200°C or lower. For this reason, conventional sensors have a temperature range of
Two or more separate elements were required to achieve temperatures between 0°C and +400°C.

B定数が3000 K以下の材料としては金属元素とし
てMn 、Co 、Ni などにCuを添加した複合酸
化物材料も知られているが、比抵抗ρおよびサーミスタ
定数Bはともに低く、広温度範囲の温度センサ用サーミ
スタ材料として適するものではなかった〔参考文献 ■
日立製作所、中央研究所創立二十周年記念論文集、昭和
37年〕。
Composite oxide materials in which Cu is added to metal elements such as Mn, Co, and Ni are also known as materials with a B constant of 3000 K or less, but both the specific resistance ρ and thermistor constant B are low, making them suitable for use over a wide temperature range. It was not suitable as a thermistor material for temperature sensors [References ■
Hitachi, Ltd., collection of papers commemorating the 20th anniversary of the founding of the Central Research Institute, 1962].

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上述べたように従来の材料にはB定数が3000に以
下の材料があるが、抵抗率が小さく本用途である150
℃以上のセンサに使われるガラス封止用のチップ形サー
ミスタとしては寸法形状が極端に細長になってしまい、
素子として500Ω以上の抵抗値を得ることができない
As mentioned above, conventional materials include materials with a B constant of 3000 or less, but they have a low resistivity and are suitable for this purpose at 150.
As a chip-type thermistor for glass sealing used in sensors above ℃, the dimensions and shape are extremely long and thin.
It is not possible to obtain a resistance value of 500Ω or more as an element.

すなわち、ガラス封止が可能なチップ形サーミスタに用
いることができ、その使用可能な温度範囲が一50℃〜
+400℃あるいは少なくとも300℃までの範囲であ
ることが可能なり定数と抵抗率をもつ材料が必要である
。さらに具体的には2500 K以下のB定数をもち、
従来の抵抗率より一桁高い材料が必要である(図1参照
)。
In other words, it can be used in a chip-type thermistor that can be sealed with glass, and its usable temperature range is from 150°C to
A material is required that has a constant and resistivity that can be used up to +400°C or at least 300°C. More specifically, it has a B constant of 2500 K or less,
A material with an order of magnitude higher resistivity than conventional resistivity is required (see Figure 1).

本発明はこのような背景のもとに行われたもので、比抵
抗ρの高い値に対してサーミスタ定数Bが低いサーミス
タ用酸化物半導体およびその材料を提供することを目的
とする。
The present invention was made against this background, and an object of the present invention is to provide an oxide semiconductor for a thermistor and a material thereof, which has a low thermistor constant B with respect to a high value of specific resistance ρ.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、金属酸化物の焼結混合体からなり、その構成
金属元素の混合割合が第1図に示す太線枠内であること
を特徴とする。
The present invention is characterized in that it consists of a sintered mixture of metal oxides, and that the mixing ratio of its constituent metal elements is within the bold line frame shown in FIG.

すなわち、鉄(Fe) 、コバル) (Co) 、およ
び銅(Cu)の3種の金属元素をそれぞれ第1図に大枠
で示す比率で含有させ、焼成時にサーミスタ定数および
比抵抗が高い鉄、コバルトを主たる成分とするスピネル
酸化物と、サーミスタ定数および比抵抗が低いコバルト
、銅を主たる成分とするスピネル酸化物を主成分として
形成することを特徴とする。
That is, three types of metal elements, iron (Fe), cobalt (Co), and copper (Cu), are contained in the proportions shown in the rough outline in Figure 1, and iron and cobalt, which have a high thermistor constant and specific resistance during firing, are used. It is characterized by being formed mainly of spinel oxide containing cobalt and copper, which have a low thermistor constant and specific resistance, as the main components.

サーミスタ酸化物材料はスピネル構造を基本とし一般に
B定数が低い場合は抵抗率も低くなる。
Thermistor oxide materials basically have a spinel structure, and generally, when the B constant is low, the resistivity is also low.

材料に含まれる結晶・構造が単相の時には従来例と同じ
ように発明が目的とする特性は得られない。
When the crystal/structure contained in the material is a single phase, the characteristics aimed at by the invention cannot be obtained as in the conventional example.

