JPH043644B2 - - Google Patents

Info

Publication number
JPH043644B2
JPH043644B2 JP20300783A JP20300783A JPH043644B2 JP H043644 B2 JPH043644 B2 JP H043644B2 JP 20300783 A JP20300783 A JP 20300783A JP 20300783 A JP20300783 A JP 20300783A JP H043644 B2 JPH043644 B2 JP H043644B2
Authority
JP
Japan
Prior art keywords
thermistor
resistance value
zro
over time
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20300783A
Other languages
Japanese (ja)
Other versions
JPS6094701A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP20300783A priority Critical patent/JPS6094701A/en
Publication of JPS6094701A publication Critical patent/JPS6094701A/en
Publication of JPH043644B2 publication Critical patent/JPH043644B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、200〜700℃で利用できる中・高温用
のサーミスタ用酸化物半導体に関するものであ
る。 従来例の構成とその問題点 従来から良く知られているMn−Co−Ni酸化物
系サーミスタ材料は、汎用デイスク型サーミスタ
として主に用いられてきたが、高温使用下での抵
抗値変動が大きいため、300℃を超えるような高
温度では使用することができず、300℃以下の温
度で使用されてきた。一方、700〜1000℃の高温
で使用できる材料としては、安定化ジルコニア
(ZrO2−Y2O3,ZrO2−CaO等)、Mg−Al−Cr−
Fe酸化物スピネル系等が開発されている(特公
昭48−705号公報、特公昭49−63995号公報、特公
昭50−16894号公報、特公昭50−16895号公報、特
開昭53−33756号公報)。しかし、これらの酸化物
材料も焼成温度が1600℃を超える高温でなければ
ならず、通常の電気炉(最高1600℃)を用いたの
では焼成できないものであつた。その上、これら
酸化物の焼結体であつても抵抗値の経時変化が大
きく、きわめて安定なものでさえ10%(1000時間
後)程度であり、経時安定性に問題があつた。 また、センサ市場から200〜700℃で安定性に優
れたサーミスタの要望が一段と高くなり、これに
対応したサーミスタ材料{Mn−Ni−Al酸化物
系:特開昭57−95603号公報、Nix Mgy Znz)
Mn2O4スピネル系;特開昭57−88701号公報、
(Nip Coq Fer Als Mnt)O4スピネル系:特開
昭57−88702号公報等}が提案されてきたが、ま
だ評価段階である。 発明の目的 本発明は上記問題点に鑑みてなされたもので、
その目的とするところは、200〜700℃で適当な抵
抗値を示し、安定に使用できるサーミスタ用酸化
物半導体を提供することを目的とするものであ
る。 発明の構成 本発明のサーミスタ用酸化物半導体は、金属元
素として亜鉛(Zn)28.3〜33.25原子%、マンガ
ン(Mn)20.0〜51.7原子%、クロム15.0〜46.7原
子%およびニツケル0.05〜5.0原子%の4種を含
有し、これら4種の金属元素の合計が100原子%
を有する組成比に対し、さらに外割でジルコニウ
ム(Zr)を0.01〜10.0原子%含有するものであ
る。ここで、組成物はZnv Niw Mnx Cry O4
z ZrO2で表わすことができ、V+W+X+Y
=1、Zは0.0001≦Z≦0.1となる。つまり、
各々の陽イオン分布は、 〔Znv2+(Mn2+,Mn4+)×Niw2+Cry3+〕O4のス
ピネル型構造を取るものが主成分であり、これに
ZrO2もしくはZr−Mn酸化物が混在するセラミツ
ク微細構造を持つものである。上記の組成範囲に
あるものは、抵抗値の500℃、1000時間後の経時
変化は約±5%以内にあり、従来の材料と比較し
てきわめて安定な特性を有するものである。 実施例の説明 以下、本発明の実施例について説明する。ま
ず、市販のZnO,NiO,MnCO3,Cr2O3,ZrO2
を下記の第1表に示すそれぞれの原子%の組成に
なるよう配合した。ここで、ZrO2は4成分に対
して外割で添加した値である。これをボールミル
で混合後乾燥させ、1200℃で仮焼する。これを再
びボールミルで粉砕し得られたスラリーを乾燥す
る。このスラリーの乾燥後、ポリビニルアルコー
ルをバインダとして添加混合し、所要量採つて30
mmφ×15mmtのブロツクに成形する。この成形体
を1500℃で4時間焼成し、さらに焼結体を熱間静
水圧成形装置で熱処理する。こうして得られたブ
ロツクから、スライス、研磨により厚みが150〜
400μmのウエハーを取出し、スクリーン印刷法
により白金電極を設ける。この電極付けされたウ
エハーから所望の寸法のチツプにカツテイングす
る。この素子にリード付けし、さらにガラスデイ
ツプして外気から密封遮断する。このようにして
製造されたサーミスタ材料の各組成比について
500℃における抵抗値、サーミスタ定数および500
℃における抵抗値経時変化率を下記の第1表に併
せて示した。なお、試料のチツプ形状は、400μ
m×400μm×150μmtである。
INDUSTRIAL APPLICATION FIELD The present invention relates to an oxide semiconductor for medium to high temperature thermistors that can be used at temperatures of 200 to 700°C. Conventional structure and problems The well-known Mn-Co-Ni oxide thermistor material has been mainly used as a general-purpose disk-type thermistor, but its resistance value fluctuates significantly when used at high temperatures. Therefore, it cannot be used at temperatures exceeding 300°C, and has been used at temperatures below 300°C. On the other hand, materials that can be used at high temperatures of 700 to 1000°C include stabilized zirconia (ZrO 2 −Y 2 O 3 , ZrO 2 −CaO, etc.), Mg−Al−Cr−
