JPS60182176A - Manufacture of amorphous silicon solar battery - Google Patents

Manufacture of amorphous silicon solar battery

Info

Publication number
JPS60182176A
JPS60182176A JP59036074A JP3607484A JPS60182176A JP S60182176 A JPS60182176 A JP S60182176A JP 59036074 A JP59036074 A JP 59036074A JP 3607484 A JP3607484 A JP 3607484A JP S60182176 A JPS60182176 A JP S60182176A
Authority
JP
Japan
Prior art keywords
amorphous silicon
film
substrate
silicon solar
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59036074A
Other languages
Japanese (ja)
Inventor
Hiroshi Kawasaki
浩 川崎
Hideo Tanabe
英夫 田辺
Seiji Kumada
熊田 政治
Akira Misumi
三角 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Consumer Electronics Co Ltd
Japan Display Inc
Original Assignee
Hitachi Device Engineering Co Ltd
Hitachi Ltd
Hitachi Consumer Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Device Engineering Co Ltd, Hitachi Ltd, Hitachi Consumer Electronics Co Ltd filed Critical Hitachi Device Engineering Co Ltd
Priority to JP59036074A priority Critical patent/JPS60182176A/en
Publication of JPS60182176A publication Critical patent/JPS60182176A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To restrain the electric characteristics from deterioration by means of preventing any defect, shortcircuit etc. caused in case of forming upper electrodes from happening by a method wherein upper electrodes are formed by means of etching for patterning process utilizing reflection preventing films as masks. CONSTITUTION:After forming stainless steel made electrodes 3a-3d on the surface of a stainless steel substrate around 100mum thick through the intermediary of a heat resistant high molecular film 2 and a mask, an amorphous silicon film 4 is formed by plasma CVD process. Next SiO2 films 6a-6d as reflection preventing films are formed on the positions opposing to the electrodes 3a-3d on the overall surface by means of sputtering In2O3 at the thickness of 800Angstrom and further utilizing masks. Finally upper electrodes 5a-5d as transparent conductive films are formed by means of etching for patterning process utilizing the reflection preventing films as masks.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は非晶質シリコン太陽電池の製造方法に係わシ、
特に非晶質シリコン膜上に成膜される上部電極のパター
ン形成方法に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for manufacturing an amorphous silicon solar cell.
In particular, the present invention relates to a method for forming a pattern of an upper electrode formed on an amorphous silicon film.

〔発明の背景〕[Background of the invention]

一般に、非晶質シリコンからなる太陽電池の基板として
は、透光性ガラス板もしくはステンレス板材が多くの優
れた特徴を有していることから、近年ではその主流とな
っている。−万、非晶質シリコンを用いた太陽電池はセ
ル1個当りで螢光打丁で得られる開放電圧が約0.7 
V前後であり、この太陽電池を例えば電卓等の電源とし
て用いた場合、少なくとも3個以上のセルを直列接続す
る必要がある。通常、基板としてガラス板を用いた場合
は、表面が平滑であり、かつ十分な絶縁性を有している
ため、このガラス基板上に直列接続構造の太陽電池を形
成することは極めて容易である。
Generally, in recent years, transparent glass plates or stainless steel plates have become mainstream as substrates for solar cells made of amorphous silicon because they have many excellent features. - Solar cells using amorphous silicon have an open circuit voltage of about 0.7 per cell that can be obtained with a fluorescent knife.
When this solar cell is used as a power source for a calculator, for example, it is necessary to connect at least three or more cells in series. Normally, when a glass plate is used as a substrate, the surface is smooth and has sufficient insulation properties, so it is extremely easy to form solar cells with a series connection structure on this glass substrate. .

