JP2907318B2 - Electrode-embedded substrate and method of manufacturing the same - Google Patents

Electrode-embedded substrate and method of manufacturing the same

Info

Publication number
JP2907318B2
JP2907318B2 JP6216361A JP21636194A JP2907318B2 JP 2907318 B2 JP2907318 B2 JP 2907318B2 JP 6216361 A JP6216361 A JP 6216361A JP 21636194 A JP21636194 A JP 21636194A JP 2907318 B2 JP2907318 B2 JP 2907318B2
Authority
JP
Japan
Prior art keywords
film
electrode
substrate
acid
embedded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6216361A
Other languages
Japanese (ja)
Other versions
JPH0883965A (en
Inventor
利明 安崎
康人 阪井
哲朗 吉井
裕一 青木
英昭 斉藤
幸久 楠田
和夫 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP6216361A priority Critical patent/JP2907318B2/en
Publication of JPH0883965A publication Critical patent/JPH0883965A/en
Application granted granted Critical
Publication of JP2907318B2 publication Critical patent/JP2907318B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Non-Insulated Conductors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は絶縁基板上に成膜された
絶縁膜に電極が埋設して設けられている電極埋設基板及
びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode-embedded substrate in which electrodes are embedded in an insulating film formed on an insulating substrate, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来、電極埋設基板の製造方法として
は、珪弗化水素酸を含む溶液からの酸化ケイ素(Si
2)等の析出堆積によって、親水性の基板表面及び電
極となる金属膜側面への選択的成膜特性を用いて、基板
上に電極を埋設した後の基板表面形状を平坦面にする方
法が知られている。これによれば、Crなどの薄膜の体
積抵抗率で数10から数100μΩcm程度の金属材料で
構成される微細な配線電極膜を、基板表面に平坦に埋め
込むことができる。
2. Description of the Related Art Conventionally, as a method of manufacturing an electrode-embedded substrate, silicon oxide (Si) from a solution containing hydrosilicofluoric acid has been used.
A method of flattening the surface shape of a substrate after embedding electrodes on a substrate by using selective film formation characteristics on a hydrophilic substrate surface and a metal film side surface serving as an electrode by deposition and deposition of O 2 ) or the like. It has been known. According to this, a fine wiring electrode film made of a metal material having a volume resistivity of about several tens to several hundreds μΩcm of a thin film such as Cr can be buried flat in the substrate surface.

【0003】[0003]

【発明が解決しようとする課題】ところで、体積抵抗率
が2.5μΩcm程度という低抵抗の材料であるアルミニ
ウム(Al)を用いて、Al配線電極を基板表面に埋設し
ようとする場合、SiO2の液相成膜時に使用する珪弗化
水素酸を含む溶液に対するAlの耐腐食性が低いため
に、パターニングされたAl金属電極が溶液に溶解して
しまうので、結局、Alを電極材料として使用すること
ができない。このように、従来の埋設電極基板の製造方
法にあっては、低抵抗の金属材料であっても酸に弱い性
質を有する材料を電極に使用することができない。
When Al wiring electrodes are to be buried on the substrate surface using aluminum (Al), which is a low-resistance material having a volume resistivity of about 2.5 μΩcm, the use of SiO 2 is difficult. Since the corrosion resistance of Al to a solution containing hydrosilicofluoric acid used during liquid phase film formation is low, the patterned Al metal electrode is dissolved in the solution, so that Al is ultimately used as an electrode material. Can not do. As described above, in the conventional method of manufacturing a buried electrode substrate, it is not possible to use a material having a property that is weak to an acid even for a low resistance metal material.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
請求項1の電極埋設基板は、電極を酸に溶解し難い材料
よりなる2つの保護膜の間に低抵抗材料よりなる金属膜
を膜厚方向に挟んでなる構成とした。そして、請求項2
の電極埋設基板の製造方法は、絶縁基板上に酸に溶解し
難い材料よりなる第1保護膜、低抵抗材料よりなる電極
膜及び酸に溶解し難い材料よりなる第2保護膜を順次積
層成膜した後、パターニング及び絶縁膜の液相成膜を行
い、酸に溶解し難い材料よりなる2つの保護膜の間に低
抵抗材料よりなる電極膜を膜厚方向に挟んで電極を埋設
形成するようにした。
According to a first aspect of the present invention, there is provided an electrode-embedded substrate in which a metal film made of a low-resistance material is formed between two protective films made of a material that is difficult to dissolve electrodes in acid. It was configured to be sandwiched in the thickness direction. And claim 2
According to the method for manufacturing an electrode-embedded substrate, a first protective film made of a material hardly soluble in acid, an electrode film made of a low-resistance material, and a second protective film made of a material hardly soluble in acid are sequentially laminated on an insulating substrate. After the film is formed, patterning and liquid-phase film formation of an insulating film are performed, and an electrode is buried and formed by sandwiching an electrode film made of a low-resistance material in a film thickness direction between two protective films made of a material hardly soluble in acid. I did it.

