JPS6235501A - Manufacture of high polymer positive temperature coefficientresistor - Google Patents

Manufacture of high polymer positive temperature coefficientresistor

Info

Publication number
JPS6235501A
JPS6235501A JP17326485A JP17326485A JPS6235501A JP S6235501 A JPS6235501 A JP S6235501A JP 17326485 A JP17326485 A JP 17326485A JP 17326485 A JP17326485 A JP 17326485A JP S6235501 A JPS6235501 A JP S6235501A
Authority
JP
Japan
Prior art keywords
molded body
positive temperature
conductor
plating
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17326485A
Other languages
Japanese (ja)
Other versions
JPH0426521B2 (en
Inventor
仁 三宅
藤井 秀人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP17326485A priority Critical patent/JPS6235501A/en
Publication of JPS6235501A publication Critical patent/JPS6235501A/en
Publication of JPH0426521B2 publication Critical patent/JPH0426521B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高分子正温度特性抵抗体の製造法に関し、更
に詳しくは、電極と正温度特性を有する成形体との相互
密着強度が大きくて接触抵抗が小さく、かつヒートショ
ックに対する耐性が大きな高分子正温度特性抵抗体の製
造法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for manufacturing a polymeric positive temperature characteristic resistor, and more specifically, the present invention relates to a method for manufacturing a polymeric positive temperature characteristic resistor, and more specifically, to The present invention relates to a method for manufacturing a polymer positive temperature characteristic resistor having low contact resistance and high resistance to heat shock.

[従来の技術及び発明が解決しようとする問題点]電気
、電子機器部品に付帯して使用される正温度特性素子と
して、最近、基材が高分子からなっていて正温度特性を
有する高分子抵抗体が賞用されている。
[Prior art and problems to be solved by the invention] Recently, polymers whose base material is made of a polymer and have positive temperature characteristics have been used as positive temperature characteristics elements used incidentally to electrical and electronic equipment parts. Resistors are used for prizes.

このような抵抗体は、通常、正温度特性を具備する高分
子成形体とその表裏面に取付けられた電極とから構成さ
れている。
Such a resistor is usually composed of a polymer molded body having positive temperature characteristics and electrodes attached to the front and back surfaces of the polymer molded body.

これら高分子抵抗体の中には、例えばUSP−4428
1333号公報に開示されているように、正温度特性を
有する成形体の表裏面に電極として金属箔を圧着して一
体化したものや、特開昭55−15907号公報に開示
されているように、正温度特性を有する成形体の表裏面
に電極として網状金属を熱融着して一体化したものが知
られている。
Some of these polymer resistors include, for example, USP-4428
As disclosed in Japanese Patent Publication No. 1333, metal foils are crimped and integrated as electrodes on the front and back surfaces of a molded body having positive temperature characteristics, and as disclosed in Japanese Patent Application Laid-Open No. 15907-1983. Furthermore, it is known that mesh metals are thermally fused and integrated as electrodes on the front and back surfaces of a molded body having positive temperature characteristics.

しかしながら、このように金属箔や網状金属を高分子成
形体に取付けた高分子抵抗体においては、電極−成形体
間の接触抵抗を十分に低減することが困難である。
However, in such a polymer resistor in which metal foil or mesh metal is attached to a polymer molded body, it is difficult to sufficiently reduce the contact resistance between the electrode and the molded body.

また、高分子正温度特性抵抗体の電極を成形体の表面に
金属メッキを施すことによって形成する方法が知られて
いる(特開昭80−3881号)。
Furthermore, a method is known in which electrodes of a polymeric positive temperature characteristic resistor are formed by applying metal plating to the surface of a molded body (Japanese Patent Laid-Open No. 80-3881).

しかしながら、この場合、メッキ皮膜と成形体の密着強
度が充分ではなく、しかもヒートシカ。ツタに対する耐
性が十分ではないという問題がある。
However, in this case, the adhesion strength between the plating film and the molded body is not sufficient, and heat damage occurs. There is a problem that the resistance to ivy is not sufficient.

本発明は、上記した問題点を解消し、電極と正温度特性
を有する成形体との相互密着強度が大きくて接触抵抗の
小さく、かつヒートシ冒ツクに対する耐性が大きな高分
子正温度特性抵抗体の製造法の提供を目的とする。
The present invention solves the above-mentioned problems and uses a polymeric positive temperature characteristic resistor that has high mutual adhesion strength between an electrode and a molded body having positive temperature characteristics, has low contact resistance, and has high resistance to heat shock. The purpose is to provide manufacturing methods.

