JPS5927741B2 - Thermistor composition - Google Patents

Thermistor composition

Info

Publication number
JPS5927741B2
JPS5927741B2 JP53070928A JP7092878A JPS5927741B2 JP S5927741 B2 JPS5927741 B2 JP S5927741B2 JP 53070928 A JP53070928 A JP 53070928A JP 7092878 A JP7092878 A JP 7092878A JP S5927741 B2 JPS5927741 B2 JP S5927741B2
Authority
JP
Japan
Prior art keywords
thermistor
atoms
stability
hours
oxides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53070928A
Other languages
Japanese (ja)
Other versions
JPS54162708A (en
Inventor
博己 戸崎
英夫 有馬
昭 池上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP53070928A priority Critical patent/JPS5927741B2/en
Publication of JPS54162708A publication Critical patent/JPS54162708A/en
Publication of JPS5927741B2 publication Critical patent/JPS5927741B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 本発明は、安定でかつ比抵抗の小さい新規なサーミスタ
組成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel thermistor composition that is stable and has a low specific resistance.

温度に対して抵抗値が負の勾配をもつサーミスタ材料と
して、Mn、Co、Ni、Fe、Cu、Al、Si等の
酸化物の2種以上を混合し、900〜1300℃で熱処
理して焼結した、複合酸化物がよく知られている。
As a thermistor material whose resistance value has a negative gradient with respect to temperature, two or more types of oxides such as Mn, Co, Ni, Fe, Cu, Al, Si, etc. are mixed and heat-treated at 900 to 1300°C and baked. Composite oxides are well known.

このうち、Cuを含む複合酸化物は、比抵抗が100Ω
・篩以下と小さいものがあり、低抵抗のサーミスタ材料
として用いられている。
Among these, the composite oxide containing Cu has a specific resistance of 100Ω.
- Some are smaller than a sieve and are used as low-resistance thermistor materials.

しかし、このCuを含むサーミスタ材料は抵抗値の経時
変化が大きく、+10%以上あり安定性に欠けるため、
精度の高い温度検知、あるいは温度補償素子として用い
ることができない。
However, this thermistor material containing Cu has a large change in resistance value over time, exceeding +10%, and lacks stability.
It cannot be used for highly accurate temperature detection or as a temperature compensation element.

このため、サーミスタ定数が大きく、比抵抗の小さい、
安定なサーミスタ材料が必要である。
Therefore, the thermistor constant is large and the specific resistance is small.
Stable thermistor materials are required.

本発明の目的は、低抵抗で特に安定性に優れたサーミス
タ材料を提供するにある。
An object of the present invention is to provide a thermistor material with low resistance and particularly excellent stability.

本発明は、サーミスタ材料としてMn、Co、Niの酸
化物のうちから選ばれた少なくとも1種類の酸化物と、
サーミスタ材料のFe、A7.Siの酸化物のうちから
選ばれた少なくとも1種類の酸化物と、Moの酸化物と
を混合、粉砕、焼成してなる複合酸化物において、複合
酸化物中の50%原子までがMoであることを特徴とす
る。
The present invention provides at least one type of oxide selected from oxides of Mn, Co, and Ni as a thermistor material;
Thermistor material Fe, A7. In a composite oxide obtained by mixing, pulverizing, and firing at least one oxide selected from oxides of Si and an oxide of Mo, up to 50% of atoms in the composite oxide are Mo. It is characterized by

ここで、MO含量を50%原子迄としたのは、これより
多い材料組成では、抵抗値の温度変化、即ちサーミスタ
定数が小さくなり、サーミスタとしての特性を示さなく
なるからである。
Here, the reason why the MO content is set to 50% atoms is that if the material composition is higher than this, the temperature change in resistance value, that is, the thermistor constant becomes small, and the material does not exhibit the characteristics as a thermistor.

なお、Moを含まめ組成は、従来のサーミスタ材料とな
る。
Note that the composition including Mo is a conventional thermistor material.