しかしながら、最近では可撓性基板を用いた太陽電池の
要求が高まり、この場合、上述したガラス基板の使用は
不可能である。そこで、可撓性基板としてステンレスフ
ィルムや高分子樹脂膜を用いは電極、非晶質シリコン膜
等をマスクを用いて形成する必要がある。しかしながら
、マスクにょシパターシを形成すると、電極間の短絡や
欠陥等の電気的特性を損ねるという問題があった。
However, recently there has been an increasing demand for solar cells using flexible substrates, and in this case it is impossible to use the above-mentioned glass substrate. Therefore, when a stainless steel film or a polymer resin film is used as a flexible substrate, it is necessary to form electrodes, an amorphous silicon film, etc. using a mask. However, when a mask pattern is formed, there is a problem in that electrical characteristics are impaired, such as short circuits and defects between electrodes.

そのため、この対策として既に本発明者等により可撓性
かつ耐熱性を有するマスクに高分子樹脂膜を塗布し、こ
のマスクを使用して上部電極等のパターンを形成するこ
とによって前述した短絡および欠陥等の発生の少ない非
晶質シリコン太陽電池を製造する方法が提案されている
Therefore, as a countermeasure to this problem, the inventors have already coated a flexible and heat-resistant mask with a polymer resin film, and used this mask to form patterns for the upper electrode, etc., thereby preventing the short circuits and defects mentioned above. A method of manufacturing an amorphous silicon solar cell that causes less occurrence of such problems has been proposed.

− [発明の目的〕 本発明は、前述した欠点に鑑みてなされたものであり、
前述した本発明者等の既出願とは異なる非晶質シリコン
太陽電池の製造方法に係るもので、その目的とするとこ
ろは、上部電極形成時に生じる欠陥、短絡等の発生を防
止し、電気的特性の低下を抑制した非晶質シリコン太陽
電池の製造方法を提供することにある。
- [Object of the invention] The present invention has been made in view of the above-mentioned drawbacks, and
This relates to a method for manufacturing an amorphous silicon solar cell that is different from the previous application filed by the present inventors, and its purpose is to prevent defects, short circuits, etc. that occur during the formation of the upper electrode, and to prevent electrical An object of the present invention is to provide a method for manufacturing an amorphous silicon solar cell that suppresses deterioration of characteristics.

〔発明の概要〕[Summary of the invention]

このような目的を達成するために本発明は、町癲性かつ
耐熱性を有する基板上に非晶質シリコン膜形成後、上部
電極を全面拠成膜し、この上に反射防止膜を所望の上部
電極パターン形状にマスク成膜した後に上部電極をこの
反射防止膜をマスクとしてエツチングしてパターン形成
するものである。
In order to achieve such an object, the present invention involves forming an amorphous silicon film on a substrate that is flexible and heat resistant, then forming an upper electrode over the entire surface, and then coating a desired anti-reflection film thereon. After forming a mask film in the shape of an upper electrode pattern, the upper electrode is etched using the antireflection film as a mask to form a pattern.

〔発明の実施例〕[Embodiments of the invention]

次に図面を用いて本発明の実施例を詳細に説明する。 Next, embodiments of the present invention will be described in detail using the drawings.

第1図は本発明による非晶質シリコン太陽電池の製造方
法の一例を説明するだめの非晶質シリコン太陽電池の要
部平面図であり、第2図はそのI−■′断面図である。
FIG. 1 is a plan view of a main part of an amorphous silicon solar cell for explaining an example of the method for manufacturing an amorphous silicon solar cell according to the present invention, and FIG. 2 is a sectional view taken along the line I-■'. .