[問題点を解決するための手段及び作用]本発明の高分
子正温度特性抵抗体の製造方法は、結晶性高分子重合体
40〜80重量%と導電性充填材10〜60重量%との
混線組成物の成形体に、導電体を該導電体の一部が該成
形体の表面から露出するように圧着により埋め込み、つ
いで、該導電体の一部が露出している成形体表面にメッ
キ処理を施すことを特徴とする。
[Means and effects for solving the problems] The method for producing a polymeric positive temperature characteristic resistor of the present invention comprises a method of manufacturing a polymeric positive temperature characteristic resistor of the present invention by combining 40 to 80% by weight of a crystalline polymer and 10 to 60% by weight of a conductive filler. A conductor is embedded in a molded body of the cross-wire composition by pressure bonding so that a part of the conductor is exposed from the surface of the molded body, and then the surface of the molded body where a part of the conductor is exposed is plated. It is characterized by being subjected to processing.

まず、本発明で使用される正温度特性を有する成形体は
、結晶性高分子重合体と導電性充填材とからなる。
First, the molded article having positive temperature characteristics used in the present invention is made of a crystalline high molecular weight polymer and a conductive filler.

成形体の構成要件の1つである結晶性高分子重合体とし
ては、ポリエチレン、ポリプロピレン:エチレン共重合
体、ポリアミド、フッ素系重合体などがあげられる。
Examples of the crystalline polymer, which is one of the constituent elements of the molded article, include polyethylene, polypropylene:ethylene copolymer, polyamide, fluorine-based polymer, and the like.

また、他の要件である導電性充填材としては、ファーネ
スブラック、サーマルブラック、アセチレンブラックな
どのカーボンブラックが好ましく、その低粒径20ル以
下のグラファイト粉末、金属粒子:長さll111以下
でアスペクト比10以上の炭素繊維、金属繊維;などが
あげられ、また、これらの混合物であってもよい。
In addition, as the conductive filler, which is another requirement, carbon black such as furnace black, thermal black, and acetylene black is preferable, and its low particle size is graphite powder of 20 l or less, metal particles: length 111 or less, and aspect ratio. Examples include 10 or more carbon fibers, metal fibers, and mixtures thereof.

正温度特性を有する成形体は、上記した結晶性高分子重
合体と導電性充填材とを配合して溶融混練したのち、常
法により成形することにより得られる。
A molded article having positive temperature characteristics can be obtained by blending the above-described crystalline polymer and a conductive filler, melt-kneading the mixture, and then molding the mixture by a conventional method.

結晶性高分子重合体と導電性充填材の配合割合は、前者
40〜90重量%、後者10〜60重量%に設定する。
The mixing ratio of the crystalline polymer and the conductive filler is set to 40 to 90% by weight for the former and 10 to 60% by weight for the latter.

導電性充填材の配合量がlO重量%未歯の場合(したが
って結晶性高分子重合体90重量%以上)には、得られ
た成形体に正温度特性が発現せず、また、60重量%を
超えると混線が困難になる。
If the amount of the conductive filler is 10% by weight or less (therefore, the crystalline polymer is 90% by weight or more), the resulting molded article will not exhibit positive temperature characteristics; If it exceeds , it becomes difficult to mix lines.

溶融混練は、通常の溶融混練機例えばバンバリーミキサ
−12本又は3本ロールを用いそ、温度:120〜25
0℃9時間: 5〜40分間の条件で行なえばよい、ま
た、溶融混線の際、2.5−ジメチル−2,5−ジ(t
−ブチルパーオキシ)ヘキシン−3のような周知の架橋
剤を添加して架橋を行なってもよい。
Melt kneading is carried out using a normal melt kneading machine such as a Banbury mixer with 12 rolls or 3 rolls, at a temperature of 120 to 25
0°C for 9 hours: 5 to 40 minutes. Also, during melt mixing, 2,5-dimethyl-2,5-di(t
Crosslinking may be effected by adding a well-known crosslinking agent such as -butylperoxy)hexyne-3.

