JPS6355404A - Resistor for strain meter - Google Patents

Resistor for strain meter

Info

Publication number
JPS6355404A
JPS6355404A JP19811786A JP19811786A JPS6355404A JP S6355404 A JPS6355404 A JP S6355404A JP 19811786 A JP19811786 A JP 19811786A JP 19811786 A JP19811786 A JP 19811786A JP S6355404 A JPS6355404 A JP S6355404A
Authority
JP
Japan
Prior art keywords
resistor
substrate
strain
magnetic field
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19811786A
Other languages
Japanese (ja)
Inventor
Kiyoshi Inoue
潔 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP19811786A priority Critical patent/JPS6355404A/en
Publication of JPS6355404A publication Critical patent/JPS6355404A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To obtain a resistor which has excellent magnetical and mechanical characteristics and can detect strain with high sensitivity by depositing at least one kind of metals selected from a group consisting of Ni, Cr, Fe, Co, Cu, Au, and Pt in the form of a thin layer in a magnetic field. CONSTITUTION:A conductive plastic substrate 1 is formed by subjecting the surface of a thin sheet-like plastic sheet having flexibility to a conducting treatment. The conducting treatment is executed by depositing the metals such as Ni, Cr, Fe, Co, Cu, Au and Pt on the treating surface by; for example, an electroplating method in order to obtain the resistor 3. An electrode 2 is constituted by vapor deposition in the form of a thin film on the surface of the substrate 1 so as to have a pair of terminals or by sticking a thin conductive film layer to the surface of the substrate 1. After the desired part on the surface of the substrate 1 is preliminarily masked, at least one kind of the metals selected from the group consisting of the Ni, Cr, Fe, Co, Cu, Au and Pt are deposited on the surfaces of the substrate 1 and the electrode 2 in a plating bath cell within about 3kG magnetic field by the electroplating method, by which the resistor 3 is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、歪計用抵抗体に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a resistor for a strain meter.

〔従来の技術〕[Conventional technology]

従来公知の歪計用抵抗体は、基板とカバーフィルムとの
間に抵抗体を挟んでサンドインチに構成されており、曲
げ応力等の外力によって与えられる歪によりその電気抵
抗値が変、化することを利用して歪を計測するものであ
る。
Conventionally known resistors for strain gauges are constructed in a sandwich structure with the resistor sandwiched between a substrate and a cover film, and its electrical resistance value changes due to strain caused by external forces such as bending stress. This is used to measure distortion.

然しながら、従来のこの種の曲げセンサ素子としての歪
計用抵抗体は、コンスタンタンなどの細線やその他公知
の金属抵抗体を用いるものであるが、その感度が低いた
め被測定物の微少範囲の歪を高精度に計測できないと云
う問題点があり、又、半導体製品は高感度ではあるが、
温度による特性変化等が大きく、弾性限界が低く、耐候
性が劣る等の問題点があった。
However, conventional resistors for strain meters as bending sensor elements of this type use thin wires such as constantan or other known metal resistors, but their sensitivity is low and they are sensitive to strain in a minute range of the object to be measured. There is a problem that it is not possible to measure with high precision, and although semiconductor products are highly sensitive,
There were problems such as large changes in properties due to temperature, low elastic limit, and poor weather resistance.

〔本発明が解決しようとする問題点〕[Problems to be solved by the present invention]

本発明は、畝上の観点に立ってなされたものであって、
その目的とするところは、磁気的特性及び機械的特性に
優れ、歪を高感度に検知し得る歪計用抵抗体を提供する
ことにある。
The present invention was made from the viewpoint of ridges, and
The purpose is to provide a resistor for a strain meter that has excellent magnetic and mechanical properties and can detect strain with high sensitivity.

〔問題点を解決するための手段〕[Means for solving problems]

而して、上記の目的は、Nts Crs Fes C0
5Cu−。
Therefore, the above purpose is Nts Crs Fes C0
5Cu-.

Au5Ptから成る群のなかか、ら選ばれた少なくとも
一種の金属を、磁界中で薄層状に析出させて成る歪計用
抵抗体とすることによって達成される。而して、本発明
を実施する際は、1KG以上の磁界内で電気メッキ法や
化学メッキ法により上記金属を析出させることが望まし
い。
This is achieved by forming a resistor for a strain gauge by depositing at least one metal selected from the group consisting of Au5Pt in a thin layer in a magnetic field. Therefore, when carrying out the present invention, it is desirable to deposit the above-mentioned metal by electroplating or chemical plating in a magnetic field of 1 KG or more.

