JPS63312601A - Conductive polymer ptc resistance element and manufacture thereof - Google Patents
Conductive polymer ptc resistance element and manufacture thereofInfo
- Publication number
- JPS63312601A JPS63312601A JP14874987A JP14874987A JPS63312601A JP S63312601 A JPS63312601 A JP S63312601A JP 14874987 A JP14874987 A JP 14874987A JP 14874987 A JP14874987 A JP 14874987A JP S63312601 A JPS63312601 A JP S63312601A
- Authority
- JP
- Japan
- Prior art keywords
- conductive polymer
- ptc resistance
- resistance element
- metal film
- element body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920001940 conductive polymer Polymers 0.000 title claims abstract description 23
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 239000002184 metal Substances 0.000 claims abstract description 31
- 229910052751 metal Inorganic materials 0.000 claims abstract description 31
- 239000000463 material Substances 0.000 claims abstract description 20
- 238000004544 sputter deposition Methods 0.000 claims abstract description 14
- 239000000126 substance Substances 0.000 claims abstract description 13
- 229920000642 polymer Polymers 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims description 19
- 239000011261 inert gas Substances 0.000 claims description 5
- 238000007733 ion plating Methods 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 230000009471 action Effects 0.000 claims description 2
- 239000007789 gas Substances 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims 2
- 229910052733 gallium Inorganic materials 0.000 claims 1
- 229910052738 indium Inorganic materials 0.000 claims 1
- 229910052709 silver Inorganic materials 0.000 claims 1
- -1 polyethylene Polymers 0.000 abstract description 7
- 238000011197 physicochemical method Methods 0.000 abstract description 5
- 239000004698 Polyethylene Substances 0.000 abstract description 4
- 229920000573 polyethylene Polymers 0.000 abstract description 4
- 239000004743 Polypropylene Substances 0.000 abstract description 3
- 239000006229 carbon black Substances 0.000 abstract description 3
- 239000000203 mixture Substances 0.000 abstract description 3
- 229920001155 polypropylene Polymers 0.000 abstract description 3
- 239000011347 resin Substances 0.000 abstract description 2
- 229920005989 resin Polymers 0.000 abstract description 2
- 239000012528 membrane Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C1/00—Details
- H01C1/14—Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
- H01C1/1406—Terminals or electrodes formed on resistive elements having positive temperature coefficient
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Thermistors And Varistors (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は、例えば温度制御技術の分野で広く用いられて
いる抵抗素子、特に、昇温時に特定の温度領域において
急激に抵抗が増大する特性(以下、PTC特性という)
を有する導電性重合体組成物から成る抵抗素子及びその
製造方法の改良に関舊るものである。[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a resistance element widely used in the field of temperature control technology, in particular, a resistive element that rapidly increases in a specific temperature range during temperature rise. Characteristics where resistance increases (hereinafter referred to as PTC characteristics)
The present invention relates to improvements in a resistance element made of a conductive polymer composition having the following properties and a method for manufacturing the same.
(従来の技術)
例えば、ポリエチレン、ポリプロピレン等の重合体にカ
ーボン等の導電性粉末を分散的に混入し、ある特定の温
度に達するとその抵抗が増大する正の抵抗温度特性を有
する導電性重合体PTC抵抗素子は、例えば米国特許第
3,591,526号明細書や米国特許第3.673.
121号明細書等により従来から知られているが、この
ような重合体PTC抵抗素子においては、素子本体に網
状金属を埋込んでこれを電極として用いるものや、例え
ばステンレス等の金属板を素子本体の表面に接合しこれ
を電j石として利用するものがある。また、スパッタリ
ング法によって電極を形成しているもの(特開昭62−
85401号)等がある。(Prior art) For example, by dispersing conductive powder such as carbon into a polymer such as polyethylene or polypropylene, a conductive polymer having a positive resistance-temperature characteristic that increases its resistance when a certain temperature is reached is used. Combined PTC resistance elements are described, for example, in U.S. Pat. No. 3,591,526 and U.S. Pat. No. 3,673.
