JP2003530718A5 - - Google Patents

Download PDF

Info

Publication number
JP2003530718A5
JP2003530718A5 JP2001575773A JP2001575773A JP2003530718A5 JP 2003530718 A5 JP2003530718 A5 JP 2003530718A5 JP 2001575773 A JP2001575773 A JP 2001575773A JP 2001575773 A JP2001575773 A JP 2001575773A JP 2003530718 A5 JP2003530718 A5 JP 2003530718A5
Authority
JP
Japan
Prior art keywords
conductive polymer
ptc
electric device
plating
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001575773A
Other languages
Japanese (ja)
Other versions
JP2003530718A (en
JP3833538B2 (en
Filing date
Publication date
Priority claimed from KR1020000018453A external-priority patent/KR100330919B1/en
Application filed filed Critical
Publication of JP2003530718A publication Critical patent/JP2003530718A/en
Publication of JP2003530718A5 publication Critical patent/JP2003530718A5/ja
Application granted granted Critical
Publication of JP3833538B2 publication Critical patent/JP3833538B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【書類名】 明細書
【発明の名称】 PTC伝導性ポリマーを含む電気装置
【特許請求の範囲】
【請求項1】
PTC(Positive Temperature Coefficient)伝導性ポリマーを含む電気装置において、
1〜20μmの範囲の表面粗度を有する電解銅箔、の両面に無電解メッキ処理されたニッケル層を含む電極と、
該電極間に融着されているPTC伝導性ポリマーとを有し、
前記無電解ニッケルメッキの厚さが均一であり前記PTC伝導性ポリマーとの結合力に優れることを特徴とする電気装置。
【請求項2】
前記無電解メッキ処理されたニッケル層の厚さが0.01〜10μmの範囲であることを特徴とする請求項1に記載の電気装置。
【発明の詳細な説明】
【0001】
[技術分野]
本発明はPTC伝導性ポリマーを含む電気装置に係り、さらに詳しくは電解銅箔上に無電解ニッケルメッキ層を形成した電極をPTC伝導性ポリマーと結合させることによってPTC特性に優れるのみならず、電極とPTC伝導性ポリマーとの化学的及び機械的な結合力に優れるようにしたPTC伝導性ポリマーを含む電気装置に関する。
[背景技術]
PTC伝導性ポリマーを含む電気装置は種々公知されている。伝導性ポリマーは有機重合体に伝導性充填剤が分散されているものでPTC特性を示す。
【0002】
PTC(Positive temperature coefficient)特性とは、比較的狭い温度領域で温度上昇に帰因して電気抵抗が急激に増加する性質を意味する。PTC特性を有する高分子材料は定温電線(constant-temperature wire)、過電流遮断用保護装置、回路保護素子、加熱器
などに応用されている。
このような伝導性ポリマーは電気装置内で少なくも一つの電極と機械的及び化学的に結合されている。伝導性ポリマーと結合されている電極としては通常金属の板材(metal plate)が使用される。このような金属板材は伝導性ポリマーを外部電極と連結させるよう
働くと共に、伝導性ポリマーのPTC特性を損なってはいけない。そのためには金属板材
と伝導性ポリマーが電気的、機械的特性を満たせる良好な接着特性を有するべきである。
【0003】
金属板材と伝導性ポリマーの接着力は、機械的な接着力と化学的な接着力とに大別される。機械的な接着力を向上させるためには金属板材の表面粗度を増加させる製造工程が金属板材と伝導性ポリマーとの分離を抑えるために必要である。しかし、同一な表面粗度を有する金属板材であってもポリマーに対する結合力は金属の種類に応じて相当な差を示し、これは金属とポリマーの化学的接着特性の差に起因する。天然ゴムやポリプロピレンなど多くのポリマーにおいて化学的結合力は銅、鉄、ニッケル、アルミニウム、亜鉛などのような順に増加することが知られている。このような理由から、ポリマー接着用金属板材は表面酸化、黄銅及び亜鉛を用いた表面処理、シラン系の接着剤塗布などを施す場合もある。
【0004】
一方、金属板材の表面粗度を増加させ金属板材と伝導性ポリマーが分離されることを抑えるための代表的な方法としては電気メッキがある。印刷回路基板(printed circuit boards : 以下、'PCB'と称する)に使われる銅下地メッキ(copper plating foil)とPTC特性を有する電気装置に使われる金属板材が現在このような方法を通して製造されている。
【0005】
PCB用銅下地メッキは10〜150μmの厚さを有するように製造されるが、そこに伝導性ポリマーと機械的な固定効果(Anchoring effect)を有するようピラミッド状を有するノジュール(nodule)上に球形のノジュールを形成させる。
