JPS60117684A - Manufacture of amorphous si solar battery - Google Patents

Manufacture of amorphous si solar battery

Info

Publication number
JPS60117684A
JPS60117684A JP58224112A JP22411283A JPS60117684A JP S60117684 A JPS60117684 A JP S60117684A JP 58224112 A JP58224112 A JP 58224112A JP 22411283 A JP22411283 A JP 22411283A JP S60117684 A JPS60117684 A JP S60117684A
Authority
JP
Japan
Prior art keywords
film
mask
substrate
electrodes
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58224112A
Other languages
Japanese (ja)
Inventor
Hideo Tanabe
英夫 田辺
Seiji Kumada
熊田 政治
Hiroshi Kawasaki
浩 川崎
Akira Misumi
三角 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Consumer Electronics Co Ltd
Japan Display Inc
Original Assignee
Hitachi Device Engineering Co Ltd
Hitachi Ltd
Hitachi Consumer Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Device Engineering Co Ltd, Hitachi Ltd, Hitachi Consumer Electronics Co Ltd filed Critical Hitachi Device Engineering Co Ltd
Priority to JP58224112A priority Critical patent/JPS60117684A/en
Publication of JPS60117684A publication Critical patent/JPS60117684A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To reduce damage to be generated in a masking process and to prevent short circuits between a substrate and electrodes by a method wherein a mask with at least one of its layers coated with a polymer film is used in the formation on a substrate of a rear-side electrode pattern, amorphous Si film, transparent electrode pattern, and a passivation film. CONSTITUTION:In processes wherein rear-side electrodes 31-34, amorphous Si film 4, transparent electrodes 51-54, passivation film 6 are patterned under mask, a mask with at least one side thereof facing a substrate 1 coated with a polymer layer, such as a polyimide-based resin that is 5mum thick, is used. With the polymer film 12 coating the mask 13 fixed tight to the resin thin film 2 on a stainless steel substrate 1, possible damage to the resin thin film 2 is remarkably prevented. Short circuits between the stainless steel substrate 1 and the rear-side electrodes 31-34 or those between the rear-side electrodes 31-34 and transparent 51-54 are also completely eliminated.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は非晶質シリコン太陽電池の製造方法に関する。[Detailed description of the invention] [Field of application of the invention] The present invention relates to a method for manufacturing an amorphous silicon solar cell.

〔発明の背景〕[Background of the invention]

非晶質シリコン太陽電池は、透明電極と非晶質シリコン
と背面電極とよりなるセル1個当り螢光打丁で得られる
開放電圧が約0.7v前後である。
An amorphous silicon solar cell has an open-circuit voltage of about 0.7 V obtained with a fluorescent knife per cell consisting of a transparent electrode, amorphous silicon, and a back electrode.

そこで太陽電池を例えば電卓などの電源として用いた場
合、少なくとも3個以上のセルを直列接続する必要があ
る。この直列接続は透明電極および背面電極のパタン形
成時に1つの基板上tこ形成されるが、前記透明電極と
背面電極を種々の目的に応じたパタンにする方法には、
次の2通りの方法がある。
Therefore, when a solar cell is used as a power source for, for example, a calculator, it is necessary to connect at least three or more cells in series. This series connection is formed on one substrate when forming the pattern of the transparent electrode and the back electrode, but methods for forming the transparent electrode and the back electrode into patterns according to various purposes include:
There are two methods:

第1の方法は、各電極の成膜後にホトエツチングにより
所望のバタンにする方法で、現在一般的に行なわれてい
る方法である。しかし、この方法はコストが高く、また
電極、半導体などを一貫成膜するのは不可能である。
The first method is to form a desired pattern by photoetching after forming each electrode, and is a method commonly used at present. However, this method is expensive, and it is impossible to form electrodes, semiconductors, etc. in an integrated manner.

