JPS62263606A - Manufacture of oxide semiconductor porcelain for thermistor - Google Patents

Manufacture of oxide semiconductor porcelain for thermistor

Info

Publication number
JPS62263606A
JPS62263606A JP61107028A JP10702886A JPS62263606A JP S62263606 A JPS62263606 A JP S62263606A JP 61107028 A JP61107028 A JP 61107028A JP 10702886 A JP10702886 A JP 10702886A JP S62263606 A JPS62263606 A JP S62263606A
Authority
JP
Japan
Prior art keywords
temperature
thermistor
oxide semiconductor
semiconductor porcelain
atomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61107028A
Other languages
Japanese (ja)
Other versions
JPH0773081B2 (en
Inventor
畑 拓興
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61107028A priority Critical patent/JPH0773081B2/en
Publication of JPS62263606A publication Critical patent/JPS62263606A/en
Publication of JPH0773081B2 publication Critical patent/JPH0773081B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、150〜6Q○℃の温度領域で、燃焼制御回
路等で使用される高信頼性を必要とするサーミスタ用酸
化物半導体磁器の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing oxide semiconductor ceramics for thermistors that require high reliability and are used in combustion control circuits, etc. in the temperature range of 150 to 6Q°C. It is related to.

従来の技術 従来、汎用サーミスタ用半導体材料は、主としてMn 
−1o−Ni −Cu系を2成分から4成分を組合せた
系の酸化物材料であシ、しかもディスク形サーミスタと
しての用途が中心であシ、使用温度範囲が150℃以下
に限定されているものである。また、ガラス封入型ある
いはガラスコーティングされたものであっても、その使
用温度範囲はせいぜい300℃のものである。
Conventional technology Conventionally, semiconductor materials for general-purpose thermistors were mainly made of Mn.
-1o-Ni -Cu is an oxide material that is a combination of two to four components, and is mainly used as a disk-shaped thermistor, and the operating temperature range is limited to 150°C or less. It is something. Further, even if the glass-filled type or glass-coated type is used, the operating temperature range is at most 300°C.

一方、700〜1000℃の高温で使用できる材料とし
ては、安定化ジルコニア(ZrOz−Y20s+Zr0
2−CaO)、My−人1−Cr−Fa酸化物スピネル
系等が開発され、自動車用センサに利用されている。
On the other hand, stabilized zirconia (ZrOz-Y20s+Zr0
2-CaO), My-Human 1-Cr-Fa oxide spinel systems, etc. have been developed and are used in automotive sensors.

発明が解決しようとする問題点 このような従来の構成では、汎用サーミスタ用半導体材
料では、高温使用下での抵抗値変動が大きいため、30
0℃を超えるような高温度では使用することができない
ものであった。また、高温サーミスタを得るためには、
焼成温度が1600℃以上と高く、通常の電気炉(最高
1600’c )を用いたのでは焼成できないものであ
った。その上、これらの酸化物の焼結体であっても抵抗
値の経時変化が大きく、きわめて安定なものでさえ10
%(1000時間後)程度であり、経時安定性に問題が
あった。
Problems to be Solved by the Invention In such a conventional configuration, semiconductor materials for general-purpose thermistors have a large resistance value fluctuation when used at high temperatures.
It could not be used at high temperatures exceeding 0°C. Also, in order to obtain a high temperature thermistor,
The firing temperature was as high as 1,600°C or higher, and could not be fired using a normal electric furnace (maximum of 1,600°C). Moreover, the resistance value of sintered bodies of these oxides changes significantly over time, and even those that are extremely stable have a resistance value of 10%.
% (after 1000 hours), and there was a problem with stability over time.

本発明はこのような問題点を解決するもので、300〜
500℃でも適当な抵抗値を示し、安定に使用できるサ
ーミスタ用酸化物半導体磁器を得るための方法を提供す
るものである。
The present invention solves these problems, and
The present invention provides a method for obtaining an oxide semiconductor ceramic for a thermistor that exhibits an appropriate resistance value even at 500° C. and can be stably used.

