JPS61168205A - Manufacture of oxide semiconductor for thermistor - Google Patents

Manufacture of oxide semiconductor for thermistor

Info

Publication number
JPS61168205A
JPS61168205A JP735285A JP735285A JPS61168205A JP S61168205 A JPS61168205 A JP S61168205A JP 735285 A JP735285 A JP 735285A JP 735285 A JP735285 A JP 735285A JP S61168205 A JPS61168205 A JP S61168205A
Authority
JP
Japan
Prior art keywords
thermistor
oxide semiconductor
resistance value
present
over time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP735285A
Other languages
Japanese (ja)
Inventor
畑 拓興
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP735285A priority Critical patent/JPS61168205A/en
Priority to DE8585905664T priority patent/DE3581807D1/en
Priority to PCT/JP1985/000616 priority patent/WO1986003051A1/en
Priority to US06/902,445 priority patent/US4891158A/en
Priority to EP85905664A priority patent/EP0207994B1/en
Publication of JPS61168205A publication Critical patent/JPS61168205A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、200℃から500℃で使用できる中・高温
用のサーミスタ用酸化物半導体の製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing an oxide semiconductor for a thermistor for medium to high temperatures that can be used at temperatures from 200°C to 500°C.

(従来例の構成とその問題点) 従来から良く知られているMn−Co−Ni−Cu酸化
物系サーミスタ材料は、汎用ディスク型サーミスタとし
て主に用いられてきたが、高温使用下での抵抗値変動が
大きいため、300℃を超えるような高温度では使用す
ることができないため、300℃以下の温度で使用され
てきた。
(Conventional structure and its problems) The well-known Mn-Co-Ni-Cu oxide thermistor material has been mainly used as a general-purpose disk-type thermistor, but its resistance under high-temperature use is Since the value fluctuation is large, it cannot be used at temperatures exceeding 300°C, so it has been used at temperatures below 300°C.

一方、700℃〜1000℃の高温で使用できる材料と
しては、安定化ジルコニア(ZrO□−Y203HZr
O2−CaO等)、Mg−Aid−Cr−Fe酸化物ス
ピネル系等が開発されている(特公昭4B−705号公
報、特公昭49−63995号公報、特公昭50−16
894号公報、特公昭50−16895号公報、特開昭
53−33756号公報)。
On the other hand, stabilized zirconia (ZrO□-Y203HZr
O2-CaO, etc.), Mg-Aid-Cr-Fe oxide spinel systems, etc. have been developed (Japanese Patent Publication No. 4B-705, Japanese Patent Publication No. 49-63995, Japanese Patent Publication No. 1984-16).
(Japanese Patent Publication No. 894, Japanese Patent Publication No. 16895-1980, Japanese Patent Publication No. 33756-1987).

しかし、これらの酸化物材料も焼成温度が1600℃を
超える高温でなければならず、通常の電気炉(最高16
00℃)を用いたのでは焼成できないものであった。そ
の上、これら酸化物の焼結体であっても抵抗値の経時変
化が大きく、極めて安定なものでさえ10%(1000
時間後)程度であり、経時安定性に問題があった。
However, these oxide materials must also be fired at a high temperature of over 1,600°C, and cannot be fired in an ordinary electric furnace (up to 1,600°C).
00°C), it could not be fired. Moreover, even in the case of sintered bodies of these oxides, the resistance value changes significantly over time, and even those that are extremely stable have a resistance value of 10% (1000%).
), and there was a problem with stability over time.

また、センサ市場から200℃〜500℃で安定性に優
れたサーミスタの要望が一段と高くなり、こわに対応し
たサーミスタ材料、 [Mn−Ni−Al酸化物系:特開昭57−95603
号公報、((NiXMgyZnz)Mn204スピネル
系:特開昭57−887o1号公報)、((NjPCO
(Fe、l、Mn、)04スピネル系:特開昭57−8
8702号公報等)〕が提案されてきたが、まだ評価段
階である。
In addition, the demand for thermistors with excellent stability at temperatures between 200°C and 500°C has increased in the sensor market, and a thermistor material that can handle stiffness [Mn-Ni-Al oxide system: JP-A-57-95603]
No. Publication, ((NiXMgyZnz)Mn204 spinel system: JP-A No. 57-887o1), ((NjPCO
(Fe, l, Mn,)04 spinel system: JP-A-57-8
No. 8702, etc.) have been proposed, but they are still in the evaluation stage.