第2の方法は、成膜時に所望のパタンをくり抜いたマス
クを基板に密着させて行なうマスク成膜による方法であ
る。この方法は特に可撓性基板を用いた太陽電池の作製
に適し、−貫成膜化が容易で、製造コストも低くするこ
とができる。しかし、この方法は次のような欠点を有す
る。
The second method is a method of mask film formation in which a mask with a desired pattern cut out is brought into close contact with the substrate during film formation. This method is particularly suitable for the production of solar cells using flexible substrates; - through-film formation is easy; and manufacturing costs can be reduced. However, this method has the following drawbacks.

電極や半導体、パッシベーション−などのパタンをマス
ク成膜により形成する場合、マスクと基板は十分に密着
していないと、蒸発粒子の回り込が生じ、所望の特性が
得、られなくなることがある。
When forming patterns for electrodes, semiconductors, passivation, etc. by mask film formation, if the mask and substrate are not in close contact with each other, evaporated particles may wrap around, making it impossible to obtain desired characteristics.

そこで、マスクと基板が十分密着するようにさせると、
マスクが、基板に絶縁層として形成された樹脂薄膜ある
いは既に成膜された膜上に傷を生じさせるという問題が
生じる。傷が発生すると、基板と背面電極および透明電
極と背面電極間に電気的短絡が生じ、太陽電池としての
出力が低下したり、場合によっては全く出力が得られな
くなったりする°。
Therefore, by making sure that the mask and substrate are in close contact with each other,
A problem arises in that the mask causes scratches on the resin thin film formed as an insulating layer on the substrate or on the film that has already been formed. When scratches occur, an electrical short circuit occurs between the substrate and the back electrode, and between the transparent electrode and the back electrode, resulting in a decrease in the output of the solar cell, or in some cases, no output at all.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、基板あるいは既に成膜された膜上への
傷を防止することができる非晶質シリコン太陽電池の製
造方法を提供するにある。
An object of the present invention is to provide a method for manufacturing an amorphous silicon solar cell that can prevent damage to a substrate or a film that has already been formed.

〔発明の概要〕[Summary of the invention]

本発明は、基板上に背WI電極のバタン、非晶質シリコ
ン膜、透明電極のバタンおヨヒバッシヘーション膜のう
ち少なくとも1つをマスク成膜してなる非晶質シリコン
太陽電池の製造方法において、前記マスク成膜のうち、
少なくとも1つのマスク成膜を、少なくとも前記基板側
の面に高分子樹脂薄膜をコートしたマスクを用いて行な
うことを特徴とする。
The present invention provides a method for manufacturing an amorphous silicon solar cell in which at least one of a back WI electrode, an amorphous silicon film, and a transparent electrode is deposited on a substrate using a mask. In the mask film formation,
The method is characterized in that at least one mask film formation is performed using a mask whose surface on at least the substrate side is coated with a thin polymer resin film.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図により説明する。可撓
性かつ耐熱性を有する例えば板厚約io。
An embodiment of the present invention will be described below with reference to FIG. For example, a plate having a thickness of about io, which is flexible and heat resistant.

μmのステンレス基板1の上面に耐熱性を有する高分子
樹脂薄膜2、例えばボリイξド系樹脂を厚さ約2〜10
μm程度に形成する。この場合、膜形成方法としては、
液状の樹脂をスプレもしくはディップ法等により一様l
こ塗布し、これを約350℃の高温度で硬化して形成す
る。次ニ樹脂薄膜2上lこステンレスのマスク(図示せ
ず)を密着させてステンレスをスパッタすることにより
膜厚約1000〜2000A程度の背面電極31,32
.33.34をそれぞれ所定間隔でマスク成膜する。
A heat-resistant polymeric resin thin film 2, such as a polyamide resin, is coated on the top surface of a stainless steel substrate 1 with a thickness of approximately 2 to 10 μm.
It is formed to a size of approximately μm. In this case, the film formation method is as follows:
Uniformly apply liquid resin by spraying or dipping.
This is applied and cured at a high temperature of about 350°C. Next, a stainless steel mask (not shown) is placed on the thin resin film 2 and stainless steel is sputtered onto the back electrodes 31 and 32 to a film thickness of about 1000 to 2000 Å.
.. 33 and 34 are formed using masks at predetermined intervals.