PCBはベースプレート上に銅ホイール(foil)をラミネートさせた後そこに熱及び圧力を加えて製造される。この際銅ホイールはベースプレートに付着された後酸抵抗のような化学的抵抗、エッチング後基板の変色に対する抵抗を有すべきであり、エッチング後錆びないことが求められる。このため、PCB用銅ホイールの表面は亜鉛、インジウム、黄銅などで構成された層でコーティングされたり(日本特許第51-35711号)、二つの層を含んだ電着(electrodeposition)された銅層を利用し(日本特許第53-39376号)てもよい。銅イ
オン、亜鉛イオン、タルタル酸及びアルカリを含む銅-亜鉛の電解槽で陰極によって銅ホ
イールの片面を電気分解させ、前記銅ホイールにクローム酸塩を処理して銅-亜鉛層を形
成する場合もある(アメリカ特許第5、304、428号)。
【0006】
その他、PTC特性を有する伝導性ポリマーを含む電気装置に関する関連技術はアメリカ特許第4、426、633号、第4、689、475号、第4、800、253号、第5、874、885号、第5、234、573号などがある。
しかし、従来の電解メッキまたは電着によって製造された電極はその厚さが不均一であり、このことが電極がPTCポリマーから分離する原因となっている。
【0007】
これに、本発明者らはこのような問題を解決すべく鋭意研究をしてPCB用電解銅箔(foil)に無電解メッキを施して均一な厚さの電極を開発した。
[発明の開示]
本発明は電解銅箔上に均一な厚さの無電解ニッケルメッキを形成した金属電極をPTC伝導性ポリマーと結合させることによってPTC特性に優れるのみならず、電極とPTC伝導性ポリマーとの化学的および機械的な結合力が優秀な電気装置を提供することを目的とする。
上記の目的を達成するために、本発明はPTC(Positive Temperature Coefficient)伝導性ポリマーを含む電気装置であって、電解銅箔の両面に無電解メッキニッケル層を有する電極と、当該電極間に融着されたPTC伝導性ポリマーを有し、前記無電解メッキニッケルが均一な厚さであり、PTC伝導性ポリマーとの結合力を十分に保証できることを特徴とする電気装置を提供する。
好ましくは、前記電解銅箔は1〜20μmの表面租度を有し、前記無電解メッキニッケ
ル層は0.01〜10μmの厚さを有する。
[発明を実施するための最良の態様]
これらの、および本発明の他の特徴、側面および利点を以下の説明、添付した請求の範囲、該当する部品を該当する符号で訳した添付図面により、より詳細に理解される。
以下、本発明の好ましい実施態様を添付図面を用いて詳細に説明する。
【0008】
本発明はPTC(Positive Temperature Coefficient)特性を有する伝導性ポリマーと無電解メッキ処理された金属電極を含む電気装置である。前記PTC伝導性ポリマーは前記電極の間にサンドイッチ状に融着されていることを特徴とする。
前記PTC特性を有する伝導性ポリマーは有機重合体に伝導性充填剤、架橋剤、酸化防止剤などを混合して得る。
【0009】
この際、有機重合体としてはポリエチレン、またはエチレン-アクリル酸共重合体、エ
チレン-エチルアクリレート共重合体、エチレン-ビニルアセテート共重合体、エチレン-
ブチルアクリレート共重合体などが使われ、特にポリエチレンが望ましい。
前記伝導性充填剤としてはニッケル粉末、金粉末、銅粉末、銀メッキされた銅粉末、金属合金粉末、カーボンブラック、炭素粉末または黒鉛が使用でき、特にカーボンブラックが望ましい。
【0010】
前記金属電極は機械的結合力に優れるよう製造された電解銅箔上に前記PTC伝導性ポリマーと化学的結合力に優れた金属を無電解メッキして製造される。電解銅箔の表面粗度(RZ)はその製造工程において電解メッキを通して1〜20μmになるよう製造されたものである。本発明では電解銅箔はLGIndustry Co.から商業的に求めることができ、こ
れを本発明で特に用いる。
【0011】
前記電解銅箔に無電解ニッケルメッキを施す。無電解ニッケルメッキ手順は脱脂、酸洗い(pickling)、活性化及び敏感化処理、無電解ニッケルメッキ工程、水洗いの工程を含む。1μmの厚さで無電解ニッケルメッキされた試験片の表面写真を図2に示す。図2によれば、試験片の表面粗度と形状にはさほど変化がないことが容易に分かる。
【0012】
前述したように銅上にニッケルを無電解メッキ処理した金属電極2を前記PTC伝導性ポリマー1の両面に融着させ電気装置を製造する。これを図3に示した。
本発明を実施例を挙げて一層詳述すれば次の通りである。但し、下記の実施例は本発明の一実施例にすぎず、本発明が下記の実施例に限られない。
【0013】
【実施例1】
ポリエチレンとカーボンブラックとを混合してPTC伝導性ポリマーを製造する。電解メッキを通して表面粗度が5〜10μmの電解銅箔を用意する。それから、脱脂、酸洗い、活性化及び敏感化処理、無電解ニッケルメッキ、水洗い工程を通して前記電解銅箔上に1μmの厚さで無電解ニッケルメッキ層を形成して電極を製造する。前記PTC伝導性ポリマーの両面にサンドイッチ状に前記電極を融着させ、図3のような形態のPTC電気装置を製造する。
【0014】
【実施例2】
ポリエチレンとカーボンブラックを混合してPTC伝導性ポリマーを製造する。電解メッキを通して表面粗度が5〜10μmの電解銅箔を用意する。それから、脱脂、酸洗い、活性化及び敏感化処理、無電解ニッケルメッキ、水洗い工程を通して前記電解銅箔上に10μmの厚さで無電解ニッケルメッキ層を形成して電極を製造する。前記PTC伝導性ポリマーの両面にサンドイッチ状に前記電極を融着させ、図3のような形態のPTC電気装置を製造する。
【0015】
【実施例3】
実施例1と同様な方法で電気装置を製造する。しかし無電解メッキ工程から活性化及び敏感化処理を省き、かつ酸洗い処理に引き続き無電解ニッケルメッキを施す。その後、クローム浴で置換メッキを通して前記ニッケル無電解メッキ層上にクロームを塗布する。
【0016】
[比較例]