これらの図において、まず、可撓性かつ耐熱性を有する
例えば板厚的100μmのステンレス基板1の上面に耐
熱性を有する高分子樹脂膜2を厚さ約5μ01程度に形
成する。この場合、基板10表面を樹脂膜2との接着性
の観点から処理してもよい。また樹脂膜2の形成方法と
しては、液状の樹脂をスピンナー、スプレーもしくはデ
ィップ法により一様に塗布し、これを約350°C程度
の温度で焼成して形成する。次にこの樹脂膜2上にマス
クを介してステンレスをスパッタしてWAN約2000
λ程度の下部電極3a、 3b、 3c、 3dをそれ
ぞれ所定間隔幅で形成する。次にこれらの各下部電極3
a、 3b、 3c、 3aが形成された高分子樹脂膜
2上にプラズマCVD法によシ、基板lの温度約25υ
°CでR’+’または”+’+pの順に非晶質シリコン
膜4を形成し、さらにこの非晶質シリコン膜今上にマス
ク金柑いず全面にln2 U3を約800λの厚さにス
パッタリングして後述する上部電極と々る透明導電膜を
形成する。次にこの透明導電膜上の前記各下部電極3a
、 3b、 3c、 3dと対向する上面にマスクを用
いてSiO2を約2000^の厚さにスパッタリングし
て反射防止膜としての5i(J2膜6a+ 6b+ 6
c、 6dを形成する。次に非晶質シリコン膜今上に全
面均一に成膜された透明導電膜を゛、前記SiO2膜6
a、 6b。
In these figures, first, a heat-resistant polymer resin film 2 is formed to a thickness of approximately 5 μm on the upper surface of a flexible and heat-resistant stainless steel substrate 1 having a thickness of, for example, 100 μm. In this case, the surface of the substrate 10 may be treated from the viewpoint of adhesion to the resin film 2. The resin film 2 is formed by uniformly applying a liquid resin using a spinner, spraying, or dipping method, and baking it at a temperature of about 350°C. Next, stainless steel was sputtered on this resin film 2 through a mask and the WAN was approximately 2000.
Lower electrodes 3a, 3b, 3c, and 3d of approximately λ are formed at predetermined intervals. Next, each of these lower electrodes 3
A, 3b, 3c, and 3a are formed on the polymer resin film 2 by plasma CVD at a temperature of about 25υ of the substrate l.
An amorphous silicon film 4 is formed in the order of R'+' or "+'+p" at °C, and ln2 U3 is sputtered to a thickness of about 800λ on the entire surface of the mask kumquat on this amorphous silicon film. Then, a transparent conductive film is formed which covers the upper electrode, which will be described later.Next, each of the lower electrodes 3a on this transparent conductive film is formed.
, 3b, 3c, and 3d using a mask to sputter SiO2 to a thickness of about 2000^ to form 5i (J2 film 6a+6b+6) as an antireflection film.
c, forming 6d. Next, a transparent conductive film is formed uniformly over the entire surface of the amorphous silicon film.
a, 6b.

6c、 6dをマスクとしてエツチングすることにより
、上部電極5a+ 5b+ 5c、 5aをそれぞれパ
ターン形成して4個直列接続された非晶質シリコン太陽
電池を完成する。この場合、4個の非晶質シリコン太陽
電池の相互の接続は各上部電極5a+ 5b+ 5c、
 5clの電極パターンの形成と同時に形成され、また
、上部電極5dの一端部と下部電極3aの一端部には出
力眠圧取り出し用の端子5d′、3a′がそれぞれ形成
されている。
By etching using 6c and 6d as masks, upper electrodes 5a+5b+5c and 5a are patterned, respectively, thereby completing four amorphous silicon solar cells connected in series. In this case, the mutual connections of the four amorphous silicon solar cells are each upper electrode 5a+ 5b+ 5c,
Terminals 5d' and 3a' for taking out the output sleep pressure are formed at one end of the upper electrode 5d and one end of the lower electrode 3a, respectively.