121 specification, etc., in such polymer PTC resistance elements, there are those in which a mesh metal is embedded in the element body and used as an electrode, and those in which a metal plate such as stainless steel is used as an electrode. There is one that is bonded to the surface of the main body and used as a jig. Also, electrodes are formed by sputtering method (Japanese Unexamined Patent Publication No. 1983-1999-1).
85401) etc.
(発明が解決しようとする問題点)
しかしながら、第1の電極方式におっては、素子本体の
比抵抗のわりには抵抗素子仝休としての抵抗が高くなる
ということが欠点となり、第2の方法の場合には、電極
としての金属板と素子本体との密着性が悪くなり、その
結果、繰返し試験を行うとその抵抗値が大幅に増大し、
また、僅かな熱的応力によっても金属板が剥離するとい
うことが欠点として指摘されている。また、第3の方法
でも、何も処理していない素子本体にスパッタリング法
によって電極を形成しても熱的剥離などが起こるという
問題がある。また、金属板を素子本体に接合する例では
、前述の金属板または素子本体のいずれか一方の接合面
を予め粗面に形成することによって接着剤の作用面積を
増加させ、これにより接着性の向上を図ろうとする方法
も用いられているが、この方法でも未だ万全を期し難い
ものがあった。そのため、これらの改善策の実現が強く
望まれている。(Problems to be Solved by the Invention) However, the first electrode method has a drawback that the resistance as a resistive element becomes high compared to the specific resistance of the element body, and the second method In this case, the adhesion between the metal plate as an electrode and the element body deteriorates, and as a result, the resistance value increases significantly when repeated tests are performed.
Furthermore, it has been pointed out that a drawback is that the metal plate peels off even under slight thermal stress. Further, even in the third method, there is a problem that thermal peeling occurs even if electrodes are formed by sputtering on an untreated element body. In addition, in the case of bonding a metal plate to an element body, the adhesive surface is increased by forming the bonding surface of either the metal plate or the element body into a rough surface in advance, which improves adhesive properties. Some methods have been used to try to improve this, but even with this method, it is still difficult to ensure completeness. Therefore, the realization of these improvement measures is strongly desired.
本発明は、この事情に鑑みてなされたもので、その第1
の目的は、素子本体と電極との接合が極めて強固な新規
な導電性重合体PTC抵抗素子を提供することであり、
その第2の目的はその製造方法を提供することである。The present invention has been made in view of this situation, and its first aspect is
The purpose of is to provide a novel conductive polymer PTC resistance element in which the bond between the element body and the electrode is extremely strong.
Its second purpose is to provide a method for its manufacture.
[発明の構成]
(問題点を解決するための手段)
この目的を達成するための本発明の第1の構成は、重合
体と該重合体に分散的に混入された導電性物質とから成
る正の抵抗温度特性を有する素子本体と、その表面に形
成された粗面と、該粗面上に物理−化学的手段をもって
付着せしめた金属膜とから成る導電性重合体PTC抵抗
素子にあり、その第2の構成は、導電性重合体PTC抵
抗素子の製造方法において、重合体と該重合体に分散的
に混入された導電性物質とから成る正の抵抗温度特性を
有する素子本体と、その上に形成すべき金属膜の母材と
を不活性ガス雰囲気内において対峙せしめ、先ず両者間
に逆方向の電圧を印加することにより、素子本体側の分
子を物理−化学的に放出して前記母材との対峙面を粗面
化し、次いで、両者間に性方向の電圧を印加ヒしめて前
記母材側の分子を物理−化学的に放出して、前記素子本
体側の粗面に所定厚の金属膜を形成したことである。[Structure of the Invention] (Means for Solving the Problem) The first structure of the present invention for achieving this object consists of a polymer and a conductive substance dispersedly mixed into the polymer. A conductive polymer PTC resistance element consisting of an element body having positive resistance temperature characteristics, a rough surface formed on the surface thereof, and a metal film deposited on the rough surface by physical-chemical means, The second configuration is a method for manufacturing a conductive polymer PTC resistance element, which includes an element body having a positive resistance-temperature characteristic made of a polymer and a conductive substance dispersedly mixed into the polymer; By confronting the base material of the metal film to be formed on the metal film in an inert gas atmosphere and applying a voltage in the opposite direction between the two, the molecules on the element body side are physically and chemically released, and the above-mentioned The surface facing the base material is roughened, and then a voltage is applied in the direction between the two to physically and chemically release the molecules on the base material side to form a predetermined thickness on the rough surface on the element body side. The metal film was formed.
