JPS62108503A - Oxide semiconductor for thermistor - Google Patents

Oxide semiconductor for thermistor

Info

Publication number
JPS62108503A
JPS62108503A JP60248232A JP24823285A JPS62108503A JP S62108503 A JPS62108503 A JP S62108503A JP 60248232 A JP60248232 A JP 60248232A JP 24823285 A JP24823285 A JP 24823285A JP S62108503 A JPS62108503 A JP S62108503A
Authority
JP
Japan
Prior art keywords
thermistor
oxide semiconductor
atoms
atomic
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60248232A
Other languages
Japanese (ja)
Inventor
畑 拓興
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60248232A priority Critical patent/JPS62108503A/en
Publication of JPS62108503A publication Critical patent/JPS62108503A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、160℃〜SOO℃の範囲で温度センサとし
て利用できるところの負の抵抗温度係数を有するサーミ
スタ用酸化物半導体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an oxide semiconductor for a thermistor having a negative temperature coefficient of resistance and which can be used as a temperature sensor in the range of 160° C. to SOO° C.

従来の従術 従来から良く知られているMn−Co−Ni−Cu酸化
物系サーミスタ材料は、汎用ディスク型サーミスタとし
て主に用いられてきたが、高温使用下での抵抗値変動が
大きいため、300℃を超えるような高温度では使用す
ることができず、300℃以下の温度で使用されてきた
。一方、700〜100o℃の高温で使用できる材料と
しては、安定化ジA/ コニ7(Zr02−Y2O2,
Zr02−CaO等)、Mg・−Al−Cr−Fe酸化
物スピネル系等が開発されている(特公昭48−705
号公報、特公昭49−63995号公報、特開昭53−
33756号公報)。    − 発明が解決しようとする問題点 しかし、これらの酸化物材料も、焼成温度が1600℃
を超える高温でなければならず、通常の電気炉(最高1
600℃)を用いたのでは焼成できないものであった。
Conventional Art The well-known Mn-Co-Ni-Cu oxide thermistor material has been mainly used as a general-purpose disk-type thermistor, but due to large fluctuations in resistance when used at high temperatures, It cannot be used at high temperatures exceeding 300°C, and has been used at temperatures below 300°C. On the other hand, as a material that can be used at high temperatures of 700 to 100oC, stabilized diA/Koni7 (Zr02-Y2O2,
Zr02-CaO, etc.), Mg--Al-Cr-Fe oxide spinel systems, etc. have been developed (Japanese Patent Publication No. 48-705
Publication No. 49-63995, Japanese Patent Publication No. 1987-63995
33756). - Problems to be solved by the invention However, these oxide materials also have a sintering temperature of 1600°C.
The temperature must be higher than
600° C.), it could not be fired.

その上、これらの酸化物の焼結体であっても抵抗値の経
時変化が大きく、きわめて安定なものでさえ10%(1
00O時間後)程度であり、経時安定性に問題があった
Furthermore, even in the case of sintered bodies of these oxides, the resistance value changes significantly over time, and even those that are extremely stable have a resistance value of 10% (10%).
000 hours), and there was a problem in stability over time.

また、センサ市場から200〜500℃での安定性に優
れたサーミスタの要望が一段と高くなり、これに対しし
たサーミスタ定数(Mn −N i −A I酸化物系
:特開昭57−95603号公報、(NixMg、Zn
、)Mn204スピネル系:特開昭57−887℃1号
公報、(N ip Co q F e r A l t
r Mn 004スピネル系:特開昭6了−88702
号公報等)が提案されてきたが、まだ評価段階である。
In addition, the demand for a thermistor with excellent stability at 200 to 500°C has increased from the sensor market, and the thermistor constant (Mn -N i -A , (NixMg, Zn
,) Mn204 spinel system: Japanese Patent Application Laid-open No. 1988-887°C, (Nip Coq Fer Alt
r Mn 004 spinel type: JP-A-6-88702
(e.g., Publications No. 1, etc.) have been proposed, but they are still in the evaluation stage.

本発明者も、上記要望に対して、Mn−Ni −Cr 
−Zr酸化物系(特願昭58−131265号)を提案
してきた。
In response to the above request, the present inventors also discovered Mn-Ni-Cr
-Zr oxide system (Japanese Patent Application No. 58-131265) has been proposed.

本発明は、上記問題点、特に高温下での抵抗経時安定性
に鑑みてなされたもので、その目的とするところは、3
00℃〜500℃でも適当な抵抗値を示し、安定に使用
できるサーミスタ用酸化物半導体を提供するととにある
The present invention has been made in view of the above-mentioned problems, particularly regarding resistance stability over time under high temperatures, and has three objectives:
It is an object of the present invention to provide an oxide semiconductor for a thermistor that exhibits a suitable resistance value even at 00°C to 500°C and can be stably used.