実施例1〜3のように、銅上にニッケルを無電解メッキする代わりに、従来に一般に使用された銅箔自体を用いた電極をPTC伝導性ポリマーに融着させ、図3のような形態の装置を製造する。
【0017】
[試験例1]
抵抗-温度特性
前記実施例1〜3によって製造された電気装置の温度に依存した抵抗変化を図4に示す
。前記図4によれば、本発明に係る電気装置は抵抗-温度特性において従来の電解銅箔を
使用した電気装置とさほど差がないことが分かる。
【0018】
これは、本発明に係る電気装置は、PTC伝導性ポリマーおよび電極間の結合力を強化させるだけでなく、従来の電解銅箔を使用した電気装置のような抵抗-温度特性を保有す
ることを意味する。
【0019】
[試験例2]
湿度試験
前記実施例1によって製造された電気装置と比較例によって製造された電気装置について湿度試験前後の抵抗を測定する。その結果は下記の表1の通りである。
【0020】
【表1】

Figure 2003530718
【0021】
前記表1に示した通り、比較例の銅電極を使用した電気装置は、湿度試験前後に抵抗値に大きな変化があることが分かる。しかし実施例1のように無電解ニッケルメッキを使用し
た電気装置の抵抗値は、湿度試験後に抵抗値が10mΩしか減少しない。
前記試験例1、2の結果によれば、本発明に係る電気装置は従来の電解メッキまたは電着によって製造された電気装置に比べてPTC特性に優れるのみならず、PTC伝導性ポリマーと電極との結合力が一層優秀であることが容易に分かる。
本発明に係る無電解メッキは、電解メッキまたは電着に比べて、でこぼこした表面を有する物体についても均一にメッキすることができる長所がある。
【0022】
従って、本発明に係る電気装置は、電解銅箔上にニッケルを無電解メッキした電極を使用することによってPTC伝導性ポリマーとの機械的及び化学的な結合力に優れるのみならず、PTC特性に優れるという利点がある。
以上、本発明に係るPTC伝導性ポリマーを有する電気装置について詳述した。しかし、詳細な説明、特定の実施例は、本発明の好ましい態様を示しているが、単に実例として示したに過ぎない。なぜなら、本発明の精神および目的の範囲内で数々の変更および修飾がこの詳細な説明から当業者にとって明らかだからである。
【図面の簡単な説明】
【図1】 図1は本発明において使用された電解銅箔の表面写真を示す。
【図2】 図2は電解銅箔に1μmの厚さで無電解ニッケルメッキした試験片の表面写真を示す。
【図3】 図3は本発明に係る電気装置を示した図である。
【図4】 図4は本発明の第1〜第3実施例に係る電気装置の抵抗−温度グラフである。 [Document name] Description [Title of the invention] Electric device containing PTC conductive polymer [Claims]
(1)
In an electric device including a PTC (Positive Temperature Coefficient) conductive polymer,
An electrode including a nickel layer electrolessly plated on both sides of an electrolytic copper foil having a surface roughness in the range of 1 to 20 μm,
A PTC conductive polymer fused between the electrodes,
The electric device according to claim 1, wherein the electroless nickel plating has a uniform thickness and an excellent bonding force with the PTC conductive polymer.
(2)
2. The electric device according to claim 1, wherein a thickness of the electroless-plated nickel layer is in a range of 0.01 to 10 μm. 3.
DETAILED DESCRIPTION OF THE INVENTION
[0001]
[Technical field]
The present invention relates to an electric device including a PTC conductive polymer, and more particularly, to combining an electrode having an electroless nickel plating layer formed on an electrolytic copper foil with a PTC conductive polymer to provide not only an excellent PTC property but also an electrode. TECHNICAL FIELD The present invention relates to an electric device including a PTC conductive polymer having excellent chemical and mechanical bonding strength between the PTC conductive polymer and a PTC conductive polymer.
[Background Art]
Various electrical devices containing PTC conductive polymers are known. The conductive polymer is a polymer in which a conductive filler is dispersed in an organic polymer and has PTC characteristics.