(作 用)
この構成に基づく本発明の作用は、粗面上にスパッタリ
ング等の物理−化学的方法により形成される金属膜の結
合力の強さを膜電極に施したことにある。(Function) The function of the present invention based on this configuration is that the strong bonding force of a metal film formed on a rough surface by a physical-chemical method such as sputtering is applied to the membrane electrode.
(実施例)
以下、図示の一実施例に基づいて本発明の詳細な説明す
る。(Example) Hereinafter, the present invention will be described in detail based on an example shown in the drawings.
第1図は本発明に係る導電性重合体PTC抵抗素子の一
実施例を示ず断面図で、図中、全体を1で示すものは本
発明に係る導電性重合体PTC抵抗素子の一実施例で、
その基本構成は、素子本体2と該本体2の上下表面に形
成された膜電極としての金属膜3とから成る。FIG. 1 is a cross-sectional view, not showing an embodiment of the conductive polymer PTC resistance element according to the present invention. For example,
Its basic structure consists of an element main body 2 and metal films 3 as membrane electrodes formed on the upper and lower surfaces of the main body 2.
この場合、前記素子本体2は、例えばポリエチレンやポ
リプロピレン等の重合体から成る樹脂材に、例えばカー
ボンブラック等の導電性物質を分散的に混入した正の抵
抗温度特性を有する導電性重合体組成物として構成され
、且つ、その厚さを例えば200〜500μの値に設定
されると共に、上下の表面2aは後)ホする物理−化学
的方法によっていずれも粗面化される。一方、上下の金
属膜3は、 Ni、 Cu、 八12 、
Sn、 Au、 Fe、 Zn、 Ag、 I
n。In this case, the element body 2 is made of a conductive polymer composition having positive resistance-temperature characteristics, which is obtained by dispersing a conductive substance such as carbon black into a resin material made of a polymer such as polyethylene or polypropylene. The thickness is set to a value of, for example, 200 to 500 .mu.m, and the upper and lower surfaces 2a are subsequently roughened by the following physical-chemical method. On the other hand, the upper and lower metal films 3 are made of Ni, Cu, 812,
Sn, Au, Fe, Zn, Ag, I
n.
Ga等の金属またはこれらの合金等の良導電性母材から
、例えばスパッタリングまたはイオンプレーティング等
の物理−化学的方法によって、例えば10〜15μの厚
さに形成される。4は外部機器と接続するためのリード
線で、例えば半田付部5を介して上下の金属膜3の適宜
個所に接続される。It is formed from a highly conductive base material such as a metal such as Ga or an alloy thereof to a thickness of 10 to 15 μm, for example, by a physico-chemical method such as sputtering or ion plating. Reference numeral 4 denotes lead wires for connection to external equipment, which are connected to appropriate locations on the upper and lower metal films 3 via soldering portions 5, for example.
次に、この導電性重合体PTC抵抗素子1の製造方法の
一例を、第2図に従って説明する。Next, an example of a method for manufacturing the conductive polymer PTC resistance element 1 will be explained with reference to FIG.