続いて各背面電極31〜34上にプラズマCvDにより
基板温度約250℃でp、i、nまたはn11、pの顔
に非晶質シリコン膜4をステンレスのマスクを密着させ
゛Cマスク成膜する。次に前記各背面電極31〜34と
対向する非晶質シリコン膜4上には、隣接する各背面電
極31〜34の一端に接続するようにIn、0.を約8
00λの厚さにステンレスのマスクを密着させてスパッ
タして透明電極51,52.53.54をマスク成膜す
る。
Subsequently, an amorphous silicon film 4 is formed on each of the back electrodes 31 to 34 by plasma CVD at a substrate temperature of about 250° C. by closely adhering a stainless steel mask to the face of p, i, n or n11, p. . Next, on the amorphous silicon film 4 facing each of the back electrodes 31 to 34, In, 0.0. about 8
Transparent electrodes 51, 52, 53, and 54 are formed by sputtering with a stainless steel mask in close contact with a thickness of 00λ.

最後に、透明電極51〜54上にステンレスのマスクを
密着させて8i0.を約200OAの厚さにスパッタし
てパッシベーション膜6をマスク成膜し、4個直列接続
された非晶質シリコン太陽電池を完成した。この場合、
4個の非晶質シリコン太陽電池の相互の接続は各透明電
極51〜54の電極パターンの形成と同時に形成され、
また背面電極34の一端部と透明電極51の一端部には
出力電圧取り出し用の端子34a、51aがそれぞれ形
成されている。
Finally, a stainless steel mask is brought into close contact with the transparent electrodes 51 to 54 and 8i0. A passivation film 6 was formed using a mask by sputtering to a thickness of about 200 OA, thereby completing four amorphous silicon solar cells connected in series. in this case,
The mutual connection of the four amorphous silicon solar cells is formed simultaneously with the formation of the electrode pattern of each transparent electrode 51 to 54,
Further, terminals 34a and 51a for output voltage extraction are formed at one end of the back electrode 34 and one end of the transparent electrode 51, respectively.

ところで、本発明においては、背面電極31〜34のマ
スク成膜、非晶質シリコン膜4のマスク成膜、透明電極
51〜54のバタンのマスク成膜右よびパッシベーショ
ン膜6のマスク成膜は、少なくとも基板1側の面に高分
子樹脂薄膜例えばポリイiドJjlN19$、 !、 
a電鵜麿コートI、ナーマス々ん用いて行なう。
By the way, in the present invention, the mask deposition of the back electrodes 31 to 34, the mask deposition of the amorphous silicon film 4, the mask deposition of the transparent electrodes 51 to 54, and the mask deposition of the passivation film 6 are as follows. At least on the surface of the substrate 1 side, a thin polymer resin film such as polyimide JjlN19$ is applied! ,
a) Perform using Den Umaro Coat I and Namasu.

今、1例として、背面電極31〜34のマスク成膜時の
概略図を第2図に示す。真空槽10内には基板ホルダ1
1が懸垂されており、樹脂薄膜2が形成されたステンレ
ス基板1および高分子樹脂薄膜12がコートされたマス
ク13が前記基板ホルダ11の下面に保持されている。
As an example, FIG. 2 shows a schematic diagram of the back electrodes 31 to 34 during mask film formation. A substrate holder 1 is placed inside the vacuum chamber 10.
1 is suspended, and a stainless steel substrate 1 on which a resin thin film 2 is formed and a mask 13 coated with a polymeric resin thin film 12 are held on the lower surface of the substrate holder 11.

そこで、基板ホルダ11の下方に配設されたターゲット
14よりステンレスをスパッタすると、第1図に示す背
面電極31〜34がマスク13を介してマスク成膜され
る。
Therefore, when stainless steel is sputtered from a target 14 disposed below the substrate holder 11, the back electrodes 31 to 34 shown in FIG. 1 are formed through the mask 13.