本発明者もまた上記要望に対して、 Mn−Nj、−Cr−Zr酸化物系:特願昭58−13
1265号を提案してきた。これは、安定なMn−Ni
−Cr系酸化物スピネルにZrO2を添加することによ
り得たものである。
The present inventor also responded to the above request by filing a patent application for Mn-Nj, -Cr-Zr oxide system:
I have proposed No. 1265. This is stable Mn-Ni
It was obtained by adding ZrO2 to -Cr-based oxide spinel.

(発明の目的) 本発明は上記問題点に鑑みてなされたもので、300℃
〜500℃で適当な抵抗値を示し、安定に使用できるサ
ーミスタ用酸化物半導体の製造方法を提供することを目
的とするものである。
(Object of the invention) The present invention was made in view of the above problems, and it
It is an object of the present invention to provide a method for manufacturing an oxide semiconductor for a thermistor that exhibits an appropriate resistance value at temperatures of up to 500°C and can be stably used.

(発明の構成) 本発明は、Mn−Ni−Cr系酸化物スピネルにMgを
安定化元素とした安定化ジルコニアを添加するもので、
すなわち、金属元素として、マンガン、ニッケル、クロ
ム、ジルコニウム及びマグネシウムの5種を合計100
原子%を含むサーミスタ用酸化物半導体を得るために、
出発原料として安定化ジルコニアを用いる製造方法であ
る。
(Structure of the Invention) The present invention adds stabilized zirconia containing Mg as a stabilizing element to Mn-Ni-Cr-based oxide spinel,
That is, a total of 100 metal elements including manganese, nickel, chromium, zirconium, and magnesium are used.
To obtain an oxide semiconductor for thermistor containing atomic%
This is a manufacturing method that uses stabilized zirconia as a starting material.

(実施例) 以下、本発明の実施例について説明する。(Example) Examples of the present invention will be described below.

市販の原料MnCO3,NiO,Cr201及びメーカ
から提供されたMgO,5mail含有zrO2を、M
n:Nj :Cr:Zr= 76.0:2.0:2.0
:20.0IM子%になるように配合した。
Commercially available raw materials MnCO3, NiO, Cr201 and MgO, 5mail-containing zrO2 provided by the manufacturer were
n:Nj:Cr:Zr=76.0:2.0:2.0
: 20.0 IM%.

サーミスタ製造工程を例示すると、これらの配合組成物
をボールミルで湿式混合し、そのスラリーを乾燥後10
00℃で仮焼し、その仮焼物を再びボールミルで湿式粉
砕混合した。
To illustrate the thermistor manufacturing process, these blended compositions are wet mixed in a ball mill, and the slurry is dried for 10 minutes.
The calcined product was calcined at 00°C, and the calcined product was again wet-pulverized and mixed using a ball mill.

得られたスラリーを乾燥後、ポリビニルアルコールをバ
インダとして添加混合し、所定量取って30mmφX 
15mmゞのブロックに成形する。この成形体を140
0℃で2時間空気中で焼成した。
After drying the obtained slurry, add and mix polyvinyl alcohol as a binder, take a predetermined amount and make a 30mmφX
Form into 15mm blocks. This molded body is 140
Calcined in air at 0°C for 2 hours.

こうして得られたブロックから、スライス、研磨を経て
厚みが150〜400μmのウェハを取り出し、スクリ
ーン印刷法により白金電極を設ける。この電極付けされ
たウェハから所望の寸法のチップにカッティングする。
From the block thus obtained, a wafer having a thickness of 150 to 400 μm is taken out through slicing and polishing, and platinum electrodes are provided on it by screen printing. This electrode-attached wafer is cut into chips of desired dimensions.

この素子をアルゴンガス中もしくは空気中でガラス管に
封入して外気から密封遮断する。
This element is sealed in a glass tube in argon gas or air and hermetically isolated from the outside air.

図は本発明の方法によるものと、その他の方法によるも
のとを比較して示したサーミスタセンサの抵抗値経時変
化率特性を示す図である。
The figure is a diagram illustrating the resistance value change rate over time characteristics of thermistor sensors made by the method of the present invention and those made by other methods in comparison.