先ずポリエチレンtカーボンブラックとを所定の配合比
率をもって混練し、これを熱間圧延して所定厚を持つ素
子本体2の中間素材2′を作る。First, polyethylene and carbon black are kneaded at a predetermined mixing ratio, and then hot rolled to produce an intermediate material 2' of the element body 2 having a predetermined thickness.
次に、正逆方向に電圧印加が可能で且つArガスで代表
される不活性ガス雰囲気の処理部11を有する構成の例
えばスパッタリング装置10を用意し、この不活性ガス
雰囲気11内にある上側電極部に前記中間素材2′をセ
ットすると共に、下側電極部に金属膜3の母材である例
えばNi材の薄板3′を取付ける。そして、この状態に
おいて、適宜の制御手段(図示せず)により電源12か
らの電圧印加方向を逆方向に保持して装置10を始動す
る。Next, for example, a sputtering apparatus 10 configured to have a processing section 11 in which voltage can be applied in forward and reverse directions and in an inert gas atmosphere typified by Ar gas is prepared, and the upper electrode in this inert gas atmosphere 11 is prepared. The intermediate material 2' is set in the lower electrode part, and a thin plate 3' of Ni material, for example, which is the base material of the metal film 3, is attached to the lower electrode part. Then, in this state, the device 10 is started by maintaining the voltage application direction from the power source 12 in the opposite direction by an appropriate control means (not shown).
さて、逆方向への電圧印加が作用するこの処理過程(逆
スパツタリング過程)では、第3図に示すように、雰囲
気中のAr+が前記中間素材2′の表面に衝突して中間
素材2′表面の炭素や水素の分子を飛散させるという所
謂スパッタエツチング作用が生じて、所定時間の経過後
(はその面が粗面化されることになる。Now, in this process (reverse sputtering process) in which a voltage is applied in the opposite direction, Ar+ in the atmosphere collides with the surface of the intermediate material 2', as shown in FIG. A so-called sputter etching effect occurs in which carbon and hydrogen molecules are scattered, and after a predetermined period of time, the surface becomes rough.
従って、この状態から電圧印加の方向を正方向に切換え
て再び装置10を作動させると、今度は正規のスパッタ
リング作用が働いて母材3′側のN1分子が放出され、
この放出分子が前記粗面の微小凹凸内に打入りながらそ
の面に蒸着されるため、一定時間後には所定厚のNi金
属膜3が形成されることになる。Therefore, when the direction of voltage application is switched to the positive direction from this state and the device 10 is operated again, the normal sputtering action works this time and the N1 molecules on the base material 3' side are released.
Since the emitted molecules penetrate into the minute irregularities of the rough surface and are deposited on the surface, a Ni metal film 3 of a predetermined thickness is formed after a certain period of time.
この一連の処理作業を中間素材2′の裏面に対しても行
い、更に、N1金属膜3付きの中間素材2′を所定形状
を有する複数片に切断、整形して、複数個の導電性重合
体PTC抵抗素子1を完成させる。尚、上下のリード線
4は、前述の製品素材を複数片に切り出した後の工程で
金属膜3上に半田イ1けづるものとする。This series of processing operations is also performed on the back side of the intermediate material 2', and further, the intermediate material 2' with the N1 metal film 3 is cut and shaped into a plurality of pieces having a predetermined shape, and a plurality of conductive weights are formed. The combined PTC resistance element 1 is completed. Note that the upper and lower lead wires 4 are soldered onto the metal film 3 in a step after cutting out the aforementioned product material into a plurality of pieces.
以上説明した通り、この構成から成る導電性重合体P丁
C抵抗素子1は、
■膜電極である金属膜が、粗面化された素子本体の表面
に物理−化学的方法をもって形成されるため、両者間の
接合力が極めて強固なものとなる。As explained above, the conductive polymer P-C resistance element 1 having this configuration is: (1) The metal film serving as the membrane electrode is formed on the roughened surface of the element body using a physical-chemical method. , the bonding force between the two becomes extremely strong.