このような製造方法によれば、非晶質シリコン膜今上に
マスクを用いて上部電極5a、 5b、 5c、 5d
を形成する代りにエツチングでパターン形成する場合上
部電極マスクにより非晶質シリコン膜4およびF部電極
3a、 3b、 3c、 3dに生じる傷および欠陥が
減少するので、太陽電池の特性が損なわれることがなく
、長期間にわたって約200tuxの螢光打丁において
、約2.8Vの開放電圧と約18μAの灯絡電流が得ら
れた。なお、この場合、セル1個(受光面積1 cvi
l )当りの開放電圧は約0.70Vであり、セル間の
短絡による損失は全く生じなかった。−また、上部@極
5a、 5+)、 5CI 5dをエンf 7グで形成
することにより、初期特性での歩留りは平均60チで最
高90%となるとともに、パターン相互間の短絡が皆無
となり、電気的特性の低下も全く発生しなかった。また
、−ヒ部′嘔惟5a、’5b、 5c、 5dのパター
ンである5itJz膜6a、 6b、 (5c、 6d
のマスクの大きさは、下部電極3a、 3b、 3c、
 3dの大きさよりも小さくする必要はなく、むしろ大
きくした方が短絡に至る場は軽減ざIしるので効果的で
ある。さらにパターン形成された5i(Jz膜6a、 
6b、 6C+ 6aは、透明導電膜のエツチングの際
に耐え得るだけの緻密な膜でなければならず、膜厚は5
00Å〜l panの範囲が望ましい。ここで500 
入以[では、マスクとしての機能が不十分となり、1μ
m以上では膜剥れを生じる恐れがある。特性、生産性等
を考慮すれば1000人〜5000 ”hの膜厚が最適
である。さらに、マスクとして用いる反射防止模はSi
U□についてのみ説明したが、これに限定されるもので
なく、透光性の絶縁膜でかつ上部電極のエツチングに耐
えるものであればよく、例えばM2O1,813N4等
でも同様の効果が得られる。また、成暎法もスパッタに
限らず、真空蒸着、プラズマCVD、イオンブレーティ
ング等でもさしつかえない。そして、下部電極材料もス
テンレスに限定さ!しるものでなくエツチング液による
腐食、耐薬品性が問題となった場合、シリサイド系の材
料を使用することが好ましく、ステンレスと同等の効果
が得られる。
According to such a manufacturing method, the upper electrodes 5a, 5b, 5c, 5d are formed using a mask on the amorphous silicon film.
If a pattern is formed by etching instead of forming a pattern, the upper electrode mask reduces scratches and defects that occur in the amorphous silicon film 4 and the F part electrodes 3a, 3b, 3c, and 3d, so that the characteristics of the solar cell are not impaired. An open circuit voltage of about 2.8 V and a light circuit current of about 18 μA were obtained in a fluorescent lamp of about 200 tux over a long period of time without any irradiation. In this case, one cell (light receiving area 1 cvi
The open circuit voltage per cell was approximately 0.70 V, and no loss occurred due to short circuit between cells. -Also, by forming the upper @poles 5a, 5+) and 5CI 5d with engraving f7, the yield in the initial characteristics is up to 90% with an average of 60 chips, and there is no short circuit between patterns. No deterioration of electrical characteristics occurred at all. In addition, 5itJz membranes 6a, 6b, (5c, 6d
The sizes of the masks are as follows: lower electrodes 3a, 3b, 3c,
It is not necessary to make the size smaller than 3d; in fact, it is more effective to make it larger because the field that leads to a short circuit will be reduced. Furthermore, patterned 5i (Jz film 6a,
6b, 6C+ 6a must be a dense film that can withstand the etching of the transparent conductive film, and the film thickness is 5
A range of 00 Å to l pan is desirable. 500 here
In this case, the function as a mask becomes insufficient, and 1μ
m or more, there is a risk of film peeling. Considering characteristics, productivity, etc., a film thickness of 1,000 to 5,000 h is optimal.Furthermore, the antireflection pattern used as a mask is made of Si.
Although only U□ has been described, it is not limited thereto, and any film may be used as long as it is a light-transmitting insulating film and can withstand etching of the upper electrode. For example, the same effect can be obtained with M2O1, 813N4, etc. Furthermore, the deposition method is not limited to sputtering, and may also be vacuum evaporation, plasma CVD, ion blating, or the like. And the lower electrode material is also limited to stainless steel! If the problem is not corrosion due to etching liquid or chemical resistance, it is preferable to use a silicide-based material, which can provide the same effect as stainless steel.