発明者らは複成分系でB定数が高く抵抗率ρが高い成分
とB定数が低く抵抗率ρが低い成分が同時に素子内部に
存在して、電流は低い成分の部分を選択的に流れみかけ
より定数が低く抵抗率ρが高い材料が得られることに気
付いた。種々の材料を検討した結果、特にFeC0Cu
系酸化物では高B高ρ特性をもつFeCo系を主成分と
するスピネル酸化物と低B低ρ特性をもつCoCu系を
主成分とするスピネル酸化物の両者がある組成域で生成
されることを見いだした。
The inventors discovered that in a multicomponent system, a component with a high B constant and high resistivity ρ and a component with a low B constant and low resistivity ρ exist simultaneously inside the element, and current appears to flow selectively through the low component. It was realized that a material with a lower constant and higher resistivity ρ could be obtained. As a result of examining various materials, especially FeC0Cu
Among spinel oxides, spinel oxides mainly composed of FeCo-based materials with high B and high ρ characteristics and spinel oxides mainly composed of CoCu-based materials with low B and low ρ characteristics are produced in certain composition ranges. I found it.

〔作用〕[Effect]

鉄(Fe) 、:]バルト(Co)、および銅(Cu)
を第1図の実線で囲まれた領域の混合割合で焼成すると
、高温域から低温域に移行する際、第3図に示すように
サーミスタ定数および比抵抗が高い素体部分にサーミス
タ定数および比抵抗が低い素体が析出する。この状態で
、画電極に電圧が加えられると、電流は析出した比抵抗
の低い部分を通過するようになるが、この比抵抗の低い
部分は経路が細いために高い比抵抗の素体と同じ状態に
なり、したがって焼結混合した素体全体としては比抵抗
が高く、その比抵抗に対してサーミスタ定数が低い素体
が構成される。
Iron (Fe), Balt (Co), and Copper (Cu)
When fired at the mixing ratio in the area surrounded by the solid line in Figure 1, when transitioning from the high temperature range to the low temperature range, the thermistor constant and ratio are increased in the element body part where the thermistor constant and resistivity are high, as shown in Figure 3. Elements with low resistance are precipitated. In this state, when a voltage is applied to the picture electrode, the current passes through the precipitated part with low specific resistance, but because the path of this part with low specific resistance is narrow, it is the same as the element body with high specific resistance. Therefore, the sintered and mixed element body as a whole has a high specific resistance, and an element body whose thermistor constant is low relative to the specific resistance is formed.

これにより、比抵抗に対して低いサーミスタ定数を有す
るサーミスタ用酸化物半導体を生成することができ、し
たがって、電子レンジ用として解凍に必要な温度範囲と
調理に必要な温度範囲との面領域に対応できるサーミス
タを一つの素体で構成することができ、そのために回路
構成が簡単となり、製造コストを低減することができる
This makes it possible to produce an oxide semiconductor for thermistors that has a low thermistor constant relative to the specific resistance, and therefore corresponds to the surface area of the temperature range required for defrosting and the temperature range required for cooking for use in microwave ovens. The thermistor can be constructed from one element, which simplifies the circuit configuration and reduces manufacturing costs.

〔実施例〕〔Example〕

次に、本発明実施例を図面に基づいて説明する。 Next, embodiments of the present invention will be described based on the drawings.

第1図は本発明実施例の金属元素の混合割合を示す図で
ある。
FIG. 1 is a diagram showing the mixing ratio of metal elements in an example of the present invention.

原料として酸化鉄(Fe203)、酸化コバルト(Co
O)、および酸化銅(Cub)を用い、それぞれの金属
元素が第1図および表に示す組成となるように配合した
Iron oxide (Fe203) and cobalt oxide (Co) are used as raw materials.
Using copper oxide (Cub) and copper oxide (Cub), the respective metal elements were blended so as to have the compositions shown in FIG. 1 and the table.

これらの配合組成物をボールミル中で24時間湿式混合
し、濾過脱水して100℃で乾燥した。この乾燥物をほ
ぐした後、空気中で900℃の熱を加え10時間仮焼し
、さらにその粉末をボールミルで48時間湿式粉砕した
後、乾燥させて酸化物粉末を得た。
These blended compositions were wet mixed in a ball mill for 24 hours, filtered and dehydrated, and dried at 100°C. After loosening this dried product, it was calcined in air at 900° C. for 10 hours, and the powder was wet-pulverized in a ball mill for 48 hours, and then dried to obtain an oxide powder.

この酸化物粉末にポリビニールアルコールを重量で1.
5%となるように添加して造粒し、直径21mm、厚さ
7mmの円板状になるように圧力1ton/7でプレス
成形した。
Add polyvinyl alcohol to this oxide powder by weight.
The mixture was added to a concentration of 5%, granulated, and press-molded at a pressure of 1 ton/7 to form a disc with a diameter of 21 mm and a thickness of 7 mm.