Fe oxide spinel systems, etc. have been developed (Japanese Patent Publication No. 48-705, Japanese Patent Publication No. 49-63995, Japanese Patent Publication No. 50-16894, Japanese Patent Publication No. 50-16895, Japanese Patent Publication No. 1982-33756). Publication No.). However, these oxide materials also require firing temperatures exceeding 1,600°C, and cannot be fired using an ordinary electric furnace (maximum of 1,600°C). Furthermore, even in the case of sintered bodies of these oxides, the change in resistance value over time is large, and even the most stable ones are only about 10% (after 1000 hours), which poses problems in stability over time. In addition, the demand for thermistors with excellent stability at 200 to 700°C has increased in the sensor market, and thermistor materials that meet this demand {Mn-Ni-Al oxide system: JP-A-57-95603, Nix Mgy Znz)
Mn 2 O 4 spinel system; JP-A-57-88701;
(Nip Coq Fer Als Mnt) O 4 spinel system: JP-A-57-88702, etc. has been proposed, but it is still in the evaluation stage. Purpose of the invention The present invention has been made in view of the above problems, and
The purpose is to provide an oxide semiconductor for a thermistor that exhibits an appropriate resistance value at 200 to 700°C and can be stably used. Structure of the Invention The oxide semiconductor for thermistor of the present invention contains 28.3 to 33.25 atom% of zinc (Zn), 20.0 to 51.7 atom% of manganese (Mn), 15.0 to 46.7 atom% of chromium, and 0.05 to 5.0 atom% of nickel as metal elements. Contains 4 types of metal elements, and the total of these 4 types of metal elements is 100 atomic%
It further contains 0.01 to 10.0 at % of zirconium (Zr) in terms of the composition ratio having the above. Here, the composition is Znv Niw Mnx Cry O 4 +
z ZrO 2 can be expressed as V+W+X+Y
= 1, Z is 0.0001≦Z≦0.1. In other words,
The main component of each cation distribution is [Znv 2+ (Mn 2+ , Mn 4+ )×Niw 2+ Cry 3+ ]O 4 with a spinel-type structure;
It has a ceramic microstructure in which ZrO 2 or Zr-Mn oxide is mixed. Materials within the above composition range have extremely stable characteristics compared to conventional materials, with a change in resistance value over time at 500° C. for 1000 hours within about ±5%. Description of Examples Examples of the present invention will be described below. First, commercially available ZnO, NiO, MnCO 3 , Cr 2 O 3 , ZrO 2
were blended to have the respective atomic % compositions shown in Table 1 below. Here, ZrO 2 is added in proportion to the four components. This is mixed in a ball mill, dried, and calcined at 1200°C. This is ground again in a ball mill and the resulting slurry is dried. After drying this slurry, add and mix polyvinyl alcohol as a binder, take the required amount and
Form into a block of mmφ x 15mmt. This molded body is fired at 1500° C. for 4 hours, and the sintered body is further heat-treated using a hot isostatic pressing device. The blocks obtained in this way are sliced and polished to a thickness of 150~
A 400 μm wafer is taken out and platinum electrodes are provided by screen printing. This electrode-attached wafer is cut into chips of desired size. Leads are attached to this element, and it is further sealed off from the outside air by immersing it in glass. Regarding each composition ratio of the thermistor material manufactured in this way
Resistance value at 500℃, thermistor constant and 500
The rate of change in resistance value over time at °C is also shown in Table 1 below. The chip shape of the sample is 400μ
m×400μm×150μmt.