また、前記実施例において、非晶質シリコン膜を形成す
る可撓性かつ耐熱性を有する基板として、板厚約100
μInのステンレス基板を用いた場合について説明した
が、本発明はこれに限定されるも100μFBIの金属
基板、例えばre−Ni合金板または高分子樹脂膜とし
て例えばポリイミド系のカプトン(商品名)を用いた場
合においても前述と全く同様の効果が得られた。また、
これらの基板の厚さも特に100μmに限定されるもの
ではない。
In the above embodiment, the flexible and heat-resistant substrate on which the amorphous silicon film is formed has a thickness of approximately 100 mm.
Although the case where a μIn stainless steel substrate is used has been described, the present invention is not limited to this, but a 100μFBI metal substrate, such as a re-Ni alloy plate or a polyimide Kapton (trade name) as a polymer resin film, is used. The same effect as described above was obtained even in the case where Also,
The thickness of these substrates is not particularly limited to 100 μm either.

また、前記実施例において、基板上に形成する高分子樹
脂薄膜は、約5μmの厚さに形成した場合について説明
したが、この膜厚は基板の板厚によっても異なるので、
概略0.1〜100μmの範囲で形成すれば良い。この
場合、膜厚は0.1μm以下では絶縁性が得られず、1
00μm以上となると、折9曲げたときに膜剥れが生じ
ることから、この膜厚は0.1〜100μmの範囲が良
く、さらには、膜特性。
Furthermore, in the above embodiment, the case where the polymer resin thin film formed on the substrate was formed to have a thickness of about 5 μm was explained, but since this film thickness varies depending on the thickness of the substrate,
The thickness may be approximately 0.1 to 100 μm. In this case, if the film thickness is less than 0.1 μm, insulation cannot be obtained;
If the thickness is 0.00 μm or more, the film will peel off when it is bent. Therefore, the film thickness should preferably be in the range of 0.1 to 100 μm, and furthermore, the film properties may be affected.

生産性等の点から考慮して2〜10μmの範囲が最適で
ある。
In view of productivity and the like, a range of 2 to 10 μm is optimal.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、非晶質シリコン膜
、電極を形成する可撓性かつ耐熱性を有する基板上に作
製される非晶質シリコン膜の上部電極をエツチングによ
り形成することによシ、上部電極形成時に生じる欠陥、
短絡の発生が皆無となり、電気的特性の経時劣化を確実
に抑制することができるので、信頼性の高い、高品質、
高性能の非晶質シリコン太陽電池が歩貿シ良く得られる
という極めて優れた効果が得られる。
As explained above, according to the present invention, the upper electrode of the amorphous silicon film produced on the flexible and heat-resistant substrate on which the amorphous silicon film and electrode are formed is formed by etching. However, defects that occur during the formation of the upper electrode,
This eliminates the occurrence of short circuits and reliably suppresses deterioration of electrical characteristics over time, resulting in highly reliable, high quality,
An extremely excellent effect is obtained in that a high-performance amorphous silicon solar cell can be easily obtained in trade.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による非晶質シリコン太陽電池の製造方
法の一例を説明するための非晶質シリコン太陽電池の要
部平面図、第2図は第1図のI −■断面図である。 1・・・拳ステンレス基板、2・拳・・高分子樹脂膜、
3a、3b、3c、3d ・oss下部電極、3a・・
・拳端子、4・・・・非晶質シリコン膜、5a。
FIG. 1 is a plan view of a main part of an amorphous silicon solar cell for explaining an example of the method for manufacturing an amorphous silicon solar cell according to the present invention, and FIG. 2 is a sectional view taken along line I-■ in FIG. 1. . 1...Fist stainless steel substrate, 2.Fist...polymer resin film,
3a, 3b, 3c, 3d ・oss lower electrode, 3a...
- Fist terminal, 4...Amorphous silicon film, 5a.

Claims (1)