このようにして得られた円板状成形体を空気中で950
℃〜1100℃の温度で10時間焼成し焼結体を得た。
The disc-shaped molded product thus obtained was heated to 950°C in air.
A sintered body was obtained by firing at a temperature of 1100°C to 1100°C for 10 hours.

この焼結体のうち焼結密度が高く、変形のないものの内
部から厚さ1加のウェハを切り出し、両面に銀(Ag)
を主成分とする電極を設けた後、0.5mm角のチップ
形状に切り出しサーミスタ素子とした。これをジメット
線を端子としてガラス管中に封入密閉してガラス封入形
サーミスタを得た。
A wafer with a thickness of 1 mm is cut from the inside of this sintered body with high sintering density and no deformation, and silver (Ag) is coated on both sides.
After providing an electrode containing as a main component, a thermistor element was cut out into a chip shape of 0.5 mm square. This was sealed and sealed in a glass tube using a Dimet wire as a terminal to obtain a glass-encapsulated thermistor.

このようにして得られたガラス封入形サーミスタの試料
と個々の特性を表に示す。表中の比抵抗は25℃におけ
るゼロ負荷抵抗値の測定結果から求めた値であり、サー
ミスタ定数Bは25℃と50℃のゼロ負荷抵抗値から求
めた値である。第2図にそのサーミスタ定数と比抵抗と
の相互の関係を示す。
The samples of the glass-encapsulated thermistors thus obtained and their individual characteristics are shown in the table. The specific resistance in the table is the value determined from the measurement results of the zero-load resistance value at 25°C, and the thermistor constant B is the value determined from the zero-load resistance value at 25°C and 50°C. FIG. 2 shows the relationship between the thermistor constant and specific resistance.

また図中に付された数字は表中の試料番号を示し、*印
が付された試料番号は比較例として用いられた試料を示
す。
Further, the numbers attached in the figure indicate the sample numbers in the table, and the sample numbers marked with * indicate the samples used as comparative examples.

第3図に試料番号7の試料について、その抵抗値の温度
特性を1例として示した。同図にみるように、400℃
から一50℃以下まで抵抗値が100Ω〜IMΩの範囲
内に入っており、しかも曲線が上に凸、すなわち高温側
はどB定数が大きくなる材料特性を有している。これは
サーミスタを用いた広温度範囲用の温度センサとして極
めて好ましい。
FIG. 3 shows an example of the temperature characteristics of the resistance value of sample No. 7. As shown in the figure, 400℃
The resistance value is within the range of 100Ω to IMΩ from 150° C. to 150° C., and the material characteristic is that the curve is upwardly convex, that is, the B constant increases on the high temperature side. This is extremely preferable as a temperature sensor for a wide temperature range using a thermistor.

第2図および表にみられるように、金属元素として鉄(
Fe) 5.0〜35.0原子%、コバルト(Co) 
15.0〜55.0原子%、銅(Cu)7.5〜35.
0原子%の3種を計100原子%含有する組成範囲内で
混合し焼結することによって、60〜5.000Ω・叩
の低い比抵抗、および1.200〜2,000 Kの低
いサーミスタ定数を有するサーミスタ素子用材料を生成
することができる。
As seen in Figure 2 and the table, iron (
Fe) 5.0 to 35.0 atomic%, cobalt (Co)
15.0 to 55.0 at%, copper (Cu) 7.5 to 35.
By mixing and sintering three types of 0 atomic % within a composition range containing a total of 100 atomic %, a low resistivity of 60 to 5,000 Ω/kap and a low thermistor constant of 1,200 to 2,000 K are achieved. It is possible to produce a material for a thermistor element having the following properties.

(以下本頁余白) 〔発明の効果〕 以上説明したように本発明によれば、比抵抗ρに対して
低いサーミスタ定数Bを有するサーミスタ用酸化物半導
体を生成することができる。したがって電子レンジ用と
して解凍に要する温度範囲と調理に要する温度範囲との
両頭域に対応できるサーミスタを一つの素材で構成する
ことができる。
(Hereinafter, in the margin of this page) [Effects of the Invention] As explained above, according to the present invention, it is possible to produce an oxide semiconductor for a thermistor having a thermistor constant B that is low with respect to the specific resistance ρ. Therefore, a thermistor for use in a microwave oven that can handle both the temperature range required for defrosting and the temperature range required for cooking can be constructed from one material.