[0002]
The PTC (Positive Temperature Coefficient) characteristic means a property in which the electrical resistance rapidly increases in a relatively narrow temperature range due to a rise in temperature. Polymer materials having PTC characteristics are applied to constant-temperature wires, protection devices for overcurrent interruption, circuit protection elements, heaters, and the like.
Such a conductive polymer is mechanically and chemically bonded to at least one electrode in the electrical device. A metal plate is usually used as the electrode combined with the conductive polymer. Such a metal plate serves to connect the conductive polymer to the external electrode and must not impair the PTC properties of the conductive polymer. For this purpose, the metal plate and the conductive polymer should have good adhesive properties to satisfy the electrical and mechanical properties.
[0003]
The adhesive strength between the metal plate and the conductive polymer is roughly classified into mechanical adhesive strength and chemical adhesive strength. In order to improve the mechanical adhesion, a manufacturing process for increasing the surface roughness of the metal plate is necessary to suppress the separation between the metal plate and the conductive polymer. However, even with a metal plate having the same surface roughness, the bonding force to the polymer shows a considerable difference depending on the type of the metal, and this is due to the difference in the chemical adhesive properties between the metal and the polymer. It is known that in many polymers such as natural rubber and polypropylene, the chemical bonding force increases in the order of copper, iron, nickel, aluminum, zinc and the like. For these reasons, the metal plate material for polymer bonding may be subjected to surface oxidation, surface treatment using brass and zinc, application of a silane-based adhesive, or the like.
[0004]
On the other hand, there is electroplating as a typical method for increasing the surface roughness of the metal plate to prevent the metal plate from being separated from the conductive polymer. A copper plating plating foil used for printed circuit boards (PCBs) and a metal plate material used for electric devices having PTC characteristics are currently manufactured through such a method. .
[0005]
The copper base plating for PCB is manufactured to have a thickness of 10 to 150 μm, and has a spherical shape on a nodule having a pyramid shape so as to have a conductive polymer and a mechanical anchoring effect (Anchoring effect). To form nodules.