【0005】また、請求項3の電極埋設基板は、電極を
低抵抗材料よりなる金属膜の周囲に酸に溶解し難い材料
よりなる保護膜が設けられている構成とした。そして、
請求項4の電極埋設基板の製造方法は、絶縁基板上に低
抵抗材料よりなる電極膜を成膜した後、この電極膜のパ
ターニングを行い、次いでパターニング後の電極膜の周
囲に酸に溶解し難い材料よりなる保護膜を成膜した後、
絶縁膜の液相成膜を行って、低抵抗材料よりなる電極膜
の周囲に酸に溶解し難い材料よりなる保護膜が設けられ
ている電極を埋設形成するようにした。
The electrode-embedded substrate according to the third aspect of the present invention has a structure in which an electrode is provided around a metal film made of a low-resistance material with a protective film made of a material that is hardly dissolved in acid. And
In the method of manufacturing an electrode-embedded substrate according to claim 4, after forming an electrode film made of a low-resistance material on an insulating substrate, the electrode film is patterned and then dissolved in an acid around the patterned electrode film. After forming a protective film made of difficult materials,
An insulating film is formed in a liquid phase, and an electrode provided with a protective film made of a material that is hardly dissolved in an acid is provided around an electrode film made of a low-resistance material.

【0006】[0006]

【作用】酸に溶解し難い材料よりなる2つの保護膜の間
に低抵抗材料よりなる金属膜を膜厚方向に挟むことによ
って、あるいは電極が低抵抗材料よりなる金属膜の周囲
に酸に溶解し難い材料よりなる保護膜を設けることで、
酸を含む溶液を用いた液相成膜法によって選択的に絶縁
膜を形成するときに、低抵抗材料よりなる金属膜が溶液
に晒されないので、耐酸性の低い低抵抗材料を電極材料
として用いることができる。
[Function] A metal film made of a low-resistance material is sandwiched in the thickness direction between two protective films made of a material hardly soluble in an acid, or an electrode is dissolved in an acid around a metal film made of a low-resistance material. By providing a protective film made of a difficult material,
When an insulating film is selectively formed by a liquid phase film formation method using a solution containing an acid, a metal film made of a low-resistance material is not exposed to the solution, and thus a low-resistance material having low acid resistance is used as an electrode material. be able to.

【0007】[0007]

【実施例】以下に本発明の実施例を添付図面に基づいて
説明する。図1は請求項1及び2に係る電極埋設基板及
びその製造方法を説明する模式図、図2は請求項3及び
4に係る電極埋設基板及びその製造方法を説明する模式
図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a schematic diagram illustrating an electrode-embedded substrate according to claims 1 and 2 and a method for manufacturing the same, and FIG. 2 is a schematic diagram illustrating an electrode-embedded substrate according to claims 3 and 4 and a method for manufacturing the same.