〔作  用〕[For production]

畝上の如く構成することにより、金属析出層の感度を従
来公知の金属製歪ゲージの数倍に高めることができるの
で歪を高精度に計測することができるようになる。
By configuring it like a ridge, the sensitivity of the metal deposited layer can be increased several times that of conventionally known metal strain gauges, making it possible to measure strain with high precision.

〔実 施 例〕〔Example〕

以下、図面を参照しつ\本発明の詳細を具体的に説明す
る。
Hereinafter, details of the present invention will be specifically explained with reference to the drawings.

第1図は、本発明に係る歪計用抵抗体の一実施例を示す
側面断面図、第2図は、従来の歪計用抵抗体と、本発明
により得た歪計用抵抗体の歪率と電気抵抗変化率との関
係を対比して示すグラフ、第3図は、本発明の他の一実
施例により得た歪計用抵抗体の外力と電気抵抗との関係
を示すグラフである。
FIG. 1 is a side cross-sectional view showing one embodiment of a resistor for strain gauges according to the present invention, and FIG. 2 shows a conventional resistor for strain gauges and a strain gauge resistor obtained according to the present invention. FIG. 3 is a graph showing the relationship between the external force and the electrical resistance of a resistor for a strain meter obtained according to another embodiment of the present invention. .

第1図中、1はプラスチックに導電処理を施しく3) た導電性プラスチック基板、2は電極、3はL−。In Figure 1, 1 is plastic treated with conductive treatment 3) conductive plastic substrate, 2 is an electrode, 3 is L-.

Crs Fe、 C0% C11% ALI% Ptか
ら・成る群のなかから選ばれた少なくとも一種の金属を
、磁界中で薄層状に析出させて成る抵抗体、4は上記抵
抗体3を絶縁するカバーフィルムである。
A resistor made of at least one metal selected from the group consisting of Crs Fe, C0% C11% ALI% Pt, deposited in a thin layer in a magnetic field; 4 is a cover film insulating the resistor 3; It is.

導電性プラスチック基板1は、可撓性のある薄板状のプ
ラスチック板の表面に導電処理を施したものであり、こ
の導電処理はN1% Crs Fes C0% Cu、
Au、 Pt等の金属をその処理面に例えば電気メッキ
法により析出させて抵抗体3を得るために行なうもので
ある。
The conductive plastic substrate 1 is a flexible thin plastic plate whose surface is subjected to conductive treatment, and this conductive treatment is made of N1% Crs Fes C0% Cu,
This is done in order to obtain the resistor 3 by depositing a metal such as Au or Pt on the treated surface by, for example, electroplating.

電極2は一対の端子を有するように基板1の表面に薄膜
状に蒸着するか、又は導電性薄膜層を基板1の表面に貼
り付けて構成している。
The electrode 2 is formed by depositing a thin film on the surface of the substrate 1 or by pasting a conductive thin film layer on the surface of the substrate 1 so as to have a pair of terminals.

抵抗体3は、基板1の表面に予め所望の部分にマスキン
グを施した後に、常法による電気メッキ法によりN1%
 Crs Fes Co、Cus八へ、 Ptから成る
群のなかから選ばれた少なくとも一種の金属を1KG〜
l0KG好ましくは略3KGの磁界内のメッキ浴槽内で
基板1及び電極2の表面に薄層状に析出させたものであ
る。
The resistor 3 is made by masking desired areas on the surface of the substrate 1 in advance, and then applying 1% N1 by electroplating using a conventional method.
To Crs Fes Co, Cus 8, 1KG ~ of at least one metal selected from the group consisting of Pt.
A thin layer is deposited on the surfaces of the substrate 1 and the electrode 2 in a plating bath in a magnetic field of 10 KG, preferably about 3 KG.

又、抵抗体3を析出させる方法としては、常用の電気メ
ッキ法の他、化学メッキ法で行なってもよい。なお、そ
の際電極2を化学メッキによって形成される薄膜抵抗体
3に兼用させれば、電極2を省略することができ机 析出中の抵抗体3に磁界を与える装置としては、メッキ
浴槽にコイルを設け、コ慴ルに供給する直流電源と上記
電源電圧を調節自在とする苛変抵抗とスイッチとにより
回路を構成し、コイルに所望の電流を供給することによ
りメッキ浴槽内に1KG以上の磁界が発生するようにす
ればよい。
Further, as a method for depositing the resistor 3, in addition to the commonly used electroplating method, a chemical plating method may be used. In this case, if the electrode 2 is also used as the thin film resistor 3 formed by chemical plating, the electrode 2 can be omitted.As a device for applying a magnetic field to the resistor 3 during metal deposition, a coil is placed in the plating bath. A circuit is constructed of a DC power supply to the coil, a variable resistor and a switch that can freely adjust the power supply voltage, and a magnetic field of 1 KG or more is created in the plating bath by supplying the desired current to the coil. All you have to do is make sure that it occurs.