問題点を解決するための手段 この問題点を解決するために本発明は、種々検討を重ね
た結果、既に本発明者が提案済(特願昭59−2367
16号)の金属元素としてMn60.0〜98.5原子
%、NiQ、1〜5.0原子係。
Means for Solving the Problem In order to solve this problem, the present invention has been proposed by the present inventor as a result of various studies (Japanese Patent Application No. 59-2367).
No. 16), the metal elements include Mn 60.0 to 98.5 atomic % and NiQ 1 to 5.0 atomic %.

cro、s 〜5.0原子% 、 Yo、2〜5.0原
子係およびZr0.05〜28.0原子チの5種を合計
100原子チ含有する組成を有し、かつ350〜166
0℃の温度で焼結した後、上記温度よシも100〜30
0℃程度低い温度下および加圧下で再焼結するものであ
る。また同じく、Mn60.O〜98,6原子% 、 
N1c)、1〜es、o原子%、  Oro、3〜5.
0原子%、Y0.2〜5.0原子チおよびZr□、06
〜28.0原子チの5種を合計100原子係含有し、か
つSiを主成分に対して外割で2.0原子%(○原子チ
を含まず)含有する組成を有し、かつ135Q〜155
0℃の温度で焼結した後、上記温度よりも100〜30
0℃程度低い温度下および加圧下で再焼結することを特
徴とするサーミスタ用酸化物半導体磁器の製造方法を提
供するものである。
It has a composition containing a total of 100 atoms of cro, s ~ 5.0 at%, Yo, 2 to 5.0 atoms, and Zr 0.05 to 28.0 atoms, and 350 to 166
After sintering at a temperature of 0℃, the temperature above is also 100~30℃.
It is resintered at a temperature as low as 0° C. and under pressure. Similarly, Mn60. O~98.6 atomic%,
N1c), 1-es, o atom%, Oro, 3-5.
0 atom %, Y0.2-5.0 atom H and Zr□, 06
It has a composition containing 5 types of ~28.0 atomic atoms for a total of 100 atomic percent, and 2.0 atomic percent (excluding ○ atoms) of Si based on the main component, and 135Q ~155
After sintering at a temperature of 0℃, the temperature is 100~30% higher than the above temperature.
The present invention provides a method for manufacturing oxide semiconductor porcelain for a thermistor, which is characterized by resintering at a temperature as low as about 0° C. and under pressure.

作用 この構成により、セラミックはより緻密となり、サーミ
スタとしての高温使用時の抵抗経時変化率がより小さく
なる。
Effect: This structure makes the ceramic more dense and reduces the rate of change in resistance over time during high temperature use as a thermistor.

実施例 以下、本発明の実施例について説明する。Example Examples of the present invention will be described below.

市販の原料MnCO3,Nip、Cr2O5およびY2
O3を含有したZrO2を下記の表のようにそれぞれの
金属原子チの組成になるよう配合する。これをボールミ
ルで混合後乾燥させ、1000″Cで2時間空気中で仮
焼する。これを再びボールミルで粉砕し、得られたスラ
リーを乾燥する。これにポリビニルアルコールをバイン
ダーとして添加混合し、所要量とって3 OramφX
15a+φのブロックに成形する。そして、この成形体
をiso○℃で2時間空気中で焼成する。このようにし
て得られた焼結体の見掛気孔率は3%以下である。さら
に、この焼結体を熱間静水圧成形装置を用いて処理した
Commercially available raw materials MnCO3, Nip, Cr2O5 and Y2
ZrO2 containing O3 is blended to have a composition of each metal atom as shown in the table below. This is mixed in a ball mill, dried, and calcined in air at 1000"C for 2 hours. This is ground again in a ball mill, and the resulting slurry is dried. Polyvinyl alcohol is added as a binder to this and mixed. Take the amount 3 OramφX
Form into a block of 15a+φ. Then, this molded body is fired in air at iso°C for 2 hours. The apparent porosity of the sintered body thus obtained is 3% or less. Furthermore, this sintered body was processed using a hot isostatic pressing apparatus.

つネリ、不活性ガスを用いて1o○○ケ圧の加圧下で、
1300℃で1時間再焼結した。また、必要に応じて空
気中にて熱処理した。このようにして得られたブロック
から厚み200μmのウエノ・にスライス切断し、ウェ
ハの両面に白金電極を設け、所望の寸法のチップに加工
する@これをスラグリードを端子としてガラス管中に封
入密閉してガラス封入形サーミスタを得た。
Under pressure of 1 o○○ using inert gas,
It was resintered at 1300°C for 1 hour. Further, heat treatment was performed in air as necessary. The block obtained in this way is sliced into wafers with a thickness of 200 μm, platinum electrodes are provided on both sides of the wafer, and chips of the desired size are processed. This is sealed and sealed in a glass tube using the slug lead as a terminal. A glass-encapsulated thermistor was obtained.