【特許請求の範囲】 1、 可撓性かつ耐熱性を有する基板と、前記基板上に
形成された下部電極と、前記下部電極上に形成された非
晶質シリコン膜と、前記非晶質シリコン膜上に形成され
た上部電極とを少なくとも備えた非晶質シリコン太陽電
池において、前記非晶質シリコン膜の上面全面に前記上
部電極となる金属膜を積層し、さらにこの金属膜上の所
定位置に反射防止膜を形成した後にこの反射防止膜をマ
スクとして前記金属膜をエツチングして上部電極を形成
することを特徴とした非晶質シリコン太陽電池の製造方
法。 2、前記基板は表面に高分子樹脂膜を有するステンレス
板としたことを特徴とする特許請求の範囲第1項記載の
非晶質シリコン太陽電池の製造方法。 3、 前記基板は高分子樹脂板としたことを特徴とする
特許請求の範囲第1項記載の非晶質シリコン太陽電池の
製造方法。 4、前記基板は、表面に高分子樹脂膜を有する高分子樹
脂板としたことを特徴とする特許詞求の範囲第1項記載
の非晶質シリコン太陽電池の製造方法。
[Claims] 1. A flexible and heat-resistant substrate, a lower electrode formed on the substrate, an amorphous silicon film formed on the lower electrode, and the amorphous silicon. In an amorphous silicon solar cell having at least an upper electrode formed on a film, a metal film serving as the upper electrode is laminated on the entire upper surface of the amorphous silicon film, and a metal film is further laminated at a predetermined position on the metal film. 1. A method of manufacturing an amorphous silicon solar cell, comprising forming an anti-reflection film on the surface of the substrate, and then etching the metal film using the anti-reflection film as a mask to form an upper electrode. 2. The method of manufacturing an amorphous silicon solar cell according to claim 1, wherein the substrate is a stainless steel plate having a polymer resin film on its surface. 3. The method of manufacturing an amorphous silicon solar cell according to claim 1, wherein the substrate is a polymer resin plate. 4. The method for manufacturing an amorphous silicon solar cell according to claim 1, wherein the substrate is a polymer resin plate having a polymer resin film on its surface.
JP59036074A 1984-02-29 1984-02-29 Manufacture of amorphous silicon solar battery Pending JPS60182176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59036074A JPS60182176A (en) 1984-02-29 1984-02-29 Manufacture of amorphous silicon solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59036074A JPS60182176A (en) 1984-02-29 1984-02-29 Manufacture of amorphous silicon solar battery

Publications (1)

Publication Number Publication Date
JPS60182176A true JPS60182176A (en) 1985-09-17

Family

ID=12459589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59036074A Pending JPS60182176A (en) 1984-02-29 1984-02-29 Manufacture of amorphous silicon solar battery

Country Status (1)

Country Link
JP (1) JPS60182176A (en)

Similar Documents

Publication Publication Date Title
US6198051B1 (en) Display substrate electrodes with auxiliary metal layers for enhanced conductivity
US5863412A (en) Etching method and process for producing a semiconductor element using said etching method
JPS59147469A (en) Amorphous silicon solar cell
US5484517A (en) Method of forming multi-element thin hot film sensors on polyimide film
CN103996618B (en) Manufacturing method for TFT electrode lead
JPH0225079A (en) Amorphous semiconductor solar cell
JPS60182176A (en) Manufacture of amorphous silicon solar battery
JPS60117684A (en) Manufacture of amorphous si solar battery
JPS6111749A (en) Photomask blank
JPS5947776A (en) Amorphous silicon solar battery
CN111834488A (en) Preparation method of solar cell
JPH0978236A (en) Forming method of indium/tin oxide transparent conductive film
JPS60117685A (en) Amorphous si solar battery
JP2907318B2 (en) Electrode-embedded substrate and method of manufacturing the same
KR20010084788A (en) Electrode in display panel and manufacturing method thereof
JPS62113483A (en) Thin-film solar cell
CN101963727A (en) FFS (Fringe Field Switching) type TFT (Thin Film Transistor)-LCD (Liquid Crystal Display) array substrate and manufacturing method thereof
JPH10186389A (en) Wiring board, production of wiring board, and liquid crystal element using the wiring board
JPS59189680A (en) Amorphous silicon solar battery
JPS61269381A (en) Manufacture of photovoltaic device
JPS60211906A (en) Amorphous silicon solar cell and preparation thereof
JPS60161686A (en) Manufacture of thin film non-linear device
JPS59193074A (en) Amorphous silicon solar battery
JPS58173874A (en) Amorphous si solar battery
KR20060073770A (en) Cast for plasma display panel electrode