【0008】先ず、図1を参照して請求項2に係る電極
埋設基板の製造方法によって請求項1に係る電極埋設基
板を製造する過程について説明する。ここでは、同図
(a)に示すように、まず絶縁基板1上に、酸に溶解し
難い材料よりなる第1保護膜2、低抵抗材料よりなる電
極膜3及び酸に溶解し難い材料よりなる第2保護膜4を
順次積層成膜し、これらの第1保護膜2、電極膜3及び
第2保護膜4からなる積層電極膜5を形成する。
First, a process of manufacturing an electrode-embedded substrate according to claim 1 by a method for manufacturing an electrode-embedded substrate according to claim 2 will be described with reference to FIG. Here, as shown in FIG. 1A, first, a first protective film 2 made of a material hardly soluble in acid, an electrode film 3 made of a low-resistance material, and a material hardly soluble in acid are formed on an insulating substrate 1. The second protective film 4 is sequentially laminated to form a laminated electrode film 5 including the first protective film 2, the electrode film 3, and the second protective film 4.

【0009】ここで、基板1は低アルカリガラス、アル
カリパーッシベーションを施したようなソーダガラス、
または樹脂基板、例えばPET(ポリエチレンテレフタ
レート)基板等を用いることができる。この基板1とし
ては、SiO2の液相で選択的成膜を行うために、その表
面が親水性であることが好ましい。
Here, the substrate 1 is made of low alkali glass, soda glass subjected to alkali passivation,
Alternatively, a resin substrate, for example, a PET (polyethylene terephthalate) substrate or the like can be used. The surface of the substrate 1 is preferably hydrophilic in order to selectively form a film in a liquid phase of SiO 2 .

【0010】ここで、第1保護膜2、第2保護膜4とし
て用いる酸に溶解し難い材料としては、酸を含む溶液に
溶解し難い性質を有する材料であれば特に限定されない
が、Cr、Ta、Ni、Mo、W、Tiなどの金属材料やこ
れらの酸化物、あるいはこれらの金属同士の合金及び複
合酸化物、また、SiO2、Al23、Na2O、MgOな
どの酸化物やSiNなどの窒化物が好ましい。ただし、
第1,第2保護膜2,4の材料としては、電極の埋設工
程に使用する酸を含む溶液に基板上の薄膜として浸漬し
た場合の膜厚の溶解速度が、埋設工程で用いる液相成膜
によるSiO2などの絶縁膜の成膜速度より遅いことが好
ましい。また、第1保護膜2及び第2保護膜4は同じ材
料でも、異なる材料でもよいが、基板表面上から見て電
極として機能する必要があるので、第2保護膜4には導
電性の材料を用いることが好ましい。
Here, the material hardly soluble in an acid used for the first protective film 2 and the second protective film 4 is not particularly limited as long as it is a material hardly soluble in a solution containing an acid. Metal materials such as Ta, Ni, Mo, W, and Ti, oxides thereof, alloys and composite oxides of these metals, and oxides such as SiO 2 , Al 2 O 3 , Na 2 O, and MgO And nitrides such as SiN are preferred. However,
As the material of the first and second protective films 2 and 4, the dissolution rate of the film thickness when immersed as a thin film on a substrate in a solution containing an acid used in the embedding step of the electrode depends on the liquid phase composition used in the embedding step. It is preferable that the deposition rate of the insulating film such as SiO 2 is lower than that of the film. The first protective film 2 and the second protective film 4 may be the same material or different materials. However, since the first protective film 2 and the second protective film 4 need to function as electrodes when viewed from above the substrate surface, the second protective film 4 is made of a conductive material. It is preferable to use

【0011】また、電極膜3として用いる低抵抗材料と
しては、体積抵抗率で1mΩcm程度以下の低抵抗材料
であれば良く、特に、Al、Cu、Cr、Ta等が抵抗の低
さとコストの上でも好ましいが、Au、Ag、Pt等を用
いることもできる。また、これらの合金や複合膜でもよ
く、更にITO(インジウム−スズ−酸化物)等の導電
性のある金属酸化物でもよい。ここで、本発明の効果が
特に顕著に現れるのは、AlやAlを主成分とした合金に
代表されるような酸を含む溶液に比較的溶解し易い材料
を用いた場合である。
The low-resistance material used for the electrode film 3 may be any low-resistance material having a volume resistivity of about 1 mΩcm or less. In particular, Al, Cu, Cr, Ta, etc. are preferred because of their low resistance and cost. However, Au, Ag, Pt and the like can also be used. Further, an alloy or a composite film of these may be used, and a conductive metal oxide such as ITO (indium-tin-oxide) may be used. Here, the effect of the present invention appears particularly remarkably when a material that is relatively easily dissolved in an acid-containing solution such as Al or an alloy containing Al as a main component is used.