本発明は、以上のようにして得られた成形体に、導電体
を圧着してさらにその上にメッキ処理を施すことに最大
の特徴を有する。
The main feature of the present invention is that a conductor is crimped onto the molded body obtained as described above, and then a plating process is performed thereon.

用いられる導電体としては、金属例えばNi。The conductor used is a metal such as Ni.

Cu、Fe、A文、黄銅などの網状物、細線、粉末。Cu, Fe, A-texture, brass, etc. net-like materials, fine wires, powders.

薄片、不織布、または炭素繊維の不織布、繊維粉などが
あげられる。
Examples include flakes, nonwoven fabrics, carbon fiber nonwoven fabrics, and fiber powder.

導電体を成形体表面に圧着する際、導電体の大部分が成
形体中に埋め込まれかつ導電体の一部が成形体表面から
露出する程度に圧着を行なう必要がある。を形体への導
電体の埋め込み部分が少ない場合には、成形体と導電体
との密着強度が弱くなり、導電体を完全に成形体中に埋
設した場合には、後述するメッキ処理により形成される
メッキ皮膜と導電体との接触が得難くしたがって成形体
とメッキ皮膜との充分な密着強度が得られない。
When the conductor is crimped onto the surface of the molded body, it is necessary to perform the crimping to such an extent that most of the conductor is embedded in the molded body and a portion of the conductor is exposed from the surface of the molded body. If the part of the conductor embedded in the molded body is small, the adhesion strength between the molded body and the conductive body will be weak, and if the conductive body is completely embedded in the molded body, it will not be formed by the plating process described below. It is difficult to obtain contact between the plating film and the conductor, and therefore sufficient adhesion strength between the molded body and the plating film cannot be obtained.

上記した程度に圧着する際の印加圧力は、用いる導電体
の種類及び成形体の組成などによって異なるが、通常2
〜100kg/ctd −G好ましくは5〜50 kg
/CrA−Gの範囲内である。
The pressure applied when crimping to the above degree varies depending on the type of conductor used and the composition of the molded body, but is usually 2.
~100kg/ctd -G preferably 5-50 kg
/CrA-G.

この圧着工程においては、該成形体を結晶性高分子重合
体の結晶化温度以上に加熱することが必要である。この
結晶化温度以上に成形体を加熱しない場合には、成形体
と導電体の密着強度が不十分となる0以上の圧着工程は
、熱プレス成形機や熱ロール成形機を用いて行なうこと
ができる。
In this pressure bonding step, it is necessary to heat the molded article to a temperature higher than the crystallization temperature of the crystalline polymer. If the molded body is not heated above this crystallization temperature, the crimping step of 0 or more, where the adhesion strength between the molded body and the conductor is insufficient, can be carried out using a hot press molding machine or a hot roll molding machine. can.

圧着工程が終了したのち、ついで、導電体の一部が露出
している成形体表面にメッキ処理を施す、このメッキ処
理の前処理としてエッチング処理を成形体に施す。
After the crimping step is completed, the surface of the molded body where a portion of the conductor is exposed is then plated, and as a pretreatment for this plating process, the molded body is subjected to an etching process.

エツチング処理法としては、クロム混酸液、熱パラキシ
レン溶液等を用いる方法、サンドブラスト等の如く機械
的に表面を粗面化する方法があげられる。
Etching methods include methods using a chromium mixed acid solution, hot paraxylene solution, etc., and methods of mechanically roughening the surface such as sandblasting.

次に、エツチング処理が施された高分子成形体の表面に
メッキ処理を施す、メッキ処理法としては、電気メツキ
法と無電解メッキ法のいずれもが適用できる。
Next, as a plating method for plating the surface of the etched polymer molded body, either an electroplating method or an electroless plating method can be applied.

電気メツキ法においては、金属塩を含むメッキ浴中にこ
の成形体を陰極、金属、黒鉛などを陽極として浸漬して
行なう、メッキ処理に際しては、電流密度0.05〜I
OA/dm2.メッキ浴温度lO〜100°Cの条件下
でメッキ液を攪拌しながら行なう。
In the electroplating method, the molded body is immersed in a plating bath containing a metal salt as a cathode, and a metal, graphite, etc. is used as an anode.
OA/dm2. The plating solution is stirred at a plating bath temperature of 10 to 100°C.