さらに、二つのサーミスタが一つになることによって回
路構成が簡単となり、電子機器の製造コストを低減する
ことができる効果がある。
Furthermore, since the two thermistors are combined into one, the circuit configuration is simplified, which has the effect of reducing the manufacturing cost of electronic equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例における金属元素の混合割合を示
す図。 第2図は従来例および本発明実施例におけるサーミスタ
用酸化物半導体のサーミスタ定数と比抵抗との関係を示
す図。 第3図は本発明実施例における試料7の温度特性を示す
図。 第4図(a)および(社)は本発明実施例におけるサー
ミスタ素子の外観および断面を示す図。 特許出願人 三菱鉱業セメント株式会社代理人 弁理士
  井 出 直 孝 Co(/原子01.) l二一一一一一一一 史宛脅f1 第1図 25〜50″C/lB定数(K) 従来例2J与史彎夕11 第 2 図
FIG. 1 is a diagram showing the mixing ratio of metal elements in Examples of the present invention. FIG. 2 is a diagram showing the relationship between the thermistor constant and specific resistance of oxide semiconductors for thermistors in a conventional example and an example of the present invention. FIG. 3 is a diagram showing the temperature characteristics of sample 7 in an example of the present invention. FIG. 4(a) and FIG. 4(a) are diagrams showing the external appearance and cross section of a thermistor element in an embodiment of the present invention. Patent Applicant Mitsubishi Mining Cement Co., Ltd. Agent Patent Attorney Nao Takashi Ide Co (/Atom 01.) Threat f1 to 12111111 Figure 1 25-50″C/lB constant (K) Conventional example 2J Yoshikayu 11 Fig. 2

Claims (2)

【特許請求の範囲】[Claims] 1.金属酸化物の混合焼結体からなり、その構成金属元
素の混合割合が第1図に示す太線枠内であることを特徴
とするサーミスタ用酸化物半導体。
1. An oxide semiconductor for a thermistor comprising a mixed sintered body of metal oxides, characterized in that the mixing ratio of the constituent metal elements is within the thick line frame shown in FIG.
2.金属元素の混合割合が第1図に示す太線枠内である
ことを特徴とするサーミスタ用酸化物材料。
2. An oxide material for a thermistor, characterized in that the mixing ratio of metal elements is within the bold line frame shown in FIG.
JP2309754A 1990-11-14 1990-11-14 Oxide semiconductor for thermistor and its material Pending JPH04180201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2309754A JPH04180201A (en) 1990-11-14 1990-11-14 Oxide semiconductor for thermistor and its material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2309754A JPH04180201A (en) 1990-11-14 1990-11-14 Oxide semiconductor for thermistor and its material

Publications (1)

Publication Number Publication Date
JPH04180201A true JPH04180201A (en) 1992-06-26

Family

ID=17996886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2309754A Pending JPH04180201A (en) 1990-11-14 1990-11-14 Oxide semiconductor for thermistor and its material

Country Status (1)

Country Link
JP (1) JPH04180201A (en)

Similar Documents

Publication Publication Date Title
JPS6054259B2 (en) Moisture sensitive ceramic
JPS6022302A (en) Oxide semiconductor for thermistor
JPH04180201A (en) Oxide semiconductor for thermistor and its material
DE19832843A1 (en) Thermistor
JPH07231122A (en) Oxide thermoelectric conversion material
JPH02121303A (en) Manufacture of ntc thermistor element
JP3559911B2 (en) Thermistor
JPS5927081B2 (en) Oxide semiconductor for thermistor
JP2578805B2 (en) Oxide semiconductor for thermistor
JPH08104561A (en) Oxide magnetic material
JPS6325681B2 (en)
JPS6211202A (en) Composition for thermistor
KR100335290B1 (en) The Composition and Manufacturing Methods of NTC (Negative Temperature Coefficient) Thermistor
JP2578889B2 (en) Thermistor
JPS5927741B2 (en) Thermistor composition
JPS60106107A (en) Method of producing oxide semiconductor porcelain for thermistor
JPS63308302A (en) Oxide semiconductor for thermistor
JPH06204003A (en) Negative characteristic thermistor material
JPH07230902A (en) Semiconductor ceramic element
JPH03271154A (en) Composition for thermistor
JPS6013285B2 (en) Oxide semiconductor for thermistor
JPH0133921B2 (en)
JPS6055964B2 (en) Manufacturing method of thermistor
JPS6211201A (en) Composition for thermistor
JPH01235201A (en) Oxide semiconductor for thermistor