カバーフィルム4は、一対の電極端子部分を除く基板1
及び抵抗体3の表面上を覆うように構成されており、抵
抗体3を絶縁被覆するものである。
The cover film 4 covers the substrate 1 except for the pair of electrode terminals.
and is configured to cover the surface of the resistor 3, and provides an insulating coating for the resistor 3.

而して、抵抗体3は、常法による電気メッキ法と共に1
KG〜l0KG好ましくは略3KGめ磁界内でN1%C
r5Fes C0% Cu1Au、 ptから成る群の
なかから選ばれた少な(とも一種の金属を基板1の表面
に薄層状に析出させたものであるから抵抗体3の材料が
磁性体の場合には、外力、歪のみでな(磁気的測定にも
卓効を有するものである。
Therefore, the resistor 3 can be manufactured using conventional electroplating method and 1
N1%C in a magnetic field of KG to 10KG, preferably about 3KG
r5Fes C0% Cu1Au, a metal selected from the group consisting of pt is deposited in a thin layer on the surface of the substrate 1, so if the material of the resistor 3 is a magnetic material, It is extremely effective not only for external force and strain (it is also extremely effective for magnetic measurements).

而して、上記構成によるセンサを用いて、外力により与
えられる歪を計測する場合には、電極端子部分を保持し
て片持状態にして外力を作用させるものである。抵抗体
3には与えられた外力により歪が発生し、この時に抵抗
体3に生じる電気抵抗の変化を電極2及び図示しないリ
ード線を介して適宜の電気計器又はA/Dコンバータ等
に導き、これらによって歪の計測を行なうものである。
When measuring strain caused by an external force using the sensor configured as described above, the electrode terminal portion is held in a cantilevered state and the external force is applied. Distortion occurs in the resistor 3 due to the applied external force, and the change in electrical resistance that occurs in the resistor 3 at this time is guided to an appropriate electric meter or A/D converter via the electrode 2 and a lead wire (not shown). These are used to measure distortion.

第2図は、ニクロム系合金を用い、従来の抵抗体により
計測した歪率と電気抵抗変化率の関係を示す曲線21と
、本発明により、1KG、3KG及び1OKGの磁界内
でそれぞれ得た抵抗体により計測した歪率と電気抵抗変
化率の関係を示す曲線22.23及び24とを示すグラ
フである。
Fig. 2 shows a curve 21 showing the relationship between the strain rate and the electrical resistance change rate measured with a conventional resistor using a nichrome alloy, and the resistance obtained by the present invention in a magnetic field of 1KG, 3KG, and 1OKG, respectively. It is a graph showing curves 22, 23 and 24 showing the relationship between the strain rate measured by the body and the rate of change in electrical resistance.

又、これらの結果は表−1にも示されている。These results are also shown in Table-1.

表−1 増加に従って電気抵抗変化率が緩やかに増大し、その最
大歪に対しての電気抵抗変化率が0.12%であった。
Table 1 The rate of change in electrical resistance gradually increased as the strain increased, and the rate of change in electrical resistance with respect to the maximum strain was 0.12%.

これに対して、本発明により1KG乃至10KGの強磁
界内で得られた抵抗体により計測した結果の曲線22.
23及び24は、歪率の増加に従って電気抵抗変化率が
大幅に増大し、従来に比してその最大歪に対しての電気
抵抗変化率が1KGで約2倍、3KGで約3倍及びl0
KGで約6倍となった。
In contrast, curve 22. is the result of measurement using a resistor obtained in a strong magnetic field of 1 KG to 10 KG according to the present invention.
23 and 24, the electrical resistance change rate increases significantly as the strain rate increases, and the electrical resistance change rate with respect to the maximum strain is about twice as much at 1 KG, about three times as much at 3 KG, and l0
KG has increased about 6 times.

次に、本発明に係る歪計用抵抗体を析出する他の方法に
就いて説明する。
Next, another method for depositing a resistor for a strain gauge according to the present invention will be explained.

抵抗体は、前記第一実施例と同様に1)[G以上の磁界
内で、かつ塩化ニッケル液のメッキ液槽内で電気メッキ
を行ない、厚さ0.3〜1μの薄層状に析出させると共
に、Arレーザを照射しつ\矩形状にトリミングしたも
のである。
The resistor is prepared in the same way as in the first embodiment: 1) Electroplating is performed in a magnetic field of G or more in a nickel chloride plating bath to deposit a thin layer with a thickness of 0.3 to 1 μm. It is also trimmed into a rectangular shape while irradiated with an Ar laser.