こノヨウに、マスク13にコートした高分子樹脂膜12
をステンレス基板l上の樹脂薄膜2に密着させるので、
樹脂薄膜2への傷は著しく抑止され、ステンレス基板l
と背面電極31〜34の短絡は完全lζ防止される。前
記のようlこ、他の各層4.51〜54.6のマスク成
膜も高分子樹脂薄膜ヲコートしたマスクを用いて行なえ
ば、背向・1極31〜34と透明電極51〜54間の短
絡も完全に防止される。
Additionally, the polymer resin film 12 coated on the mask 13
Since it is brought into close contact with the resin thin film 2 on the stainless steel substrate l,
Scratches on the resin thin film 2 are significantly suppressed, and the stainless steel substrate l
A short circuit between the back electrodes 31 to 34 is completely prevented. As mentioned above, if the mask film formation of each of the other layers 4.51 to 54.6 is also performed using a mask coated with a thin polymer resin film, the formation of the mask between the back-facing single poles 31 to 34 and the transparent electrodes 51 to 54 is possible. Short circuits are also completely prevented.

本実施例の場合、セル1個(受光面積lcr&)当りの
開放電圧はo、61’であり、セル間の絶縁不良による
損失は全く生じなく、また各セル共0.66vが得られ
、1つのセル内での電極間短絡による不良も従来すこ比
べ大幅に減少し、2001uxの螢光打丁において、約
2.64v(0,66X4V’)の開放電圧と約20μ
λ7−の短絡電流が得られた。
In the case of this example, the open circuit voltage per cell (light-receiving area lcr&) is o, 61', no loss occurs due to poor insulation between cells, and 0.66 V is obtained for each cell, 1 The number of defects caused by short circuits between electrodes within one cell has also been significantly reduced compared to the conventional method, and the open circuit voltage of approximately 2.64V (0.66X4V') and approximately 20 μ
A short circuit current of λ7- was obtained.

なお、前記実施例においては、マスクにコートした高分
子樹脂薄膜の厚さは5μmの場合について説明したが、
これに限定されるものではなく、0.5〜300μmの
範囲であれば良い。この場合、膜厚が0.5μm以下で
は傷の抑止に効果がなくな、す、300μm以上ではこ
れ以上厚くしても単に膜厚を厚くするのみで意味がなく
、真空中での放出ガス量も問題になる。従って、実際の
使用に際しては、2〜20μ扉程度が最適である。また
ポリイミド系樹脂に限らず、シリコーン樹脂等を用いて
も同様の効果が得られる。またマスクの材質もステンレ
スに限定されるものではない。
In the above example, the thickness of the polymer resin thin film coated on the mask was 5 μm.
It is not limited to this, but may be in the range of 0.5 to 300 μm. In this case, if the film thickness is less than 0.5 μm, it will not be effective in preventing scratches, and if it is more than 300 μm, there is no point in increasing the film thickness, and the amount of gas released in a vacuum. is also a problem. Therefore, in actual use, a door size of about 2 to 20 μm is optimal. Moreover, the same effect can be obtained not only by using polyimide resin but also by using silicone resin or the like. Furthermore, the material of the mask is not limited to stainless steel.

また、前記実施例に示すように各層のマスク成膜を全て
高分子樹脂薄膜がコートされたマスクで行なった方が効
果的であることはいうまでもないが、少なくとも一つの
層についCのみ高分子樹脂薄膜がコートされたマスクで
行なっても従来より良好な効果が得られる。
It goes without saying that it is more effective to perform mask film formation for each layer using a mask coated with a thin polymer resin film as shown in the above example, but it is also possible to Even if the mask is coated with a molecular resin thin film, better effects can be obtained than in the past.

上記実施例の構造の素子においC一つの層のみ高分子樹
脂薄膜をコートしたマスクを使用するならば、透明電極
51〜54にこれを適用するのが最も効果的である。こ
れは、その前に成膜された非晶質シリコン膜が傷に対し
て最も敏感で、特性に悪影響を及ぼすからである。
If a mask in which only one layer of C is coated with a thin polymer resin film is used in the device having the structure of the above embodiment, it is most effective to apply this to the transparent electrodes 51 to 54. This is because the amorphous silicon film formed before that is most sensitive to scratches, which adversely affects the characteristics.