■抵抗素子としての抵抗が小さくなる。■Resistance as a resistance element becomes smaller.
■繰返し特性が良好になる。■ Improved repeatability.
■良好なオーミック性を持続し得る。■Can maintain good ohmic properties.
等の利点を堀えることとなる。This will enable you to realize benefits such as:
以上一実施例について説明したが、本発明はこれに限定
されるものではなく、その要旨を変更せざる範囲内で種
々に変形実施することが可能である。例えば、本発明の
製造方法に使用する物理−化学的方法は、スパッタリン
グに限らずイオンプレーティグ等の適宜方法を用いるこ
とができ、また、膜電極の材料としても目的を達し得る
範囲内で適宜のものを活用し得る。また、コメ1−面等
の事情が許すならば、素子本体表面の粗面化についても
例えばサンドブラスト等の機械−物理的手段を用い得る
。Although one embodiment has been described above, the present invention is not limited thereto, and can be modified in various ways without changing the gist thereof. For example, the physico-chemical method used in the production method of the present invention is not limited to sputtering, but any appropriate method such as ion plating can also be used. You can make use of the following. Furthermore, if circumstances permit, mechanical/physical means such as sandblasting may be used to roughen the surface of the element body.
[発明の効果]
以上述べた通り本発明を用いる時は、素子本体と電極と
の接合が極めて強固な新規な導電性重合体PTC抵抗素
子及びその製造方法を実現づることか可能となる。[Effects of the Invention] As described above, when the present invention is used, it becomes possible to realize a novel conductive polymer PTC resistance element in which the bond between the element body and the electrode is extremely strong, and a method for manufacturing the same.
ここで、粗面化した素子本体にスパッタリングによって
電(※を形成したものと、何ら処理をしていない素子本
体にスパッタリングした場合の、繰返し特性(断続負荷
試験)の比較例を示す。Here, we will show a comparative example of the cyclic characteristics (intermittent load test) of an element body with a roughened surface formed with an electrode (*) by sputtering and an element body without any treatment formed by sputtering.
試験法=16■の電圧を2分間ON、4分間叶[のサイ
クルで1000回印加する。Test method: Apply a voltage of 16 1000 times in a cycle of 2 minutes ON and 4 minutes ON.
↓
抵抗値の変化率(%)を測定
表1
このように、本発明では抵抗の変化率が極めて小さいも
のとなっている。↓ Measurement of resistance change rate (%) Table 1 As described above, in the present invention, the resistance change rate is extremely small.
第1図は本発明に係る導電性重合体PTC抵抗素子の一
実施例を示す断面図、第2図は第1図示の導電性重合体
PTC抵抗素子に係る製造方法を説明するため製造装置
例の概略構成図、第3図はその作用説明図である。
1・・・導電性重合体PTC抵抗素子、2・・・素子本
体、3・・・金属膜、4・・・リード線、5・・・半田
付は部、10・・・スパッタリング装置、11・・・処
理部、12・・・電源。FIG. 1 is a sectional view showing one embodiment of the conductive polymer PTC resistance element according to the present invention, and FIG. 2 is an example of a manufacturing apparatus for explaining the manufacturing method of the conductive polymer PTC resistance element shown in FIG. 1. FIG. 3 is an explanatory diagram of its operation. DESCRIPTION OF SYMBOLS 1... Conductive polymer PTC resistance element, 2... Element body, 3... Metal film, 4... Lead wire, 5... Soldering part, 10... Sputtering device, 11 ...Processing unit, 12...Power supply.
Claims (7)
質とから成る正の抵抗温度特性を有する素子本体と、そ
の表面に形成された粗面と、該粗面上に物理−化学的手
段をもって付着せしめた金属膜とから構成されたことを
特徴とする導電性重合体PTC抵抗素子。(1) An element body having positive resistance-temperature characteristics consisting of a polymer and a conductive substance dispersedly mixed into the polymer, a rough surface formed on the surface thereof, and a physical 1. A conductive polymer PTC resistance element comprising a metal film attached by chemical means.