無電解メッキ法においては、メッキ処理の前処理として
通常のプラスチックメッキ法に採用されているセンシタ
イジング・アクチベーション法や、キャタリスト・アク
セレーター法で、成形体表面を活性化させたのち、常法
の無電解メッキを施すとよい、また、無電解メッキを行
なった後に、所定膜厚のメッキ皮膜を得るために、更に
電気メッキを施してもよい。
In the electroless plating method, after activating the surface of the molded object using the sensitizing activation method or the catalytic accelerator method, which are used in ordinary plastic plating methods, as a pretreatment for plating, It is preferable to perform electroless plating according to the method of electroless plating. Furthermore, after performing electroless plating, electroplating may be further performed in order to obtain a plating film of a predetermined thickness.

また、メッキ皮膜を構成する金属としては、ニッケル、
銅、スズ、クロム、銀、コバルトなどが好ましい。
In addition, the metals that make up the plating film include nickel,
Copper, tin, chromium, silver, cobalt, etc. are preferred.

また、メッキ皮膜の膜厚が0.1戸以上となるようにメ
ッキ処理時間や通電量を調節することが好ましい。
Further, it is preferable to adjust the plating treatment time and the amount of electricity so that the thickness of the plating film is 0.1 or more.

[発明の実施例] 実施例1 結晶性高分子重合体として高密度ポリエチレン(出光石
油化学■製:出光ポリエチレン’I 540B)100
重量部に対し、平均粒径43mgのカーボンブラック(
三菱化成工業■製:ダイアブラック0E)75重量部を
配合し、これをバンバリーミキサ−により溶融混練した
後、架橋剤として、2.5−ジメチル−2,5−ジ(t
−ブチルパーオキシ)ヘキシン−3を 1重量部添加し
、架橋させて樹脂組成物を得た。つぎに、この組成物を
熱プレス機により肉厚1mmのシートに成形し、このシ
ートから縦5C■。
[Examples of the invention] Example 1 High-density polyethylene (manufactured by Idemitsu Petrochemical ■: Idemitsu Polyethylene 'I 540B) 100 as a crystalline polymer
Carbon black with an average particle size of 43 mg per part by weight (
After blending 75 parts by weight of Diablack 0E (manufactured by Mitsubishi Chemical Corporation) and melt-kneading this in a Banbury mixer, 2,5-dimethyl-2,5-di(t) was added as a crosslinking agent.
-Butylperoxy)hexyne-3 (1 part by weight) was added and crosslinked to obtain a resin composition. Next, this composition was formed into a sheet with a wall thickness of 1 mm using a hot press machine, and this sheet was made into a 5 cm long sheet.

横10cmの試験片を切り出した。A test piece with a width of 10 cm was cut out.

得られた試験片の両面にニッケルメッキが施された銅製
−の網 (50メツシユ)を配して、熱プレス成形機に
より、 135℃で10 kg/CrA@Gの圧力をか
けて5分間圧着処理を施した。その結果、網の大部分が
シート中に埋設されその一部分がシート表面に露出した
状態の試験片が得られた。
A nickel-plated copper mesh (50 meshes) was placed on both sides of the obtained test piece, and it was crimped for 5 minutes at 135°C with a pressure of 10 kg/CrA@G using a hot press molding machine. Processed. As a result, a test piece was obtained in which most of the net was embedded in the sheet and a portion of it was exposed on the sheet surface.

上記圧着処理が施された試験片をクロム酸混液(ハイク
ロム混酸)中に浸漬して、60℃で10分間エツチング
処理した。ついで、試験片を水洗後、硫酸ニッケル29
0g/見、塩化ニッケル50g1文、ホウ酸40g/l
含有する水溶液からなるメッキ浴に浸漬し、この試験片
を陰極とし、ニッケル板を陽極として電気メッキを施し
た。電気メッキは42℃において、陰極電流密度 IA
/dm2*電気量1θ00クローンであった働 このようにして得られたニッケルメッキ片より、lc+
a四方の試験片を取り出し、その表裏のニッケルメッキ
皮膜間の電気抵抗をデジタルボルトメーターを用いて四
端子法により測定した。
The test piece subjected to the above pressure bonding treatment was immersed in a chromic acid mixed solution (high chromic acid mixed acid) and etched at 60° C. for 10 minutes. Next, after washing the test piece with water, nickel sulfate 29
0g/l, nickel chloride 50g/l, boric acid 40g/l
The specimen was immersed in a plating bath containing an aqueous solution, and electroplated using the test piece as a cathode and the nickel plate as an anode. Electroplating is performed at 42°C with cathodic current density IA
/dm2*Electricity 1θ00 Clone From the nickel-plated piece thus obtained, lc+
A square test piece was taken out, and the electrical resistance between the front and back nickel plating films was measured by the four-terminal method using a digital voltmeter.