【0012】さらに、第1保護膜2、電極膜3及び第2
保護膜4の膜厚の範囲については限定されないが、例え
ばTFTゲート電極の場合、電極膜3にAlを用いた場
合にその膜厚を300nm程度とすると、第1,第2保
護膜2,4にCrを選択しているとき、その膜厚は50
nm程度にするのが電気特性及び製造工程上で実用的で
ある。また、電極膜3がガラス等の基板表面と密着性が
良くない場合、下地となる第1保護膜2としてガラスと
の密着性が高い材料を選択することによって、電極膜3
の基板表面の密着性が間接的に向上し、パターニング中
や埋設工程中の配線剥離の防止を図れる。
Further, the first protective film 2, the electrode film 3, and the second
The range of the thickness of the protective film 4 is not limited. For example, in the case of a TFT gate electrode, when Al is used for the electrode film 3 and the thickness is about 300 nm, the first and second protective films 2 and 4 are formed. When Cr is selected for
It is practical to set it to about nm in terms of electrical characteristics and manufacturing processes. When the electrode film 3 has poor adhesion to the substrate surface such as glass, the material of the electrode film 3 is selected by selecting a material having high adhesion to glass as the first protective film 2 serving as a base.
The adhesion of the substrate surface is indirectly improved, and the peeling of the wiring during the patterning or the embedding process can be prevented.

【0013】その後、同図(b)に示すように、フォト
リソグラフィ法等に従って、基板上の積層電極膜5上に
レジストを塗布し、このレジストを露光及び現像してレ
ジストパターンを形成した後、このレジストパターンを
エッチング用マスクとして積層電極膜5をエッチングし
てパターニングし、レジストパターン(レジスト膜)6
を残したままとする。
Thereafter, as shown in FIG. 1B, a resist is applied on the laminated electrode film 5 on the substrate by photolithography or the like, and the resist is exposed and developed to form a resist pattern. Using the resist pattern as an etching mask, the laminated electrode film 5 is etched and patterned to form a resist pattern (resist film) 6.
Is left.

【0014】ここで、エッチング用レジスト膜(耐腐食
膜)は、フォトリソグラフィに通常用いられるフォトレ
ジストを用いることができる。また、レジスト膜の成膜
方法は、スピンコート、ロールコータなどの成膜方法を
用いることができる。更に、レジスト膜は印刷法等によ
る他のレジスト材料の部分成膜であってもよく、フォト
リソグラフィ以外の方法でパターニングすることもでき
る。
Here, as the etching resist film (corrosion-resistant film), a photoresist generally used for photolithography can be used. In addition, as a method for forming the resist film, a film forming method such as spin coating or a roll coater can be used. Further, the resist film may be a partial film formation of another resist material by a printing method or the like, and may be patterned by a method other than photolithography.

【0015】次いで、珪弗化水素酸を含む溶液を用いた
SiO2の液相析出成膜法を用いて、同図(c)に示すよ
うに積層電極膜5がエッチングされて露出した基板1表
面部分に、SiO2絶縁膜7を積層電極5と同じ厚さだけ
成膜し、その後、同図(d)に示すようにレジストパタ
ーン6を剥離する。
Next, as shown in FIG. 1C, the substrate 1 on which the laminated electrode film 5 is etched and exposed is formed by a liquid phase deposition method of SiO 2 using a solution containing hydrofluoric acid. On the surface portion, an SiO 2 insulating film 7 is formed in the same thickness as the laminated electrode 5, and thereafter, the resist pattern 6 is peeled off as shown in FIG.