たはイオンプレーティング手段である特許請求の範囲第
1項に記載の導電性重合体PTC抵抗素子。(2) The conductive polymer PTC resistance element according to claim 1, wherein the physical-chemical means is a sputtering means or an ion plating means.
どの金属又はこれらの合金から成るものである特許請求
の範囲第1項又は第2項に記載の導電性重合体PTC抵
抗素子。(3) The conductive polymer PTC resistance element according to claim 1 or 2, wherein the metal film is made of a metal such as Ni, Cu, Al, Sn, or Au or an alloy thereof. .
質とから成る正の抵抗温度特性を有する素子本体と、そ
の上に形成すべき金属膜の母材とを不活性ガス雰囲気内
において対峙せしめ、先ず両者間に逆方向の電圧を印加
することにより、素子本体側の分子を物理−化学的に放
出して前記母材との対峙面を粗面化し、次いで、両者間
に正方向の電圧を印加せしめて前記母材側の分子を物理
−化学的に放出して、前記素子本体側の粗面に所定厚の
金属膜を形成する如くなしたことを特徴とする導電性重
合体PTC抵抗索子の製造方法。(4) The element body, which has positive resistance-temperature characteristics and is made of a polymer and a conductive substance dispersedly mixed into the polymer, and the base material of the metal film to be formed thereon are placed in an inert gas atmosphere. First, by applying a voltage in the opposite direction between the two, molecules on the element body side are physically and chemically released to roughen the surface facing the base material, and then, the surface between the two is roughened. Conductivity characterized by applying a positive voltage to physically and chemically release molecules on the base material side to form a metal film of a predetermined thickness on the rough surface on the element body side. A method of manufacturing a polymeric PTC resistance cord.
囲第4項に記載の導電性重合体PTC抵抗素子の製造方
法。(5) The method for manufacturing a conductive polymer PTC resistance element according to claim 4, wherein the inert gas is Ar gas.
Au、Fe、Zn、Ag、In、Gaなどの金属または
これらの合金である特許請求の範囲第4項または第5項
に記載の導電性重合体PTC抵抗素子の製造方法。(6) The base material of the metal film is Ni, Cu, Al, Sn,
The method for manufacturing a conductive polymer PTC resistance element according to claim 4 or 5, which is a metal such as Au, Fe, Zn, Ag, In, Ga, or an alloy thereof.
ング処理またはイオンプレーティング処理である特許請
求の範囲第4項乃至第6項のいずれか1項に記載の導電
性重合体PTC抵抗素子の製造方法。(7) The conductive polymer PTC resistance element according to any one of claims 4 to 6, wherein the method for realizing the physical-chemical action is a sputtering treatment or an ion plating treatment. Production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14874987A JPS63312601A (en) | 1987-06-15 | 1987-06-15 | Conductive polymer ptc resistance element and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14874987A JPS63312601A (en) | 1987-06-15 | 1987-06-15 | Conductive polymer ptc resistance element and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63312601A true JPS63312601A (en) | 1988-12-21 |
Family
ID=15459768
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14874987A Pending JPS63312601A (en) | 1987-06-15 | 1987-06-15 | Conductive polymer ptc resistance element and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63312601A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0602386A2 (en) * | 1992-12-02 | 1994-06-22 | Robert Bosch Gmbh | Manufacturing method for a plastic-metal composition with good adhesive strength |
WO1995007540A1 (en) * | 1993-09-09 | 1995-03-16 | Siemens Aktiengesellschaft | Limiter for current limiting |
EP0853322A1 (en) * | 1996-12-19 | 1998-07-15 | Eaton Corporation | Low resistance electrical interface for current limiting polymers by plasma processing |
CN100409373C (en) * | 2001-04-06 | 2008-08-06 | 宝电通科技股份有限公司 | Composite structural material for thermosensitive resistor with positive temp coefficient and its preparing process |