上記抵抗体は、NC制御装置等による制御によってレー
ザを照射しつ一行なうことによって任意の形状が正確か
つ高速度に成形される。
The resistor is formed into an arbitrary shape accurately and at high speed by irradiating the resistor with a laser under control by an NC control device or the like.

第3図には、前記第一実施例の直流電源で得られた抵抗
体により計測した外力(Kgf)と電気抵抗(Ω)との
関係を表した曲線31と、第二実施例のr on= 1
5μs、 r off = 10pg、電流密度25A
/cm2のパルスメッキを、レーザ光線を形成する抵抗
体の寸法、形状に照射しつ一行なって(レーザメッキに
ついては、例えば特開昭57−200,590号公報参
照)得られた抵抗体により計測した外力(Kgf)と電
気抵抗(Ω)との関係を表した曲線32と、レーザをメ
ッキにより得られた抵抗体に熱処理(230℃でlh)
を施した後計測した外力(Kgf)に対する電気抵抗(
Ω)との関係を表した曲線33とを対比して示しである
FIG. 3 shows a curve 31 representing the relationship between the external force (Kgf) and the electrical resistance (Ω) measured by the resistor obtained with the DC power supply of the first embodiment, and the r on of the second embodiment. = 1
5 μs, r off = 10 pg, current density 25 A
/cm2 pulse plating is performed by irradiating the size and shape of the resistor forming a laser beam (for laser plating, see, for example, Japanese Patent Application Laid-Open No. 57-200,590). Curve 32 representing the relationship between the measured external force (Kgf) and electrical resistance (Ω), and heat treatment (1h at 230°C) of the resistor obtained by laser plating.
Electrical resistance (Kgf) against external force (Kgf) measured after applying
Ω) in comparison with a curve 33 representing the relationship with Ω).

第二実施例のレーザを照射して得た抵抗体は、第一実施
例により得られた抵抗体に比して電気抵抗が最大許容外
力で約1.5倍となった。
The resistor obtained by irradiating the laser of the second example had an electrical resistance approximately 1.5 times greater in maximum allowable external force than the resistor obtained by the first example.

畝上の如く、本発明に係る抵抗体は、従来公知の金属抵
抗体に比して大幅に感度を向上させることができるもの
である。
As mentioned above, the resistor according to the present invention can significantly improve sensitivity compared to conventionally known metal resistors.

本発明に係る抵抗体は、力や歪の外、磁気等の計測がで
きるものであり、又例えば、ロボット、自動車、自動機
械、工具、磁石等に利用して各種各様の外力等の計測に
供することもできるものである。
The resistor according to the present invention can measure not only force and strain but also magnetism, etc., and can also be used in robots, automobiles, automatic machines, tools, magnets, etc. to measure various external forces. It can also be provided to

〔発明の効果〕〔Effect of the invention〕

本発明は畝上の如く構成されるから、本発明によるとき
は、磁気的特性及び機械的特性に優れ、歪を高感度に検
知することができる歪計用抵抗体を提供し得るものであ
る。
Since the present invention has a ridge-like structure, it is possible to provide a resistor for a strain meter that has excellent magnetic and mechanical properties and can detect strain with high sensitivity. .

尚、本発明の構成は畝上の実施例に限定されるものでは
なく、本発明の目的の範囲内で自由に各種公知の電気メ
ッキ法、化学メッキ法等或いは磁界発生装置を用いるこ
とができるものであり、本発明はそれらの総てを包摂す
るものである。
Note that the configuration of the present invention is not limited to the embodiment on the ridges, and various known electroplating methods, chemical plating methods, etc. or magnetic field generation devices can be freely used within the scope of the purpose of the present invention. The present invention encompasses all of them.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る歪計用抵抗体の一実施例を示す
側面断面図、第2図は、従来の歪計用抵抗体と本発明に
より得た歪計用抵抗体との歪率と電気抵抗変化率との関
係を示すグラフ、第3FI!Jは、本発明の他の一実施
例により得た歪計用抵抗体の外力に対する電気抵抗の関
係を示すグラフである。
FIG. 1 is a side cross-sectional view showing one embodiment of a resistor for strain gauges according to the present invention, and FIG. 2 is a cross-sectional view of a conventional resistor for strain gauges and a resistor for strain gauges obtained according to the present invention. Graph showing the relationship between rate and rate of change in electrical resistance, 3rd FI! J is a graph showing the relationship between the electric resistance and the external force of the strain meter resistor obtained according to another example of the present invention.