【0016】ここで、絶縁膜7の成膜方法は、上記のよ
うに珪弗化水素酸を含む溶液からSiO2を析出する方法
を用いるのが好ましいが、その他の溶液組成については
特に限定されるものではない。積層電極膜5以外の表面
に成膜可能で本発明の効果を発揮するものであれば、例
えばAl23、MgO、B23、CrO2、Ta25等の電
気的絶縁性を有する金属酸化物やその他の絶縁性無機材
料をも用いることができる。更に、本用途に耐え得れ
ば、有機材料組成などを含む溶液から成膜する絶縁性有
機系材料を用いることもできる。
Here, as a method of forming the insulating film 7, it is preferable to use a method of depositing SiO 2 from a solution containing hydrosilicofluoric acid as described above, but other composition of the solution is not particularly limited. Not something. As long as it can form a film on the surface other than the laminated electrode film 5 and exhibits the effects of the present invention, for example, it is possible to use an electrically insulating material such as Al 2 O 3 , MgO, B 2 O 3 , CrO 2 , Ta 2 O 5, etc. Metal oxides having the above and other insulating inorganic materials can also be used. Furthermore, an insulating organic material which is formed from a solution containing an organic material composition or the like can be used as long as it can withstand this use.

【0017】このようにして、基板1上に酸に溶解し難
い材料よりなる2つの保護膜2,4の間に低抵抗材料よ
りなる金属膜3を膜厚方向に挟んでなる低抵抗の微細配
線電極をなす積層電極膜5が絶縁膜7に埋設され、表面
が平坦面をなす電極埋設基板が得られる。
In this manner, a low-resistance fine film formed by sandwiching the metal film 3 made of a low-resistance material between the two protective films 2 and 4 made of a material that is hardly dissolved in an acid on the substrate 1 in the film thickness direction. The laminated electrode film 5 serving as a wiring electrode is embedded in the insulating film 7, and an electrode-embedded substrate having a flat surface is obtained.

【0018】次に、図2を参照して請求項4に係る電極
埋設基板の製造方法によって請求項3に係る電極埋設基
板を製造する過程について説明する。ここでは、同図
(a)に示すように、まず絶縁基板1上に低抵抗材料よ
りなる電極膜3を成膜し、上記の場合と同様に、フォト
リソグラフィ法等により、所望の電極パターンにパター
ニングした後、そのときに使用したレジストパターン6
を残したままにし、同図(b)に示すように電極膜3の
側面(周囲)に酸に溶解し難い材料よりなる保護膜8を
形成して、保護膜付き金属膜9を形成する。
Next, a process of manufacturing the electrode-embedded substrate according to the third aspect by the method for manufacturing an electrode-embedded substrate according to the fourth aspect will be described with reference to FIG. Here, as shown in FIG. 1A, first, an electrode film 3 made of a low-resistance material is formed on an insulating substrate 1, and a desired electrode pattern is formed by a photolithography method or the like as in the above case. After patterning, resist pattern 6 used at that time
Is left, a protective film 8 made of a material that is hardly dissolved in acid is formed on the side surface (periphery) of the electrode film 3 as shown in FIG.

【0019】ここで、電極膜3に用いる材料及び保護膜
8に用いる酸に溶解し難い材料も前述したと同様であ
る。この保護膜8を設ける手段は特に限定されないが、
例えば金属膜3がAlのときには、陽極酸化法を用い
て、金属膜3を陽極とし、クエン酸溶液に浸漬した陰極
と直流電源を介して接続し、これに電圧を印加すること
によって、露出した電極膜3側面を選択的にアルミニウ
ム酸化物(Al23)の膜で被覆し、これを保護膜8と
する方法が、電極膜3側面に選択的に成膜ができるとい
う点で好ましい。この陽極酸化法は、TFTLCDプロ
セス中でのゲート電極の表面酸化プロセスとして用いら
れており、また、電極膜3がTaやMoの場合にも適用す
ることができる。
Here, the material used for the electrode film 3 and the material hardly soluble in acid used for the protective film 8 are the same as described above. Means for providing the protective film 8 is not particularly limited,
For example, when the metal film 3 is Al, the metal film 3 is used as an anode, connected to a cathode immersed in a citric acid solution via a DC power source, and exposed by applying a voltage to the metal film 3 using an anodic oxidation method. A method of selectively covering the side surface of the electrode film 3 with a film of aluminum oxide (Al 2 O 3 ) and using the film as the protective film 8 is preferable in that the film can be selectively formed on the side surface of the electrode film 3. This anodic oxidation method is used as a surface oxidation process of a gate electrode in a TFTLCD process, and can also be applied when the electrode film 3 is Ta or Mo.