このサーミスタの500’C,1600時間後における
抵抗値経時変化率を下記の表に併せて示した。
The rate of change in resistance value of this thermistor over time at 500'C for 1600 hours is also shown in the table below.

(以下余 白) 上記表より解るように、本発明の実施例によるものは、
いずれも加圧下および高温下での再焼結処理を施さない
場合に比較し、抵抗値の経時変化率が0.6〜3.0チ
小きくなっており、効果が認められるものである。また
、セラミック自体も気孔のほとんどない非常に緻密で均
質なものが得られた。さらに、ここで組成範囲を限定す
るのは、300〜600 ’Cの温度範囲でセンナとし
ての抵抗値が、100Ωから500にΩの範囲にあたる
ことを理由とした。
(Hereinafter, blank space) As can be seen from the table above, the embodiments of the present invention are as follows:
In both cases, the rate of change in resistance value over time is 0.6 to 3.0 inches smaller than in the case where the resintering treatment under pressure and high temperature is not performed, and the effect is recognized. Furthermore, the ceramic itself was extremely dense and homogeneous with almost no pores. Furthermore, the reason why the composition range is limited here is that the resistance value as a senna is in the range of 100Ω to 500Ω in the temperature range of 300 to 600′C.

図面に試料、鈑3で示された材料を用いたサーミスタの
s o o ′cにおける抵抗値の経時変化を示す。
The figure shows the change over time in the resistance value of the thermistor using the material shown in sample plate 3 at so o'c.

図中実線は本実施例による変化を示し、破線は熱間静水
圧成形処理をしない従来例による変化を示す。図から明
らかなように本発明によるサーミスタ磁石を用いたもの
は非常に安定である。
In the figure, the solid line shows the change according to this embodiment, and the broken line shows the change according to the conventional example without hot isostatic pressing. As is clear from the figure, the thermistor magnet according to the present invention is very stable.

発明の効果 以上のように本発明によれば、上記サーミスタ用酸化物
半導体の焼結体を加圧下および高温度下で再焼結するこ
とにより、従来品に比較してより緻密で均質な微細構造
を持ち、500″Cまでの温度で長期にわたり高い信頼
性の要求される温度センサに最も適していると考えられ
る。特に、ブロックからチップ形状に加工して装造する
サーミスタには、チップ形状素子の抵抗値の変動係数が
小さく、量産性に優れるため、高付加価値製品への応用
展開が十分に期待できるものである。
Effects of the Invention As described above, according to the present invention, by re-sintering the sintered body of the oxide semiconductor for thermistor under pressure and high temperature, it becomes more dense and homogeneous than conventional products. It is considered to be most suitable for temperature sensors that require high reliability over a long period of time at temperatures up to 500"C.In particular, for thermistors that are manufactured by processing blocks into chip shapes, chip-shaped Since the coefficient of variation of the resistance value of the element is small and it is excellent in mass production, it can be fully expected to be applied to high value-added products.

【図面の簡単な説明】[Brief explanation of drawings]

区間は本発明と従来の方法によるサーミスタ用酸化物半
導体磁器を用いたガラス封入形サーミスタの600℃に
おける抵抗値経時変化率特性を示す図である。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名C%
ノ (hr) −将開
The section is a diagram showing the resistance value aging rate characteristics at 600° C. of glass-encapsulated thermistors using oxide semiconductor ceramics for thermistors according to the present invention and the conventional method. Name of agent: Patent attorney Toshio Nakao and 1 other person C%
ノ (hr) - Masaki

Claims (2)