【表】【table】

【表】 表のうち試料1,6,9,12,16,17,18とも
抵抗値の経時変化が大きいため範囲外とした。す
なわち、本発明の特許請求の範囲で限定した組成
範囲は、上述したように上記抵抗値の経時変化が
±5%以内を満足するものであり、実用面から決
定されたものである。 今回の試料には焼結体ブロツクから切り出した
チツプのガラスデイツプ封入素子を用いたが、同
じ材料組成についてビード型素子を作成し、これ
をガラスデイツプしたものについても同様の結果
を得た。ただし、ビード型素子については製造
上、抵抗値の変動を小さくするための手段を採る
必要がある。 なお、本発明の実施例については原料混合およ
び仮焼物粉砕混合にメノウ玉石を用いた。また、
上記実施例の試料(焼結体)について元素分析を
行つた結果、SiおよびB等のガラス形成物元素の
混入はサーミスタ構成元素の100原子%に対して
すべての試料において1原子%以下であつた。 発明の効果 以上の実施例からわかるように、本発明のサー
ミスタ用酸化物半導体は、高温における特性が従
来品に比べてきわめて安定しており、高温で高い
信頼性が要求されている温度測定に最も適してい
ると言える。すなわち、例えば電子レンジ、石油
気化の温度制御および安全装置等の利用分野での
貢献が期待できるものである。
[Table] Samples 1, 6, 9, 12, 16, 17, and 18 in the table were placed outside the range because their resistance values changed significantly over time. That is, the composition range defined in the claims of the present invention satisfies the change in resistance value over time within ±5%, as described above, and was determined from a practical standpoint. For this sample, we used a glass-dipped element made of a chip cut from a sintered body block, but we also obtained similar results when we created a bead-type element with the same material composition and encapsulated it in glass. However, in manufacturing bead-type elements, it is necessary to take measures to reduce fluctuations in resistance value. In addition, in the examples of the present invention, agate boulders were used for mixing the raw materials and pulverizing and mixing the calcined product. Also,
As a result of elemental analysis of the samples (sintered bodies) of the above examples, it was found that the contamination of glass forming elements such as Si and B was less than 1 atomic % in all samples relative to 100 atomic % of the thermistor constituent elements. Ta. Effects of the Invention As can be seen from the above examples, the oxide semiconductor for thermistor of the present invention has extremely stable characteristics at high temperatures compared to conventional products, and is suitable for temperature measurement where high reliability is required at high temperatures. It can be said that it is the most suitable. That is, it can be expected to contribute to fields of application such as microwave ovens, temperature control for oil vaporization, and safety devices.

Claims (1)

【特許請求の範囲】[Claims] 1 金属元素として亜鉛28.3〜33.25原子%、マ
ンガン20.0〜51.7原子%、クロム15.0〜46.7原子
%およびニツケル0.05〜5.0原子%を含有し、4
種の金属元素を総合計100原子%含有する組成比
に対し、外割でジルコニウムを0.01〜10.0原子%
含有するサーミスタ用酸化物半導体。
1 Contains 28.3 to 33.25 at% of zinc, 20.0 to 51.7 at% of manganese, 15.0 to 46.7 at% of chromium, and 0.05 to 5.0 at% of nickel as metal elements, 4
Zirconium is 0.01 to 10.0 at% in proportion to the total composition ratio of 100 at% of metal elements.
Contains oxide semiconductor for thermistor.
JP20300783A 1983-10-28 1983-10-28 Oxide semiconductor for thermistor Granted JPS6094701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20300783A JPS6094701A (en) 1983-10-28 1983-10-28 Oxide semiconductor for thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20300783A JPS6094701A (en) 1983-10-28 1983-10-28 Oxide semiconductor for thermistor

Publications (2)

Publication Number Publication Date
JPS6094701A JPS6094701A (en) 1985-05-27
JPH043644B2 true JPH043644B2 (en) 1992-01-23

Family

ID=16466783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20300783A Granted JPS6094701A (en) 1983-10-28 1983-10-28 Oxide semiconductor for thermistor

Country Status (1)

Country Link
JP (1) JPS6094701A (en)

Also Published As

Publication number Publication date
JPS6094701A (en) 1985-05-27

Similar Documents

Publication Publication Date Title
US4891158A (en) Oxide semiconductor for thermistor and manufacturing method thereof
WO1985000690A1 (en) Oxide semiconductor for thermistor
KR930005249B1 (en) Metal-oxide system thermistor
JPH043644B2 (en)
JPH0578921B2 (en)
KR970007509B1 (en) Ntc thermistor
JPS6097601A (en) Oxide semiconductor porcelain for thermistor
JPS62108503A (en) Oxide semiconductor for thermistor
JPH043642B2 (en)
JPH0543161B2 (en)
JPH0559064B2 (en)
JPH043643B2 (en)
KR0135637B1 (en) Thermister composition
JPH0578922B2 (en)
JPS62108504A (en) Oxide semiconductor for thermistor
JPS6126202A (en) Oxide semiconductor for thermistor
JPS62108505A (en) Oxide semiconductor for thermistor
JPH1012405A (en) Composition for thermistor
JPS61168204A (en) Manufacture of oxide semiconductor for thermistor
JPS61168205A (en) Manufacture of oxide semiconductor for thermistor
JPS6196702A (en) Manufacture of oxide semiconductor ceramics for thermistor
JPS61113204A (en) Manufacture of oxide semiconductor for thermistor
JPS62263606A (en) Manufacture of oxide semiconductor porcelain for thermistor
JPS5935863B2 (en) Thermistor composition
JPS62108502A (en) Oxide semiconductor for thermistor