Claims (1)

【特許請求の範囲】 1)Ni、Cr、Fe、Co、Cu、Au、Ptから成
る群のなかから選ばれた少なくとも一種の金属を、磁界
中で薄層状に析出させて成る歪計用抵抗体。 2)電気メッキ法により金属を析出させた特許請求の範
囲第1項記載の歪計用抵抗体。 3)化学メッキ法により金属を析出させた特許請求の範
囲第1項記載の歪計用抵抗体。 4)1KG以上の磁界内で金属を析出させた特許請求の
範囲第1項記載の歪抵抗体。
[Claims] 1) A resistor for strain gauges made of at least one metal selected from the group consisting of Ni, Cr, Fe, Co, Cu, Au, and Pt, deposited in a thin layer in a magnetic field. body. 2) A resistor for a strain gauge according to claim 1, in which metal is deposited by electroplating. 3) A resistor for a strain gauge according to claim 1, in which metal is deposited by a chemical plating method. 4) The strain resistor according to claim 1, wherein metal is deposited in a magnetic field of 1 KG or more.
JP19811786A 1986-08-26 1986-08-26 Resistor for strain meter Pending JPS6355404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19811786A JPS6355404A (en) 1986-08-26 1986-08-26 Resistor for strain meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19811786A JPS6355404A (en) 1986-08-26 1986-08-26 Resistor for strain meter

Publications (1)

Publication Number Publication Date
JPS6355404A true JPS6355404A (en) 1988-03-09

Family

ID=16385747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19811786A Pending JPS6355404A (en) 1986-08-26 1986-08-26 Resistor for strain meter

Country Status (1)

Country Link
JP (1) JPS6355404A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100386311C (en) * 2003-12-16 2008-05-07 日本曹达株式会社 Method for producing chlorosulfonyl isocyanate
WO2019098072A1 (en) * 2017-11-15 2019-05-23 ミネベアミツミ株式会社 Strain gauge
WO2019124019A1 (en) * 2017-12-20 2019-06-27 国立大学法人筑波大学 Curvature detection sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100386311C (en) * 2003-12-16 2008-05-07 日本曹达株式会社 Method for producing chlorosulfonyl isocyanate
WO2019098072A1 (en) * 2017-11-15 2019-05-23 ミネベアミツミ株式会社 Strain gauge
JP2019090721A (en) * 2017-11-15 2019-06-13 ミネベアミツミ株式会社 Strain gauge
WO2019124019A1 (en) * 2017-12-20 2019-06-27 国立大学法人筑波大学 Curvature detection sensor
JPWO2019124019A1 (en) * 2017-12-20 2020-12-17 国立大学法人 筑波大学 Curve detection sensor

Similar Documents

Publication Publication Date Title
US6097276A (en) Electric resistor having positive and negative TCR portions
US4438291A (en) Screen-printable thermocouples
US2438205A (en) Measuring instrument
EP0151236B1 (en) Apparatus for and method of monitoring the operations of a plating process
US4817436A (en) Measuring device forming fluxmeter and temperature sensor combined and process for preparing the same
US2851570A (en) Corrosion test probes for use with corrosion testing apparatus
US4853671A (en) Electric laminar resistor and method of making same
JPH06267707A (en) Current detecting resistor and manufacture thereof
US3705993A (en) Piezoresistive transducers and devices with semiconducting films and their manufacturing process
JP2886343B2 (en) Method of manufacturing parts on metal film base
JPS6355404A (en) Resistor for strain meter
US2715666A (en) Electric strain gage
JPS62291001A (en) Thin film thermistor and manufacture of the same
US3022570A (en) Vacuum deposited strain gage and method of making same
US3851291A (en) Thin film thermistor
EP0063264B1 (en) Method for the manufacture of a temperature sensitive platinum thin film resistance element
US3621567A (en) Process for producing metallic film resistors
JPS59195889A (en) Manufacture of ferromagnetic magnetoresistance effect element with yoke
JPS59195887A (en) Manufacture of ferromagnetic substance magnetoresistance effect element with yoke
JPS5786124A (en) Magnetic resistance effect type magnetic head and its manufacture
RU2053517C1 (en) Method for producing sensing element of electrically reverberated primary transducer
EP0060427A2 (en) Sensor device for the measurement of physical quantities, as well as a process for its manufacture, and its application
JPS58128759A (en) Thick film circuit substrate
KR890002872B1 (en) Method of thin film magnetic register element
JPS60117684A (en) Manufacture of amorphous si solar battery