【特許請求の範囲】[Claims] (1)金属元素として、マンガン60.0〜98.5原
子%、ニッケル0.1〜5.0原子%、クロム0.3〜
6.0原子%、イットリウム0.2〜5.0原子%およ
びジルコニウム0.05〜28.0原子%の5種を合計
100原子%含有する組成を有し、かつ1350〜15
50℃の温度で焼結した後、上記温度よりも100〜3
00℃程度低い温度下および加圧下で再焼結するサーミ
スタ用酸化物半導体磁器の製造方法。
(1) As metal elements, manganese 60.0-98.5 atomic%, nickel 0.1-5.0 atomic%, chromium 0.3-98.5 atomic%
6.0 at%, yttrium 0.2 to 5.0 at%, and zirconium 0.05 to 28.0 at%, with a total of 100 at%, and 1350 to 15
After sintering at a temperature of 50℃, the temperature is 100~3 higher than the above temperature.
A method for producing oxide semiconductor porcelain for a thermistor, which involves resintering at a temperature as low as 00°C and under pressure.
(2)金属元素としてマンガン60.0〜98.5原子
%、ニッケル0.1〜5.0原子%、クロム0.3〜5
.0原子%、イットリウム0.2〜5.0原子%および
ジルコニウム0.05〜28.0原子%の5種を合計1
00原子%含有し、かつケイ素を主成分に対して外割で
2.0原子%(O原子%を含まず)含有する組成を有し
、かつ1350〜 1550℃の温度で焼結した後、上記温度よりも100
〜300℃程度低い温度下および加圧下で再焼結するサ
ーミスタ用酸化物半導体磁器の製造方法。
(2) Metal elements: manganese 60.0-98.5 at%, nickel 0.1-5.0 at%, chromium 0.3-5
.. 0 atom%, yttrium 0.2 to 5.0 atom%, and zirconium 0.05 to 28.0 atom%, a total of 1
After sintering at a temperature of 1350 to 1550°C, 100% higher than the above temperature
A method for manufacturing oxide semiconductor porcelain for a thermistor, which involves resintering at a temperature as low as ~300°C and under pressure.
JP61107028A 1986-05-09 1986-05-09 Method for manufacturing oxide semiconductor porcelain for thermistor Expired - Lifetime JPH0773081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61107028A JPH0773081B2 (en) 1986-05-09 1986-05-09 Method for manufacturing oxide semiconductor porcelain for thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61107028A JPH0773081B2 (en) 1986-05-09 1986-05-09 Method for manufacturing oxide semiconductor porcelain for thermistor

Publications (2)

Publication Number Publication Date
JPS62263606A true JPS62263606A (en) 1987-11-16
JPH0773081B2 JPH0773081B2 (en) 1995-08-02

Family

ID=14448684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61107028A Expired - Lifetime JPH0773081B2 (en) 1986-05-09 1986-05-09 Method for manufacturing oxide semiconductor porcelain for thermistor

Country Status (1)

Country Link
JP (1) JPH0773081B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0798275A1 (en) * 1996-03-29 1997-10-01 Denso Corporation A method for manufacturing thermistor materials and thermistors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0798275A1 (en) * 1996-03-29 1997-10-01 Denso Corporation A method for manufacturing thermistor materials and thermistors

Also Published As

Publication number Publication date
JPH0773081B2 (en) 1995-08-02

Similar Documents

Publication Publication Date Title
US4891158A (en) Oxide semiconductor for thermistor and manufacturing method thereof
CN110550947A (en) yttrium and zirconium co-doped wide-temperature-zone high-temperature thermistor material and preparation method thereof
US3044968A (en) Positive temperature coefficient thermistor materials
WO1985000690A1 (en) Oxide semiconductor for thermistor
JPS62263606A (en) Manufacture of oxide semiconductor porcelain for thermistor
JPS6097601A (en) Oxide semiconductor porcelain for thermistor
JPS6196702A (en) Manufacture of oxide semiconductor ceramics for thermistor
JPH0543161B2 (en)
JPS62108505A (en) Oxide semiconductor for thermistor
JPS60106107A (en) Method of producing oxide semiconductor porcelain for thermistor
JPS62108503A (en) Oxide semiconductor for thermistor
JP3121967B2 (en) Ceramic heating element
JPS62108502A (en) Oxide semiconductor for thermistor
JPS6396902A (en) Manufacture of oxide semiconductor device for thermistor
JPH0578921B2 (en)
JPS62108504A (en) Oxide semiconductor for thermistor
JPH0559064B2 (en)
JPS61113205A (en) Manufacture of oxide semiconductor for thermistor
JPS63102207A (en) Manufacture of semiconductor for thermistor for glass sealing
JPS61113206A (en) Manufacture of oxide semiconductor for thermistor
JP2866503B2 (en) Manufacturing method of oxide superconducting structure
JPS61168205A (en) Manufacture of oxide semiconductor for thermistor
JPH0578922B2 (en)
JPS63308302A (en) Oxide semiconductor for thermistor
JPH03150801A (en) Oxide semiconductor for thermistor