【0020】また、保護膜8を設ける他の方法として
は、例えばパターニングした電極膜3にレジストを残留
させたまま、必要な電圧を与えて行う電界メッキ法を用
いて、Ni、Zn、Au、Pt、Ag、Pbなどの耐酸性の比
較的高い材料の被膜を選択的に電極膜3の側面に成膜す
る方法も電極膜3側面に選択的に成膜ができるという点
で好ましい。
As another method of providing the protective film 8, for example, Ni, Zn, Au, Ni, Au, or the like is used by using an electroplating method in which a required voltage is applied while a resist is left on the patterned electrode film 3. A method of selectively forming a film of a relatively acid-resistant material such as Pt, Ag, or Pb on the side surface of the electrode film 3 is also preferable in that the film can be selectively formed on the side surface of the electrode film 3.

【0021】次いで、珪弗化水素酸を含む溶液を用いた
SiO2の液相析出成膜法を用いて、同図(c)に示すよ
うに保護膜付き電極膜9のない基板1表面部分に、Si
2絶縁膜7を保護膜付き電極膜9と同じ厚さだけ成膜
し、その後、同図(d)に示すようにレジストパターン
6を剥離する。
Next, as shown in FIG. 2C, a surface portion of the substrate 1 without the electrode film 9 with a protective film is formed by a liquid phase deposition method of SiO 2 using a solution containing hydrofluoric acid as shown in FIG. And Si
An O 2 insulating film 7 is formed to the same thickness as the electrode film 9 with a protective film, and then the resist pattern 6 is peeled off as shown in FIG.

【0022】このようにして、基板1上に低抵抗材料よ
りなる金属膜3の周囲に酸に溶解し難い材料よりなる保
護膜8が設けられている低抵抗の微細配線電極をなす保
護膜付き電極膜9が絶縁膜7に埋設され、表面が平坦面
をなす電極埋設基板が得られる。
In this manner, the protective film 8 is formed on the substrate 1 around the metal film 3 made of a low-resistance material, and the protection film 8 is made of a material that is hardly dissolved in an acid. The electrode film 9 is buried in the insulating film 7 to obtain an electrode-embedded substrate having a flat surface.

【0023】以下に本発明の具体的な実施例について説
明する。 実施例1 縦350mm、横400mm、厚さ2mmのサイズのT
FTLCD用低アルカリガラス基板を用いて、これを洗
浄した後、スパッタ成膜によって第1保護膜となるCr
膜を膜厚50nmで、電極膜となるAl膜を膜厚300
nmで、第2保護膜となるCr膜を膜厚50nmで順次
積層成膜し、総和で膜厚400nmの積層電極膜を成膜
した。
Hereinafter, specific embodiments of the present invention will be described. Example 1 T having a size of 350 mm in length, 400 mm in width, and 2 mm in thickness
Using a low alkali glass substrate for FTLCD, cleaning the substrate, and then forming a first protective film of Cr by sputtering film formation.
The film has a thickness of 50 nm and the Al film serving as an electrode film has a thickness of 300 nm.
Then, a Cr film serving as a second protective film was sequentially laminated with a thickness of 50 nm and a laminated electrode film having a total thickness of 400 nm was formed.

【0024】次に、フォトレジスト樹脂溶液をスピンコ
ートで1μmの膜厚で積層電極膜(より詳細には第2保
護膜)上に成膜し、レジスト膜を得た。これをオーブン
にて乾燥し、パターニングのための所定のポジ用フォト
マスクを通して紫外線露光し、現像液にてレジストを現
像した。そして、Cr用エッチャントとAl用エッチャン
トを順次用いて積層電極膜のエッチングを行い、所定の
パターンの積層電極膜を得た。
Next, a photoresist resin solution was spin-coated to a thickness of 1 μm on the laminated electrode film (more specifically, the second protective film) to obtain a resist film. This was dried in an oven, exposed to ultraviolet light through a predetermined positive photomask for patterning, and developed with a developer. Then, the laminated electrode film was etched by sequentially using the etchant for Cr and the etchant for Al to obtain a laminated electrode film having a predetermined pattern.