PCBs are manufactured by laminating a copper foil on a base plate and then applying heat and pressure thereto. In this case, the copper wheel should have chemical resistance such as acid resistance after being attached to the base plate, resistance to discoloration of the substrate after etching, and must not rust after etching. For this reason, the surface of the copper wheel for PCB is coated with a layer composed of zinc, indium, brass, etc. (Japanese Patent No. 51-35711), or an electrodeposited copper layer including two layers. (Japanese Patent No. 53-39376). One side of a copper wheel is electrolyzed by a cathode in a copper-zinc electrolytic bath containing copper ions, zinc ions, tartaric acid and alkali, and the copper wheel is treated with chromate to form a copper-zinc layer. (U.S. Pat. No. 5,304,428).
[0006]
Other related technologies relating to electrical devices containing conductive polymers having PTC properties are U.S. Pat. Nos. 4,426,633, 4,689,475, 4,800,253, 5,874,885. No. 5,234,573.
However, electrodes made by conventional electrolytic plating or electrodeposition have non-uniform thickness, which causes the electrodes to separate from the PTC polymer.
[0007]
In order to solve such a problem, the present inventors have intensively studied and developed an electrode having a uniform thickness by performing electroless plating on an electrolytic copper foil for a PCB.
[Disclosure of the Invention]
The present invention combines a PTC conductive polymer with a metal electrode having a uniform thickness of electroless nickel plating formed on an electrolytic copper foil, thereby not only providing excellent PTC characteristics but also a chemical reaction between the electrode and the PTC conductive polymer. It is intended to provide an electrical device having excellent mechanical bonding strength.
In order to achieve the above object, the present invention relates to an electric device containing a PTC (Positive Temperature Coefficient) conductive polymer, comprising: an electrode having an electroless plated nickel layer on both surfaces of an electrolytic copper foil; The present invention provides an electric device having a PTC conductive polymer attached thereto, wherein the electroless plated nickel has a uniform thickness and can sufficiently assure a bonding force with the PTC conductive polymer.
Preferably, the electrolytic copper foil has a surface roughness of 1 to 20 μm, and the electroless plated nickel layer has a thickness of 0.01 to 10 μm.
[Best mode for carrying out the invention]
These and other features, aspects and advantages of the present invention will be more fully understood from the following description, appended claims, and accompanying drawings where corresponding parts are numbered with the appropriate designations.
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[0008]
The present invention is an electric device including a conductive polymer having PTC (Positive Temperature Coefficient) characteristics and a metal electrode subjected to electroless plating. The PTC conductive polymer is fused between the electrodes in a sandwich shape.
The conductive polymer having the PTC property is obtained by mixing a conductive filler, a crosslinking agent, an antioxidant, and the like with an organic polymer.
[0009]
At this time, as the organic polymer, polyethylene, or ethylene-acrylic acid copolymer, ethylene-ethyl acrylate copolymer, ethylene-vinyl acetate copolymer, ethylene-
A butyl acrylate copolymer or the like is used, and polyethylene is particularly desirable.
As the conductive filler, nickel powder, gold powder, copper powder, silver-plated copper powder, metal alloy powder, carbon black, carbon powder or graphite can be used, and carbon black is particularly desirable.
[0010]
The metal electrode is manufactured by electroless plating a metal having an excellent chemical bonding force with the PTC conductive polymer on an electrolytic copper foil manufactured to have an excellent mechanical bonding force. The surface roughness (RZ) of the electrolytic copper foil was manufactured to 1 to 20 μm through electrolytic plating in the manufacturing process. In the present invention, the electrolytic copper foil can be obtained commercially from LG Industry Co., which is particularly used in the present invention.
[0011]
Electroless nickel plating is applied to the electrolytic copper foil. The electroless nickel plating procedure includes the steps of degreasing, pickling, activating and sensitizing, electroless nickel plating and water washing. FIG. 2 shows a photograph of the surface of a 1 μm-thick electroless nickel-plated test piece. According to FIG. 2, it is easily understood that the surface roughness and the shape of the test piece do not change much.
[0012]
As described above, the metal electrode 2 obtained by electroless plating nickel on copper is fused to both surfaces of the PTC conductive polymer 1 to manufacture an electric device. This is shown in FIG.
The present invention will be described in more detail with reference to examples. However, the following embodiment is merely an embodiment of the present invention, and the present invention is not limited to the following embodiment.