問題点を解決するための手段 上記目的を達成するために、本発明のサーミスタ用酸化
物半導体は、金属酸化物の焼結混合体よりなり、その金
属元素として、マンガン(Mn)60.0〜98.5原
子% ニッケk (N i ) 0.1〜5.0原子%
、クロム(Cr)0.3〜S、O原子%、ランクy(L
a)0.2〜5.0原子チおよびジルコニウム(Zr)
0.6〜28.0原子チの5種を合計100原子チ含有
してなるものである。
Means for Solving the Problems In order to achieve the above object, the oxide semiconductor for thermistor of the present invention is made of a sintered mixture of metal oxides, and the metal element thereof is manganese (Mn) of 60.0 to 60.0. 98.5 atomic% Nickel k (N i ) 0.1-5.0 atomic%
, chromium (Cr) 0.3 to S, O atomic %, rank y (L
a) 0.2-5.0 atoms Ti and zirconium (Zr)
It contains five types of atoms ranging from 0.6 to 28.0 atoms, for a total of 100 atoms.

さらに、上記組成100原子チに対して、外側でケイ素
(Si)を2.0原子チ以下(O原子チを含まず)含有
していてもよい。
Furthermore, for every 100 atoms in the above composition, the outer layer may contain 2.0 atoms or less of silicon (Si) (excluding O atoms).

作  用 この構成によシ、300℃〜SOO℃の温度範囲で、適
尚な抵抗値を示し、抵抗の経時安定性に優れたサーミス
タを得ることとなる。ここで、L a 203を固溶さ
せた安定化ジルコニアを用いた場合、そのセラミック微
細構造は、高抵抗を示すMn−Ni−Cr系スピネル結
晶に対し、安定にジルコニアがスピネル結晶の接合部に
存在し、セラミックの緻密性を向上することとなる。こ
こで、ジルコニアの粒径はスピネル結晶に対してさらに
微細である。また、安定化ジルコニアの含有量により比
抵抗の調整が可能であり、目的とする抵抗値を得ること
ができる。さらに、安定化ジルコニアはジルコニウム独
で加えた場合に比較し、上述したように緻密化を促進し
熱衝撃等での特性向上を発現することとなる。
Function: With this configuration, it is possible to obtain a thermistor that exhibits a suitable resistance value in the temperature range of 300° C. to SOO° C. and has excellent resistance stability over time. Here, when stabilized zirconia containing La 203 as a solid solution is used, the ceramic microstructure is such that zirconia stably forms at the joint of the spinel crystal, compared to the Mn-Ni-Cr spinel crystal that exhibits high resistance. existence, which improves the compactness of the ceramic. Here, the grain size of zirconia is smaller than that of spinel crystal. Moreover, the specific resistance can be adjusted by adjusting the content of stabilized zirconia, and a desired resistance value can be obtained. Furthermore, compared to the case where zirconium is added alone, stabilized zirconia promotes densification and exhibits improved properties against thermal shock, etc., as described above.

実施例 以下、本発明の実施例について説明する。Example Examples of the present invention will be described below.

市販の原料Mn CO3、N i O、Cr 203お
よびL a 203を含有したZrO2を後述する表に
示すようにそれぞれの原子係の組成になるように配合し
た。サーミスタ製造工程を例示すると、これらの配合組
成物をボールミルで湿式混合し、そのスラリーを乾燥後
1000℃で仮焼し、その仮焼物を再びボールミルで湿
式粉砕混合した。こうして得られたスラリーを乾燥後、
ポリビニルアルコールをバインダとして添加混合し、所
要量採って30ffψ×15fftのブロックに成形す
る。そして、この成形体を15ootで2時間空気中で
焼成した。こうして得られたブロックから、スライス、
研磨により厚みが160〜400μmのウエノ・−を取
シ出し、スクリーン印刷法により白金電極を設ける。
Commercially available raw materials Mn CO3, N i O, Cr 203 and ZrO2 containing La 203 were blended to have the respective atomic compositions as shown in the table below. To illustrate the thermistor manufacturing process, these blended compositions were wet mixed in a ball mill, the slurry was dried and calcined at 1000° C., and the calcined product was wet-pulverized and mixed again in a ball mill. After drying the slurry thus obtained,
Polyvinyl alcohol is added and mixed as a binder, and a required amount is taken and molded into a block of 30ffψ×15fft. Then, this molded body was fired in air at 15 oot for 2 hours. From the block thus obtained, slice,
A Ueno film having a thickness of 160 to 400 μm is removed by polishing, and a platinum electrode is provided by screen printing.