また、前記実施例においては、基板]とし°C1ステン
レス基板を用いた場合についで説明したが、本発明はこ
れに限定されるものではなく、金属基板、例えばFe−
Ni合金板または高分子樹脂膜として例えばポリイミド
系のカプトン(商品名)を用いても同様の効果が得られ
る。また可撓性基板に限定さイLなく、例えばガラス基
板を用いてもよい。また基板の厚さも特lこ100μm
rL4こ限定されるものではない。
Further, in the above embodiment, a case was explained in which a °C1 stainless steel substrate was used as the substrate, but the present invention is not limited to this, and a metal substrate, for example, a Fe-
Similar effects can be obtained by using, for example, polyimide Kapton (trade name) as the Ni alloy plate or polymer resin film. Further, the substrate is not limited to a flexible substrate, and for example, a glass substrate may be used. Also, the thickness of the substrate is 100 μm.
It is not limited to rL4.

また、前記実施例においては、基板l上に形成する高分
子樹脂薄膜2は、約2〜10μmの厚さに形成した場合
について説明したが、この膜厚は基板の板厚によっても
異なるので、概略0.1〜100μmの範囲で形成すれ
ばよい。この場合、膜厚は0.1μm以下では絶縁性が
得られず、100μm以上となると折り曲げたときに膜
剥れが生ずる。また、膜特性、生産性などの点から考慮
して2〜lOμmの範囲が最適である。
Further, in the above embodiment, the case where the polymer resin thin film 2 formed on the substrate l was formed to have a thickness of about 2 to 10 μm was explained, but since this film thickness varies depending on the thickness of the substrate, What is necessary is just to form it in the range of about 0.1-100 micrometers. In this case, if the film thickness is 0.1 μm or less, insulation cannot be obtained, and if it is 100 μm or more, the film will peel off when it is bent. Further, in consideration of film properties, productivity, etc., a range of 2 to 10 μm is optimal.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、少なくとも一つの層を高分子樹脂薄膜
をコートしたマスクを用いてマスク成膜してなるので、
膜傷が著しく抑止され、基板と背面電極間または背面電
極と透明電極間の短絡を抑制することができ、信頼性の
高い高品質、高性能の非晶質シリコン太陽電池が得られ
る。
According to the present invention, since at least one layer is formed using a mask coated with a thin polymer resin film,
Film scratches are significantly suppressed, short circuits between the substrate and the back electrode or between the back electrode and the transparent electrode can be suppressed, and a highly reliable, high-quality, high-performance amorphous silicon solar cell can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法により作製した非晶質シリコン太
陽電池の一実施例を示し、(a)は要部の一部破断乎面
図、(b)はtalのA−A線にそう断面図、第2図は
マスク成膜状態の一実施例を示す概略図である。 1・・・ステンレス基板、 2・・・高分子stn旨薄
膜、31〜34・・・背面電極、4・・・非晶質シIJ
コン膜、 51〜54・・・透明電極、 12・・・高
分子樹脂薄膜、 】3・・・マスク。 第1図 (0) (b) 第2図
FIG. 1 shows an example of an amorphous silicon solar cell produced by the method of the present invention, (a) is a partially cutaway view of the main part, and (b) is a view taken along line A-A of tal. The cross-sectional view and FIG. 2 are schematic diagrams showing an example of a mask film forming state. DESCRIPTION OF SYMBOLS 1... Stainless steel substrate, 2... Polymer stn thin film, 31-34... Back electrode, 4... Amorphous steel IJ
Con film, 51-54...Transparent electrode, 12...Polymer resin thin film, ]3...Mask. Figure 1 (0) (b) Figure 2

Claims (1)