[0013]
Embodiment 1
A PTC conductive polymer is prepared by mixing polyethylene and carbon black. An electrolytic copper foil having a surface roughness of 5 to 10 μm is prepared through electrolytic plating. Then, an electroless nickel plating layer having a thickness of 1 μm is formed on the electrolytic copper foil through a degreasing, pickling, activation and sensitizing process, an electroless nickel plating, and a washing process to manufacture an electrode. The electrodes are fused to both surfaces of the PTC conductive polymer in a sandwich shape to manufacture a PTC electric device having a configuration as shown in FIG.
[0014]
Embodiment 2
A PTC conductive polymer is prepared by mixing polyethylene and carbon black. An electrolytic copper foil having a surface roughness of 5 to 10 μm is prepared through electrolytic plating. Then, an electroless nickel plating layer having a thickness of 10 μm is formed on the electrolytic copper foil through a degreasing, pickling, activation and sensitizing process, an electroless nickel plating, and a washing process to manufacture an electrode. The electrodes are fused to both surfaces of the PTC conductive polymer in a sandwich shape to manufacture a PTC electric device having a configuration as shown in FIG.
[0015]
Embodiment 3
An electric device is manufactured in the same manner as in the first embodiment. However, the activation and sensitization processes are omitted from the electroless plating process, and the electroless nickel plating is performed subsequent to the pickling process. Then, chrome is applied on the nickel electroless plating layer through displacement plating in a chrome bath.
[0016]
[Comparative example]
Instead of electroless plating nickel on copper as in Examples 1 to 3, an electrode using a conventionally used copper foil itself is fused to a PTC conductive polymer, and the form shown in FIG. To manufacture the equipment.
[0017]
[Test Example 1]
Resistance-Temperature Characteristics FIG. 4 shows a temperature-dependent resistance change of the electric device manufactured according to the first to third embodiments. According to FIG. 4, it can be seen that the electrical device according to the present invention is not so different in resistance-temperature characteristics from the electrical device using the conventional electrolytic copper foil.
[0018]
This means that the electric device according to the present invention not only enhances the bonding force between the PTC conductive polymer and the electrode, but also retains the resistance-temperature characteristics like the electric device using the conventional electrolytic copper foil. means.
[0019]
[Test Example 2]
Humidity test The resistance of the electric device manufactured according to the first embodiment and the electric device manufactured according to the comparative example is measured before and after the humidity test. The results are shown in Table 1 below.
[0020]
[Table 1]
Figure 2003530718
[0021]
As shown in Table 1, it can be seen that the electrical device using the copper electrode of the comparative example has a large change in resistance before and after the humidity test. However, the resistance value of the electric device using electroless nickel plating as in Example 1 decreases only by 10 mΩ after the humidity test.
According to the results of Test Examples 1 and 2, the electric device according to the present invention not only has excellent PTC characteristics as compared with the electric device manufactured by conventional electrolytic plating or electrodeposition, but also has a PTC conductive polymer and an electrode. It can easily be seen that the bonding force of the is more excellent.
The electroless plating according to the present invention has an advantage that an object having a rough surface can be uniformly plated as compared with electrolytic plating or electrodeposition.
[0022]
Therefore, the electric device according to the present invention not only has excellent mechanical and chemical bonding strength with the PTC conductive polymer but also has PTC characteristics by using the electrode in which nickel is electrolessly plated on the electrolytic copper foil. It has the advantage of being superior.
The electric device having the PTC conductive polymer according to the present invention has been described above in detail. However, the detailed description, specific embodiments, while illustrating preferred embodiments of the present invention, are provided by way of illustration only. This is because numerous changes and modifications within the spirit and scope of the invention will be apparent to those skilled in the art from this detailed description.
[Brief description of the drawings]
FIG. 1 shows a surface photograph of an electrolytic copper foil used in the present invention.
FIG. 2 shows a photograph of the surface of a test piece obtained by electroless nickel plating on an electrolytic copper foil to a thickness of 1 μm.
FIG. 3 is a diagram showing an electric device according to the present invention.
FIG. 4 is a resistance-temperature graph of the electric device according to the first to third embodiments of the present invention.