この電極付与されたウエノ・−から所望の寸法のチップ
にカッティングする0この素子をアルゴンガス等中性ガ
ス雰囲気もしくは空気中でガラス管に封入し、外気から
密封遮断する。リード線端子は、その使用温度によシ、
デュメット線、コノ(−ル線などスラグリードを用いる
。このガラス封入サーミスタを500℃の空気中に放置
し、1oOo時間後の抵抗値変化を測定したatた、初
期特性として、25℃での比抵抗および、ガラス封入サ
ーミスタとしてのサーミスタ定数を併せて示した。
This electrode-applied element is cut into a chip of a desired size. The element is sealed in a glass tube in a neutral gas atmosphere such as argon gas or in air, and hermetically isolated from the outside air. Lead wire terminals vary depending on the operating temperature.
A slug lead such as a dumet wire or a conical wire is used.This glass-encapsulated thermistor was left in air at 500°C, and the resistance change after 100 hours was measured.The initial characteristics were the ratio at 25°C. The resistance and thermistor constant as a glass-encapsulated thermistor are also shown.

このうちサーミスタ定数Bは、300℃とSOO℃とで
測定した2点の抵抗値から求めたものである。なお、素
子寸法は400μm X 400μm×300μmであ
った。
Among these, the thermistor constant B was determined from the resistance values at two points measured at 300°C and SOO°C. Note that the element dimensions were 400 μm x 400 μm x 300 μm.

前表において、比較用試料は、いずれも500℃での抵
抗経時変化率が5%を超え、実用上安定性に欠けるため
本発明の範囲外とした。これに対し、本発明の範囲内の
試料は、SOO℃での抵抗経時変化率が全てεチ以下で
、安定性が改善されていることがわかる。
In the above table, all of the comparative samples had a resistance change rate over time at 500° C. of more than 5% and lacked practical stability, so they were excluded from the scope of the present invention. On the other hand, the samples within the scope of the present invention all had resistance change rates over time at SOO° C. of ε or less, indicating that the stability was improved.

今回の試料は乾式成形後焼成したものを用いたが、ビー
ドタイプの素子でもよく、素子製造方法により何ら拘束
されるものではない。
The samples used this time were dry-molded and fired, but bead-type elements may also be used, and there are no restrictions on the element manufacturing method.

なお、本発明の実施例においては原料混合および仮焼物
粉砕混合にジルコニア玉石を用いた。
In the examples of the present invention, zirconia boulders were used for mixing raw materials and pulverizing and mixing calcined products.

上記実施例の試料(焼結体)について元素分析を行った
結果、Zr  の混入量はサーミスタ構成元素の100
原子チに対して、O,S原子チ以下であった。また、メ
ノウ玉石を用いた場合には、Siの混入量は1原子チ以
下であった。表に示した試料のうち、Stを含む試料は
全てジルコニア玉石を用いて得たものである。
As a result of elemental analysis of the sample (sintered body) of the above example, the amount of Zr mixed in was 100% of the thermistor constituent elements.
The number of O and S atoms was less than that of atoms. In addition, when agate boulders were used, the amount of Si mixed was less than one atom. Among the samples shown in the table, all the samples containing St were obtained using zirconia boulders.

さらに、本実施例で用いたZrは全てLaと反応させて
得たもの、すなわち酸化ランタン安定化ジルコニアであ
る。この安定化ジルコニアとしては、市販もしくはサン
プルとしてメーカから入手したものを原則として用いた
が、一部はシュウ酸塩から合成し、これを用いた。
Further, all Zr used in this example was obtained by reacting with La, that is, lanthanum oxide stabilized zirconia. As a general rule, the stabilized zirconia was commercially available or obtained as a sample from the manufacturer, but some was synthesized from oxalate and used.

発明の効果 以上述べたように、本発明に係るサーミスタ用酸化物半
導体は、金属酸化物の焼結混合体よりなり、その構成金
属元素として、Mn60.0〜98.6原子%、Ni 
O,1〜5.0原子%、Cr o、3〜5.0原子係、
L a O,2〜5 D原子チおよびZr O,6〜2
8.0原子係の5種を合計100原子係含有しているの
で、300℃〜SOO℃の範囲でも特性経時変化に優れ
ておシ、中・高温で高い信頼性が要求されている温度測
定に最も適している。すなわち、例えば電子レンジや石
油燃焼器における温度制御等の利用分野での貢献が期待
できるものである。そして、上記構成金属元素に加えて
、外側でSiを2.0原子チ以下(0原子俤を含まず)
を含有させた場合には、焼結促進効果を示し、緻密なセ
ラミックスを得ることができる。
Effects of the Invention As described above, the oxide semiconductor for a thermistor according to the present invention is made of a sintered mixture of metal oxides, and its constituent metal elements include 60.0 to 98.6 at% of Mn and 60.0 to 98.6 at% of Ni.
O, 1 to 5.0 atomic percent, Cro, 3 to 5.0 atomic percent,
L a O, 2-5 D atoms and Zr O, 6-2
Contains 5 types of 8.0 atomic mass with a total of 100 atomic mass, so it has excellent characteristics over time even in the range of 300°C to SOO°C, and is suitable for temperature measurement where high reliability is required at medium and high temperatures. most suitable for That is, it can be expected to contribute to fields of application such as temperature control in microwave ovens and oil burners, for example. In addition to the above-mentioned constituent metal elements, Si is added on the outside to 2.0 atoms or less (not including 0 atoms).
When it is contained, it exhibits a sintering accelerating effect, and dense ceramics can be obtained.