この結果、室温における電気抵抗値は0.08Ωであり
、 150℃に昇温したときの抵抗値と室温にお4.3 ける抵抗値の比(抵抗増大倍率)は10   であった
As a result, the electrical resistance value at room temperature was 0.08Ω, and the ratio of the resistance value when the temperature was raised to 150°C and the resistance value at room temperature was 4.3Ω (resistance increase magnification) was 10.

また、ニッケルメッキ皮膜の剥離強度(JIS−に−8
854に準拠)の測定を試みたがV、着力が大で測定で
きなかった。さらに、230℃から20℃への熱ショッ
クを与えた後のニッケル皮膜の剥離の有無をみたところ
、全く剥離はなく良好であった。
In addition, the peel strength of the nickel plating film (JIS-8
854), but the V and adhesion force were too large to measure. Furthermore, when the nickel film was examined for peeling after being subjected to a heat shock from 230°C to 20°C, there was no peeling at all and the result was good.

実施例2 導電体としてニッケルメッキした銅製の網に代え、炭素
繊維の不織布の薄片を用い、かつ電気メツキ時の電気量
を1200クローンとした外は、実施例1と同様に試験
片を製造した。この結果、電極に用いるニッケルメッキ
皮膜間の電気抵抗値が0.11Ωであり、また 150
℃に昇温したときの4.3 抵抗増大倍率は10   であった、さらに、230℃
から20℃への熱ショックを与えた後でもニッケルメッ
キ皮膜が剥離することはなかった。
Example 2 A test piece was produced in the same manner as in Example 1, except that a thin piece of carbon fiber nonwoven fabric was used as the conductor instead of the nickel-plated copper mesh, and the amount of electricity during electroplating was 1200 clones. . As a result, the electrical resistance value between the nickel plating films used for the electrodes was 0.11Ω, and 150Ω.
When the temperature was raised to 4.3°C, the resistance increase factor was 10, and furthermore, at 230°C
The nickel plating film did not peel off even after being subjected to a thermal shock from 20°C to 20°C.

比較例1 実施例1におけるニッケルメッキを省略したものについ
て、1cm四方の試験片を取り出して、表裏の銅網電極
間の電気抵抗値を測定した。その結果、電気抵抗値が4
.78Ωと大きい値であった。
Comparative Example 1 A 1 cm square test piece was taken from Example 1 in which the nickel plating was omitted, and the electrical resistance value between the front and back copper mesh electrodes was measured. As a result, the electrical resistance value is 4
.. It was a large value of 78Ω.

比較例2 実施例1で得られた成形体に導電体を埋設することなく
、成形体表面上に直接実施例1と同様のメッキ処理を施
したものを用意した。この場合、Icm四方の試験片の
ニッケル皮膜間の電気抵抗値は0.13Ωと良好であっ
たが、ニッケルメッキ皮膜の剥離強度が0.18kg/
c腸と弱く、 230℃から20℃への熱ショックによ
ってメッキ皮膜の一部が剥離した。
Comparative Example 2 A molded product obtained in Example 1 was prepared in which the same plating treatment as in Example 1 was directly applied to the surface of the molded product without embedding a conductor therein. In this case, the electrical resistance value between the nickel coatings of the Icm square test piece was 0.13Ω, which was good, but the peel strength of the nickel plating coating was 0.18kg/cm.
The plated film was partially peeled off due to heat shock from 230°C to 20°C.

[発明の効果] 以上、説明した如く、本発明の方法で得られた高分子正
温度特性抵抗体は、電極と成形体との相互密着強度が大
きくて接触抵抗が小さく、かつヒートショックに対する
耐性が大きい。
[Effects of the Invention] As explained above, the polymer positive temperature characteristic resistor obtained by the method of the present invention has high mutual adhesion strength between the electrode and the molded body, low contact resistance, and high resistance to heat shock. is large.