以丁実施例により本発明を説明する。The present invention will now be described with reference to Examples.

実施例 l MnO2、CoO2,Fe2O3,MOO2を出発原料
粉末とし、第1表に示す配合組成となるよう50gを秤
取とする。
Example 1 Using MnO2, CoO2, Fe2O3, and MOO2 as starting material powders, 50 g was weighed out so as to have the composition shown in Table 1.

これらの粉末をメノー製乳鉢を用いて4時間薄情混合す
る。
These powders are gently mixed for 4 hours using an agate mortar.

この混合粉末をアルミナルツボに入れ、10−2mvt
H9以下の真空雰囲気中で900℃。
Put this mixed powder into an aluminum crucible and
900℃ in a vacuum atmosphere below H9.

2時間の仮焼成し、さらに、この粉末をメノー製乳鉢で
4時間の薄情粉砕を行なう。
After pre-calcining for 2 hours, this powder was further ground in an agate mortar for 4 hours.

次に加圧プレスにより12.0φX3.0tのベレット
を作成し、10−2mmHg以下の真空中で950℃で
8時間の熱処理を行ないセラミックをつくる。
Next, a pellet of 12.0φ x 3.0t is made using a pressure press, and heat treated at 950° C. for 8 hours in a vacuum of 10 −2 mmHg or less to produce a ceramic.

このセラミックの両面に導電ペイントを塗布して電極を
形成し、サーミスタ特性を測定した。
Conductive paint was applied to both sides of this ceramic to form electrodes, and thermistor characteristics were measured.

また、150℃2000時間の高温放置により、その安
定性を調べた。
Furthermore, its stability was investigated by leaving it at a high temperature of 150° C. for 2000 hours.

ただし、第1表中の試料/161は従来から良く知罎ら
れたサーミスタ材料で、参考として掲げたものである。
However, Sample No. 161 in Table 1 is a well-known thermistor material and is listed for reference.

第1表の/I62〜五12のMoを50%原子まで含む
ものは、應1のMoを含まぬものに比べて、比抵抗は小
さくなり、安定性も良い。
Those containing up to 50% of Mo atoms in /I62 to 512 in Table 1 have lower resistivity and better stability than those in Table 1 that do not contain Mo.

/l613のMoを52%原子含むものは、サーミスタ
定数が小さく、サーミスタとしての有用性が少ない。
/l613 containing 52% Mo atoms has a small thermistor constant and is less useful as a thermistor.

実施例 2 Mn02.Fe2o3.MnOを出発原料粉末とし、実
施例1と同様の製法にて、第2表に示す配合組成のセラ
ミックをつくり、そのサーミスタ特性を測定した。
Example 2 Mn02. Fe2o3. Using MnO as a starting material powder, ceramics having the compositions shown in Table 2 were produced using the same manufacturing method as in Example 1, and their thermistor characteristics were measured.

また、150°G、2000時間の高温放置により、そ
の安定性を調べた。
In addition, its stability was investigated by leaving it at a high temperature of 150°G for 2000 hours.

第2表の/I62〜/i6.12のMof50%原子ま
で含むものは、/161のMoを含まぬものに比べて、
比比抵抗は小さくなり、安定性もよい。
Those containing up to 50% Mof atoms of /I62 to /i6.12 in Table 2 are compared to those containing no Mo of /161,
The specific resistance is small and the stability is good.

A613の52%原子Moを含むものは、サーミスタ定
数が小さく、サーミスタとしての有用性が少ない。
A613 containing 52% atomic Mo has a small thermistor constant and is less useful as a thermistor.

実施例 3 Mn203 、Co3O4、Fe2O3、MoO2を出
発原料粉末とし、実施例1と同様の製法にて、第3表に
示す配合組成のセラミックをつくり、そのサーミスタ特
性を測定した。
Example 3 Using Mn203, Co3O4, Fe2O3, and MoO2 as starting material powders, ceramics having the compositions shown in Table 3 were produced in the same manner as in Example 1, and their thermistor characteristics were measured.