Claims (2)

【特許請求の範囲】[Claims] (1)金属酸化物の焼結混合体よりなり、その構成金属
元素として、マンガン60.0〜98.5原子%、ニッ
ケル0.1〜5.0原子%、クロム0.3〜6.0原子
%、ランタン0.2〜5.0原子%およびジルコニウム
0.6〜28.0原子%の6種を合計100原子%含有
することを特徴とするサーミスタ用酸化物半導体。
(1) Consists of a sintered mixture of metal oxides, the constituent metal elements of which are manganese 60.0 to 98.5 at%, nickel 0.1 to 5.0 at%, and chromium 0.3 to 6.0 An oxide semiconductor for a thermistor, comprising a total of 100 atom % of six types: 0.2 to 5.0 atom % of lanthanum, and 0.6 to 28.0 atom % of zirconium.
(2)金属酸化物の焼結混合体よりなり、その構成金属
元素として、マンガン60.0〜98.5原子%、ニッ
ケル0.1〜5.0原子%、クロム0.3〜6.0原子
%、ランタン0.2〜5.0原子%およびジルコニウム
0.6〜28.0原子%の5種を合計100原子%含有
し、かつケイ素を構成金属元素に対して外割で2.0原
子%以下(0原子%を含まず)含有することを特徴とす
るサーミスタ用酸化物半導体。
(2) Consisting of a sintered mixture of metal oxides, its constituent metal elements include manganese 60.0 to 98.5 at%, nickel 0.1 to 5.0 at%, and chromium 0.3 to 6.0 Contains a total of 100 at% of 5 types, 0.2 to 5.0 at% of lanthanum and 0.6 to 28.0 at% of zirconium, and 2.0 at% of silicon relative to the constituent metal elements. An oxide semiconductor for a thermistor, characterized in that it contains atomic % or less (excluding 0 atomic %).
JP60248232A 1985-11-06 1985-11-06 Oxide semiconductor for thermistor Pending JPS62108503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60248232A JPS62108503A (en) 1985-11-06 1985-11-06 Oxide semiconductor for thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60248232A JPS62108503A (en) 1985-11-06 1985-11-06 Oxide semiconductor for thermistor

Publications (1)

Publication Number Publication Date
JPS62108503A true JPS62108503A (en) 1987-05-19

Family

ID=17175130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60248232A Pending JPS62108503A (en) 1985-11-06 1985-11-06 Oxide semiconductor for thermistor

Country Status (1)

Country Link
JP (1) JPS62108503A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010258482A (en) * 2001-12-04 2010-11-11 Epcos Ag Electrical device with negative temperature coefficient

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010258482A (en) * 2001-12-04 2010-11-11 Epcos Ag Electrical device with negative temperature coefficient

Similar Documents

Publication Publication Date Title
EP0207994B1 (en) Oxide semiconductor for thermistor and a method of producing the same
JPS6022302A (en) Oxide semiconductor for thermistor
JPS62108503A (en) Oxide semiconductor for thermistor
JPS62108505A (en) Oxide semiconductor for thermistor
JPH0543161B2 (en)
JPS62108504A (en) Oxide semiconductor for thermistor
JPS6097601A (en) Oxide semiconductor porcelain for thermistor
JPS62108502A (en) Oxide semiconductor for thermistor
JPH0578921B2 (en)
JPS61113204A (en) Manufacture of oxide semiconductor for thermistor
JP3391190B2 (en) Thermistor composition
JPS6126202A (en) Oxide semiconductor for thermistor
JPH0578922B2 (en)
JPS61113206A (en) Manufacture of oxide semiconductor for thermistor
JPS62263606A (en) Manufacture of oxide semiconductor porcelain for thermistor
JPH043644B2 (en)
JPS60106107A (en) Method of producing oxide semiconductor porcelain for thermistor
JPS61122156A (en) Manufacture of oxide semiconductor for thermistor
JPS61168205A (en) Manufacture of oxide semiconductor for thermistor
JPH043643B2 (en)
JPS61168204A (en) Manufacture of oxide semiconductor for thermistor
JPS5945964A (en) Ceramic resistor material
JPS59208804A (en) Oxide semiconductor for thermistor
JPS6196702A (en) Manufacture of oxide semiconductor ceramics for thermistor
JPS6211202A (en) Composition for thermistor