CN102280232A (en) * | 2011-05-31 | 2011-12-14 | 芜湖天朗电池科技有限公司 | Preparation method for PTC electrode |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4922346A (en) * | 1972-06-21 | 1974-02-27 | ||
JPS61177792A (en) * | 1985-02-01 | 1986-08-09 | 株式会社フジクラ | Manufacture of flexible printed circuit board |
JPS6235501A (en) * | 1985-08-08 | 1987-02-16 | 出光興産株式会社 | Manufacture of high polymer positive temperature coefficientresistor |
-
1987
- 1987-06-15 JP JP14874987A patent/JPS63312601A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4922346A (en) * | 1972-06-21 | 1974-02-27 | ||
JPS61177792A (en) * | 1985-02-01 | 1986-08-09 | 株式会社フジクラ | Manufacture of flexible printed circuit board |
JPS6235501A (en) * | 1985-08-08 | 1987-02-16 | 出光興産株式会社 | Manufacture of high polymer positive temperature coefficientresistor |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0602386A2 (en) * | 1992-12-02 | 1994-06-22 | Robert Bosch Gmbh | Manufacturing method for a plastic-metal composition with good adhesive strength |
EP0602386A3 (en) * | 1992-12-02 | 1995-12-27 | Bosch Gmbh Robert | Manufacturing method for a plastic-metal composition with good adhesive strength. |
WO1995007540A1 (en) * | 1993-09-09 | 1995-03-16 | Siemens Aktiengesellschaft | Limiter for current limiting |
EP0853322A1 (en) * | 1996-12-19 | 1998-07-15 | Eaton Corporation | Low resistance electrical interface for current limiting polymers by plasma processing |
CN100409373C (en) * | 2001-04-06 | 2008-08-06 | 宝电通科技股份有限公司 | Composite structural material for thermosensitive resistor with positive temp coefficient and its preparing process |
CN102280232A (en) * | 2011-05-31 | 2011-12-14 | 芜湖天朗电池科技有限公司 | Preparation method for PTC electrode |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6522237B1 (en) | Electrode for PTC thermistor and method for producing the same, and PTC thermistor | |
EP0952590B1 (en) | Electrical devices containing conductive polymers | |
KR960011153B1 (en) | Electrical device containing conductive polymers | |
US5358793A (en) | PTC device | |
JPH01166407A (en) | Manufacture of cpi layer | |
JPH10199706A (en) | Current-limiting ptc polymer element and manufacture thereof | |
SE425344B (en) | Disposable medical electrode | |
JPS63312601A (en) | Conductive polymer ptc resistance element and manufacture thereof | |
JP5250287B2 (en) | Gel electrode | |
WO2019139165A1 (en) | Bioelectrode | |
WO2017001978A1 (en) | Stretchable electronics for dentistry applications and method of making the same | |
JP5274019B2 (en) | Manufacturing method of PTC device | |
JP2001035640A (en) | Ptc element and its manufacture | |
JPS6387703A (en) | Ptc device | |
JPH02268402A (en) | Polymer ptc resistance element | |
JPH02281707A (en) | Polymer ptc element | |
JPH0621202Y2 (en) | Conductive polymer PTC resistance element | |
JP2002280203A (en) | Organic ptc device and its manufacturing method | |
JPS6355404A (en) | Resistor for strain meter | |
JPS6387705A (en) | Ptc device | |
JPS584838B2 (en) | Manufacturing method of polymer piezoelectric material | |
JP2003151804A (en) | Method of manufacturing ptc element | |
JP2007036045A (en) | Ptc element and method for manufacturing the same | |
JPS6285401A (en) | Positive characteristics organic thermister | |
RU2024989C1 (en) | Process of manufacture of ohmic contacts for semiconductor resistors based on monosulfide of samarium |