(1)は上記の方法により製造されたサーミスタセンサ
の500℃における抵抗値経時変化率を示し、(3)は
既に提案済みのMn−Ni−Cr−Zr酸化物系材料を
用いたサーミスタセンサの抵抗値経時変化率を比較用と
して示したものである。そして、(2)は(1)に示し
た本発明の実施例と同一組成比のものを、安定化ジルコ
ニアでなく、それぞれ、ジルコニアとマグネシアを原料
とし、同様の製造工程を経て得られたセンサの抵抗値経
時変化率を示したものである。なお、センサに用いた素
子の形状は400 μm X 400 μm X 30
0 μm’である。
(1) shows the rate of change in resistance value over time at 500°C of the thermistor sensor manufactured by the above method, and (3) shows the rate of change over time of the resistance value of the thermistor sensor manufactured by the above method, and (3) shows the rate of change in resistance value over time at 500°C of the thermistor sensor manufactured by the above method, and (3) shows the rate of change over time of the resistance value of the thermistor sensor manufactured using the already proposed Mn-Ni-Cr-Zr oxide material. The rate of change in resistance value over time is shown for comparison. In (2), a sensor with the same composition ratio as the example of the present invention shown in (1) was obtained through the same manufacturing process using zirconia and magnesia as raw materials instead of stabilized zirconia. This shows the rate of change in resistance value over time. The shape of the element used in the sensor is 400 μm x 400 μm x 30
0 μm'.

センサの25℃における初期抵抗値と、300℃と50
0℃におけるサーミスタ定数Bを併せて表に示した。
The initial resistance value of the sensor at 25℃, 300℃ and 50℃
The thermistor constant B at 0°C is also shown in the table.

表 (*印は比較試料であり、本発明の請求の範囲外である
。) 図から明らかなように、本発明の製造方法によれば、試
料No2及びNo3のものと比較し、高温での安定性に
特に優れている。
Table (* marks are comparative samples and are outside the scope of the claims of the present invention.) As is clear from the figure, according to the manufacturing method of the present invention, compared to samples No. 2 and No. 3, It has particularly excellent stability.

試料の微細構造に注目すると、安定化ジルコニアは、M
n−Ni−Cr系酸化物スピネル結晶に固溶するのでは
なく、結晶の接合部もしくは結晶粒そのものとして存在
する。
Focusing on the microstructure of the sample, the stabilized zirconia has M
It does not form a solid solution in n-Ni-Cr-based oxide spinel crystals, but exists as crystal junctions or crystal grains themselves.

一方、+itgoとZrO2を同時に配合したものも、
ZrO2はやはりスピネル結晶の接合部もしくは結晶粒
として存在するが、MgはZrO2に優先的に固溶する
のではなく、はぼ均一分散して存在していることが焼結
体断面のX線微小解析により明らかになった・ また、X線解析法によっても、Mn−Ni−Cr−Mg
系酸化物を同定することができなかった。
On the other hand, those containing +itgo and ZrO2 at the same time,
Although ZrO2 still exists as joints or crystal grains of spinel crystals, X-ray microscopic examination of the cross section of the sintered body shows that Mg is not preferentially dissolved in ZrO2, but is present in a more or less uniformly dispersed state. It was revealed by analysis that Mn-Ni-Cr-Mg
The system oxide could not be identified.

今回のセンサ作成は、ブロックから切り出した素子を封
入して得たものであるが、ビードタイプの素子でも可能
であり、センサ作成法により何ら規定されるものではな
い。
In this case, the sensor was created by enclosing an element cut out from a block, but it is also possible to use a bead type element, and there are no restrictions on the sensor creation method.

本実施例で用いた安定化ジルコニアは、シュウ酸を出発
原料として共沈法により得たものであり、組成範囲につ
いては現在検討中である。
The stabilized zirconia used in this example was obtained by a coprecipitation method using oxalic acid as a starting material, and the composition range is currently under consideration.

なお、本発明の実施例においては原料混合及び仮焼物粉
砕混合にジルコニア玉石を用いた。
In the examples of the present invention, zirconia boulders were used for mixing raw materials and pulverizing and mixing calcined products.

上記実施例の試料(焼結体)について元素分析を行った
結果、Zrの混入量はサーミスタ構成元素の100原子
%に対して0.5原子%以下であった。また、メノウ玉
石を用いた場合には、Siの混入量は0.1原子%以下
であった。
As a result of elemental analysis of the sample (sintered body) of the above example, the amount of Zr mixed was 0.5 at % or less based on 100 at % of the thermistor constituent elements. Furthermore, when agate boulders were used, the amount of Si mixed was 0.1 at % or less.