JP2001575773A 2000-04-08 2001-03-30 Electrical device comprising a PTC conductive polymer Expired - Fee Related JP3833538B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR2000-18453 2000-04-08
KR1020000018453A KR100330919B1 (en) 2000-04-08 2000-04-08 Electrical device including ptc conductive composites
PCT/KR2001/000523 WO2001078453A1 (en) 2000-04-08 2001-03-30 Electrical device having ptc conductive polymer

Publications (3)

Publication Number Publication Date
JP2003530718A JP2003530718A (en) 2003-10-14
JP2003530718A5 true JP2003530718A5 (en) 2006-01-12
JP3833538B2 JP3833538B2 (en) 2006-10-11

Family

ID=19662812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001575773A Expired - Fee Related JP3833538B2 (en) 2000-04-08 2001-03-30 Electrical device comprising a PTC conductive polymer

Country Status (7)

Country Link
EP (1) EP1275273A4 (en)
JP (1) JP3833538B2 (en)
KR (1) KR100330919B1 (en)
CN (1) CN1210994C (en)
AU (1) AU2001244810A1 (en)
TW (1) TW480496B (en)
WO (1) WO2001078453A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6965293B2 (en) 2000-04-08 2005-11-15 Lg Cable, Ltd. Electrical device having PTC conductive polymer
EP1327995A3 (en) * 2002-01-11 2005-10-12 Shipley Co. L.L.C. Resistor structure
JP4942333B2 (en) * 2005-11-29 2012-05-30 住友金属鉱山株式会社 Nickel powder, method for producing the same, and polymer PTC element using the nickel powder

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4689475A (en) * 1985-10-15 1987-08-25 Raychem Corporation Electrical devices containing conductive polymers
JPH01236601A (en) * 1988-03-17 1989-09-21 Matsushita Electric Ind Co Ltd Ceramic electronic parts
JPH01236602A (en) * 1988-03-17 1989-09-21 Matsushita Electric Ind Co Ltd Positive coefficient thermistor
JPH05343201A (en) * 1992-06-11 1993-12-24 Tdk Corp Ptc thermistor
US5874885A (en) * 1994-06-08 1999-02-23 Raychem Corporation Electrical devices containing conductive polymers
JP3892049B2 (en) * 1996-09-20 2007-03-14 松下電器産業株式会社 PTC thermistor
KR100326778B1 (en) * 1996-12-26 2002-03-12 모리시타 요이찌 Ptc thermistor and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP3453055B2 (en) Electrical device containing conductive polymer
EP0576872B1 (en) A new diffusion joining method
TWI449809B (en) Electrical and electronic components for the use of composite materials and electrical and electronic components
JPWO2005073985A1 (en) Conductive fine particles and anisotropic conductive materials
JP2005210058A (en) Printed circuit board, manufacturing method of the same and circuit device
JP6582156B1 (en) Electrolytic copper foil, and negative electrode for lithium ion secondary battery, lithium ion secondary battery, copper clad laminate and printed wiring board using the electrolytic copper foil
JP4934443B2 (en) Metal foil surface treatment method
KR101336559B1 (en) Composite material for electrical/electronic component and electrical/electronic component using the same
JP2007324138A (en) Conductive particulate and anisotropic conductive material
JP3833538B2 (en) Electrical device comprising a PTC conductive polymer
US5573845A (en) Superficial coating layer having acicular structures for electrical conductors
JP2003530718A5 (en)
CN109104851B (en) Preparation method of electromagnetic shielding film
CN111201842A (en) Printed circuit board and method of manufacturing printed circuit board
JPH047802A (en) Ptc device
JP3214546B2 (en) Organic positive temperature coefficient thermistor manufacturing method and organic positive temperature coefficient thermistor
JPS6387703A (en) Ptc device
WO2001006521A1 (en) Ptc device and method for producing the same
WO2023171668A1 (en) Composite material, production method for composite material, and terminal
JP2927968B2 (en) Copper foil for high-density multilayer printed circuit inner layer and high-density multilayer printed circuit board using said copper foil for inner layer circuit
JP2000156550A (en) Printed wiring board
JP2006086104A (en) Conductive fine particle and anisotropic conductive material
JP2007035572A (en) Conductive particulate and anisotropic conductive material
JP2023133183A (en) Composite material, production method of composite material, and terminal
JPS6387705A (en) Ptc device