したがって、本発明の製造法は、電気・電子機器などに
使用される正温度特性抵抗体2発熱体の製造に適用して
有効である。
Therefore, the manufacturing method of the present invention is effective when applied to manufacturing a positive temperature characteristic resistor 2 heating element used in electrical/electronic equipment and the like.

Claims (1)

【特許請求の範囲】[Claims]  結晶性高分子重合体40〜90重量%と導電性充填材
10〜60重量%との混練組成物の成形体に、導電体を
該導電体の一部が該成形体の表面から露出するように圧
着により埋め込み、ついで、該導電体の一部が露出して
いる成形体表面にメッキ処理を施すことを特徴とする高
分子正温度特性抵抗体の製造法。
A conductor is placed in a molded body of a kneaded composition of 40 to 90% by weight of a crystalline polymer and 10 to 60% by weight of a conductive filler so that a part of the conductor is exposed from the surface of the molded body. 1. A method for manufacturing a polymer positive temperature characteristic resistor, which comprises embedding the conductor in a molded body by pressure bonding, and then plating the surface of the molded body where a part of the conductor is exposed.
JP17326485A 1985-08-08 1985-08-08 Manufacture of high polymer positive temperature coefficientresistor Granted JPS6235501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17326485A JPS6235501A (en) 1985-08-08 1985-08-08 Manufacture of high polymer positive temperature coefficientresistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17326485A JPS6235501A (en) 1985-08-08 1985-08-08 Manufacture of high polymer positive temperature coefficientresistor

Publications (2)

Publication Number Publication Date
JPS6235501A true JPS6235501A (en) 1987-02-16
JPH0426521B2 JPH0426521B2 (en) 1992-05-07

Family

ID=15957223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17326485A Granted JPS6235501A (en) 1985-08-08 1985-08-08 Manufacture of high polymer positive temperature coefficientresistor

Country Status (1)

Country Link
JP (1) JPS6235501A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62155501A (en) * 1985-12-27 1987-07-10 株式会社村田製作所 Manufacture of organic positive characteristics thermistor device
JPS63312601A (en) * 1987-06-15 1988-12-21 Tdk Corp Conductive polymer ptc resistance element and manufacture thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62155501A (en) * 1985-12-27 1987-07-10 株式会社村田製作所 Manufacture of organic positive characteristics thermistor device
JPH0553041B2 (en) * 1985-12-27 1993-08-09 Murata Manufacturing Co
JPS63312601A (en) * 1987-06-15 1988-12-21 Tdk Corp Conductive polymer ptc resistance element and manufacture thereof

Also Published As

Publication number Publication date
JPH0426521B2 (en) 1992-05-07

Similar Documents

Publication Publication Date Title
CA1259504A (en) Conductive compositions and conductive powders for use therein
JPS585378A (en) Polymer composition for electrodeposition
JPS6235501A (en) Manufacture of high polymer positive temperature coefficientresistor
JP7349747B2 (en) Dendritic nickel crystal particles and method for producing the same
JP2581543B2 (en) Method for producing plated wholly aromatic polyester liquid crystal polymer molded article
JPS61260606A (en) Manufacture of high molecular resistor
US6320129B1 (en) Method for making electrode of polymer composite
JP3833538B2 (en) Electrical device comprising a PTC conductive polymer
JPH0418681B2 (en)
JPS61228065A (en) Electrically conductive high polymer composition
JPH0444401B2 (en)
JP4193094B2 (en) Metal structure and manufacturing method thereof
JPS6387703A (en) Ptc device
WO2001006521A1 (en) Ptc device and method for producing the same
JP7313329B2 (en) Polypropylene resin composition, object to be plated made of polypropylene resin, polypropylene resin product with metal layer and manufacturing method thereof, wiring base material made of polypropylene resin and manufacturing method thereof
JP2003234202A (en) Ptc device and its manufacturing method
US20030020591A1 (en) Electrical device having ptc conductive polymer
JP2003530718A5 (en)
JPS6181460A (en) Electrically conductive composition having heat-sensitive resistance
JPS6119318A (en) Manufacture of substrate for printed circuit, composition used for said method and substrate manufactured by said composition
JP2001023803A (en) Manufacture of protective element
JP2023133183A (en) Composite material, production method of composite material, and terminal
JPH0935906A (en) Polymer based ptc element and its manufacture
TWI254324B (en) Manufacturing method of metal conductive electrode of thermistor
JPS6387705A (en) Ptc device