=7− (発明の効果) 以上説明したように、本発明のサーミスタ用酸化物半導
体の製造方法によれば、200℃〜500℃の範囲で抵
抗値経時変化の小さい温度センサを得ることができ、高
温で高い信頼性が要求されている、例えば、電子レンジ
、石油燃焼の温度制御等の利用分野での貢献が期待でき
るものである。
=7- (Effects of the Invention) As explained above, according to the method of manufacturing an oxide semiconductor for a thermistor of the present invention, a temperature sensor with a small change in resistance value over time in the range of 200°C to 500°C can be obtained. It can be expected to contribute to fields of application that require high reliability at high temperatures, such as microwave ovens and temperature control for oil combustion.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の方法によるものと、その他の方法によるも
のとを比較して示したサーミスタセンサの抵抗値経時変
化率特性を示す図である。
The figure is a diagram illustrating the resistance value change rate over time characteristics of thermistor sensors made by the method of the present invention and those made by other methods in comparison.

Claims (1)

【特許請求の範囲】[Claims] 金属元素として、マンガン、ニッケル、クロム、ジルコ
ニウム及びマグネシウムの5種を合計100原子%を含
むサーミスタ用酸化物半導体を得るために、出発原料と
してマグネシウム含有安定化ジルコニアを用いることを
特徴とするサーミスタ用酸化物半導体の製造方法。
For a thermistor, characterized in that magnesium-containing stabilized zirconia is used as a starting material in order to obtain an oxide semiconductor for thermistor containing a total of 100 atomic % of five types of metal elements: manganese, nickel, chromium, zirconium, and magnesium. Method for manufacturing oxide semiconductor.
JP735285A 1984-11-08 1985-01-21 Manufacture of oxide semiconductor for thermistor Pending JPS61168205A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP735285A JPS61168205A (en) 1985-01-21 1985-01-21 Manufacture of oxide semiconductor for thermistor
DE8585905664T DE3581807D1 (en) 1984-11-08 1985-11-06 SEMICONDUCTOR OXIDE FOR THERMISTOR AND THEIR PRODUCTION.
PCT/JP1985/000616 WO1986003051A1 (en) 1984-11-08 1985-11-06 Oxide semiconductor for thermistor and a method of producing the same
US06/902,445 US4891158A (en) 1984-11-08 1985-11-06 Oxide semiconductor for thermistor and manufacturing method thereof
EP85905664A EP0207994B1 (en) 1984-11-08 1985-11-06 Oxide semiconductor for thermistor and a method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP735285A JPS61168205A (en) 1985-01-21 1985-01-21 Manufacture of oxide semiconductor for thermistor

Publications (1)

Publication Number Publication Date
JPS61168205A true JPS61168205A (en) 1986-07-29

Family

ID=11663559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP735285A Pending JPS61168205A (en) 1984-11-08 1985-01-21 Manufacture of oxide semiconductor for thermistor

Country Status (1)

Country Link
JP (1) JPS61168205A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52107559A (en) * 1976-02-05 1977-09-09 Hitachi Chemical Co Ltd Highhtemperature thermistor
JPS5588305A (en) * 1978-12-27 1980-07-04 Mitsui Mining & Smelting Co Thermistor composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52107559A (en) * 1976-02-05 1977-09-09 Hitachi Chemical Co Ltd Highhtemperature thermistor
JPS5588305A (en) * 1978-12-27 1980-07-04 Mitsui Mining & Smelting Co Thermistor composition

Similar Documents

Publication Publication Date Title
WO1986003051A1 (en) Oxide semiconductor for thermistor and a method of producing the same
JPS6022302A (en) Oxide semiconductor for thermistor
JPH02143502A (en) Manufacture of ntc thermistor
JPS61168205A (en) Manufacture of oxide semiconductor for thermistor
JPS61168204A (en) Manufacture of oxide semiconductor for thermistor
JPH0541304A (en) Metallic oxide group thermistor material
JPH0578921B2 (en)
JPH0258232B2 (en)
JPS61113210A (en) Manufacture of oxide semiconductor for thermistor
JPS61113205A (en) Manufacture of oxide semiconductor for thermistor
JPH1092609A (en) Oxide ceramic thermistor containing indium
JPH0578922B2 (en)
JPS61113206A (en) Manufacture of oxide semiconductor for thermistor
JPS61113207A (en) Manufacture of oxide semiconductor for thermistor
JPS61113204A (en) Manufacture of oxide semiconductor for thermistor
JPH0543161B2 (en)
JPS61113208A (en) Manufacture of oxide semiconductor for thermistor
JPS62108505A (en) Oxide semiconductor for thermistor
JPS6097601A (en) Oxide semiconductor porcelain for thermistor
JPS62108504A (en) Oxide semiconductor for thermistor
JPS62108503A (en) Oxide semiconductor for thermistor
JPH0559064B2 (en)
JPS63104305A (en) Oxide semiconductor for thermistor
JPH043643B2 (en)
JP2583935B2 (en) Oxide semiconductor for thermistor