【特許請求の範囲】[Claims] 基板上に背面電極のバタン、非晶質シリコン膜、透明電
極のバタンおよびパッシベーション膜のうち少なくとも
1つをマスク成膜してなる非晶質シリコン太陽電池の製
造方法において、前記マスク成膜のうち、少なくとも1
つのマスク成膜を、少なくとも前記基板側の面に高分子
樹脂薄膜をコートしたマスクを用いて行なうことを特徴
とする非晶質シリコン太陽電池の製造方法。
In a method for manufacturing an amorphous silicon solar cell, in which at least one of a back electrode layer, an amorphous silicon film, a transparent electrode layer, and a passivation film are formed on a substrate using a mask, , at least 1
1. A method for manufacturing an amorphous silicon solar cell, characterized in that two mask film formations are performed using a mask whose surface on at least the substrate side is coated with a thin polymer resin film.
JP58224112A 1983-11-30 1983-11-30 Manufacture of amorphous si solar battery Pending JPS60117684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58224112A JPS60117684A (en) 1983-11-30 1983-11-30 Manufacture of amorphous si solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58224112A JPS60117684A (en) 1983-11-30 1983-11-30 Manufacture of amorphous si solar battery

Publications (1)

Publication Number Publication Date
JPS60117684A true JPS60117684A (en) 1985-06-25

Family

ID=16808718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58224112A Pending JPS60117684A (en) 1983-11-30 1983-11-30 Manufacture of amorphous si solar battery

Country Status (1)

Country Link
JP (1) JPS60117684A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441276A (en) * 1987-08-07 1989-02-13 Fuji Electric Co Ltd Forming method for thin film
EP0481094A1 (en) * 1990-05-07 1992-04-22 Canon Kabushiki Kaisha Solar cell
JP2006296188A (en) * 2005-03-18 2006-10-26 Hitachi Industrial Equipment Systems Co Ltd Multiple phase claw-pole type motor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441276A (en) * 1987-08-07 1989-02-13 Fuji Electric Co Ltd Forming method for thin film
EP0481094A1 (en) * 1990-05-07 1992-04-22 Canon Kabushiki Kaisha Solar cell
EP0481094A4 (en) * 1990-05-07 1994-03-30 Canon Kabushiki Kaisha
JP2006296188A (en) * 2005-03-18 2006-10-26 Hitachi Industrial Equipment Systems Co Ltd Multiple phase claw-pole type motor

Similar Documents

Publication Publication Date Title
US4152195A (en) Method of improving the adherence of metallic conductive lines on polyimide layers
CN103996618B (en) Manufacturing method for TFT electrode lead
JPS60117684A (en) Manufacture of amorphous si solar battery
JPH02163938A (en) Manufacture of semiconductor element
US9941858B2 (en) Electricoacoustic component with structured conductor and dielectric layer
US3723178A (en) Process for producing contact metal layers consisting of chromium or molybdenum on semiconductor components
JPS5947776A (en) Amorphous silicon solar battery
JPS60117685A (en) Amorphous si solar battery
KR20020091930A (en) A Method of Plate Type Magnetic Resistance Sensor Chip Element
JPS62113483A (en) Thin-film solar cell
CN114459624B (en) Built-in film thermocouple and preparation method thereof
JPS60182176A (en) Manufacture of amorphous silicon solar battery
JP2753379B2 (en) Method for manufacturing semiconductor device
JPS603152A (en) Manufacture of amorphous semiconductor device
US5989442A (en) Wet etching
JPS57153436A (en) Semiconductor device
JPH03106080A (en) Manufacture of superconducting device
JPS6059742B2 (en) Semiconductor device and its manufacturing method
JPS61240661A (en) Forming method of thick film metal pattern
JPS59189680A (en) Amorphous silicon solar battery
JPS6281778A (en) Amorphous silicon thin film device
JPS62281356A (en) Manufacture of semiconductor device
JPH0232590A (en) Manufacture of copper-organic insulating film wiring board
JPS62291064A (en) Manufacture of thin film transistor
JPS6027177A (en) Thin film type semiconductor device and manufacture thereof