また、150℃、2000時間の高温放置により安定性
を調べた。
Further, the stability was investigated by leaving it at a high temperature of 150° C. for 2000 hours.

第3表の//6.2〜/1612のMoを50%原子ま
で含むものは、/I6.1のMoを含まぬものに比べて
比抵抗値は小さくなり、安定性も良い。
Those containing up to 50% Mo of /6.2 to /1612 in Table 3 have lower specific resistance values and better stability than those of /I6.1 that do not contain Mo.

413のMoを52%原子含むものは、サーミスタ定数
が小さく、サーミスタとしての有用性がない。
413 containing 52% Mo atoms has a small thermistor constant and is not useful as a thermistor.

実施例 4 Mn02 、 N iO、A120s 、 MoO2を
出発原料粉末とし、実施例1と同様の製法にて、第4表
に示す配合組成のセラミックをつくり、そのサーミスタ
特性を調べた。
Example 4 Using Mn02, NiO, A120s, and MoO2 as starting material powders, ceramics having the compositions shown in Table 4 were produced in the same manner as in Example 1, and their thermistor characteristics were investigated.

また、150℃、2000時間の高温放置により安定性
を調べた。
Further, the stability was investigated by leaving it at a high temperature of 150° C. for 2000 hours.

第4表の/162〜A612のMoを50%原子まで含
むものは、A6.1のMoを含まぬものに比べて比抵抗
は小さくなり、安定性も良い。
Those containing up to 50% Mo of atoms of /162 to A612 in Table 4 have lower specific resistance and better stability than those of A6.1 that do not contain Mo.

/16.13のM。を52%原子含むものは、サーミス
タ定数が小さく、サーミスタとしての有用性がない。
/16.13 M. A material containing 52% of atoms has a small thermistor constant and is not useful as a thermistor.

実施例 5 Coo、Fe2O3,5i02.MoO2を出発原料粉
末とし、実施例1と同様の製法にて、第5表に示す配合
組成のセラミックをつくり、そのサーミスタ特性を測定
した。
Example 5 Coo, Fe2O3,5i02. Using MoO2 as a starting material powder, ceramics having the compositions shown in Table 5 were produced using the same manufacturing method as in Example 1, and their thermistor characteristics were measured.

また、150℃、2000時間の高温放置により安定性
を調べた。
Further, the stability was investigated by leaving it at a high temperature of 150° C. for 2000 hours.

第5表の/162〜/1612のMoを50%原子まで
含むものは、扁1のMoを含まぬものに比べて比抵抗は
小さくなり、安定性も良い。
Those containing up to 50% Mo atoms of /162 to /1612 in Table 5 have lower resistivity and better stability than those containing no Mo of 1.

扁13のM。を52%原子含むものは、サーミスタ定数
が小さくサーミスタとしての有用性がない。
M of Bian 13. A material containing 52% of atoms has a small thermistor constant and is not useful as a thermistor.

実施例 6 Mn02 、 CoO、Nio 、 A#203.Fe
2O3,5io2゜MoO2を出発原料粉末とし、実施
例1と同様の製法にて、第6表に示す配合組成のセラミ
ックをつくり、そのサーミスタ特性を調べた。
Example 6 Mn02, CoO, Nio, A#203. Fe
Using 2O3,5io2°MoO2 as a starting material powder, ceramics having the compositions shown in Table 6 were produced in the same manner as in Example 1, and their thermistor characteristics were investigated.

また150℃、2000時間の高温放置により安定性を
調べた。
Furthermore, the stability was investigated by leaving it at a high temperature of 150° C. for 2000 hours.

第6表の/162〜/1612のMot50%原子まで
含むものは、A1のMoを含まぬものに比べて比抵抗は
小さくなり、安定性も良い。
Those containing up to 50% Mo atoms of /162 to /1612 in Table 6 have lower resistivity and better stability than those of A1 that do not contain Mo.

、4613のM。を52%原子含むものは、サーミスタ
定数が小さくサーミスタとしての有用性がない。
, 4613 M. A material containing 52% of atoms has a small thermistor constant and is not useful as a thermistor.

以上述べたごとく複合酸化物中の金属成分全量の50%
原子までがMoであることにより、低抵抗でかつ安定な
サーミスタ材料を作成することが可能となり、安定性に
優れた低抵抗のサーミスタ素子を提供することができた
As mentioned above, 50% of the total amount of metal components in the composite oxide
By including Mo down to the atoms, it became possible to create a low-resistance and stable thermistor material, and it was possible to provide a low-resistance thermistor element with excellent stability.

Claims (1)

【特許請求の範囲】 1 熱的に負性抵抗特性を示すサーミスタ材料であるM
n 、Co、Niの酸化物のうちから選ばれた少なくと
も1種類の金属酸化物と、熱的に負性抵抗特性を示すサ
ーミスタ材料であるFe、Si、Al。 の酸化物のうちから選ばれた少なくとも1種類の金属酸
化物と、モリブデンの酸化物とを混合、粉砕、焼成して
なる複合酸化物材料において、複合酸化物中の金属成分
の50%原子までがモリブデンであることを特徴とする
サーミスタ組成物。
[Claims] 1. M which is a thermistor material exhibiting thermally negative resistance characteristics
at least one metal oxide selected from oxides of n, Co, and Ni, and a thermistor material exhibiting negative thermal resistance characteristics such as Fe, Si, and Al. In a composite oxide material obtained by mixing, crushing, and firing at least one metal oxide selected from the oxides of molybdenum and an oxide of molybdenum, up to 50% atoms of the metal components in the composite oxide A thermistor composition characterized in that is molybdenum.
JP53070928A 1978-06-14 1978-06-14 Thermistor composition Expired JPS5927741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53070928A JPS5927741B2 (en) 1978-06-14 1978-06-14 Thermistor composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53070928A JPS5927741B2 (en) 1978-06-14 1978-06-14 Thermistor composition

Publications (2)

Publication Number Publication Date
JPS54162708A JPS54162708A (en) 1979-12-24
JPS5927741B2 true JPS5927741B2 (en) 1984-07-07

Family

ID=13445654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53070928A Expired JPS5927741B2 (en) 1978-06-14 1978-06-14 Thermistor composition

Country Status (1)

Country Link
JP (1) JPS5927741B2 (en)

Also Published As

Publication number Publication date
JPS54162708A (en) 1979-12-24

Similar Documents

Publication Publication Date Title
US2862891A (en) Sintered electrical resistor
JPS6022302A (en) Oxide semiconductor for thermistor
KR930005249B1 (en) Metal-oxide system thermistor
JPS5927741B2 (en) Thermistor composition
JPH07231122A (en) Oxide thermoelectric conversion material
US2694050A (en) Thermally sensitive resistor
JPS5935863B2 (en) Thermistor composition
JPS6059187B2 (en) Thermistor composition
JPS6059186B2 (en) Thermistor composition
JPS6059188B2 (en) Thermistor composition
KR0135637B1 (en) Thermister composition
JPH04180201A (en) Oxide semiconductor for thermistor and its material
JPH0543161B2 (en)
JPS6214924B2 (en)
JPS62152104A (en) Ptc ceramic resistor
JPS6330763B2 (en)
JPS5927081B2 (en) Oxide semiconductor for thermistor
JPS5818902A (en) Voltage nonlinear resistance porcelain
JPH0133921B2 (en)
JPS582442B2 (en) Teikoutai
JPS644647B2 (en)
JPS6321328B2 (en)
JPH043644B2 (en)
JPS62108503A (en) Oxide semiconductor for thermistor
JPS589565B2 (en) Manufacturing method of voltage nonlinear resistor