【0025】次いで、このレジスト膜を残したままの状
態で、積層電極膜をメッキ用電極としてNiの電界メッ
キ用溶液に浸漬し、積層電極膜の側壁にNiを析出させ
てNi保護膜を膜厚100nmで成膜した。
Next, with the resist film left as it is, the laminated electrode film is immersed in a Ni electrolytic plating solution as a plating electrode, and Ni is deposited on the side wall of the laminated electrode film to form a Ni protective film. A film was formed with a thickness of 100 nm.

【0026】更に、レジスト膜を残したままの状態で、
珪弗化水素酸溶液中でのSiO2の析出を用いた液相成膜
法によって、レジスト膜の存在しない部分で、親水性で
ある基板表面及び積層電極膜の側壁の部分に析出するよ
うにして、積層電極膜と同じ膜厚400nmのSiO2
絶縁膜を成膜した。そして、残留しているレジスト膜を
剥離液にて剥離することによって、基板上に所定パター
ンの積層電極膜が絶縁膜と同じ膜厚で埋め込まれて、表
面が平坦に形成された電極埋設基板が得られた。
Further, with the resist film left,
By a liquid phase film forming method using precipitation of SiO 2 in a hydrosilicofluoric acid solution, the liquid is deposited on a hydrophilic substrate surface and a side wall of a laminated electrode film in a portion where no resist film exists. Thus, an SiO 2 insulating film having the same thickness as the stacked electrode film having a thickness of 400 nm was formed. By peeling off the remaining resist film with a peeling liquid, a laminated electrode film having a predetermined pattern is buried on the substrate with the same thickness as the insulating film, and the electrode buried substrate having a flat surface is formed. Obtained.

【0027】実施例2 縦350mm、横400mm、厚さ2mmのサイズのパ
ッシベーション用SiO2膜付きソーダライムガラス基板
を用いて、これを洗浄した後、スパッタ成膜によって電
極膜となるAl膜を膜厚300nmで成膜した。次に、
フォトレジスト樹脂溶液をスピンコートで1μmの膜厚
で電極膜上に成膜し、レジスト膜を得た。これをオーブ
ンにて乾燥し、パターニングのための所定のポジ用フォ
トマスクを通して紫外線露光し、現像液にてレジストを
現像した。
Example 2 A soda lime glass substrate with a SiO 2 film for passivation having a size of 350 mm in length, 400 mm in width and 2 mm in thickness was washed, and then an Al film serving as an electrode film was formed by sputtering. A film was formed with a thickness of 300 nm. next,
A photoresist resin solution was spin-coated to a thickness of 1 μm on the electrode film to obtain a resist film. This was dried in an oven, exposed to ultraviolet light through a predetermined positive photomask for patterning, and developed with a developer.

【0028】その後、Al用エッチャントをAl膜のエッ
チングを行い、所定のパターンの電極膜を得た。次い
で、このレジスト膜を残したままの状態で、電極膜を陽
極とし、白金板を陰極として所定の電圧を印加しながら
陽極酸化用溶液に浸漬し、電極膜の側面に保護膜となる
Al23膜を膜厚200nmで形成した。
After that, the Al film was etched with an Al etchant to obtain an electrode film having a predetermined pattern. Then, while still leaving the resist film, the electrode film as an anode and a platinum plate were immersed in the anodizing solution while applying a predetermined voltage as the cathode, a protective layer on the side surfaces of the electrode film Al 2 An O 3 film was formed with a thickness of 200 nm.

【0029】更に、レジスト膜を残したままの状態で、
珪弗化水素酸溶液中でのSiO2の析出を用いた液相成膜
法によって、レジスト膜の存在しない部分で、親水性で
ある基板表面及び電極膜の側壁の部分に析出するように
して、電極膜と同じ膜厚300nmのSiO2の絶縁膜を
成膜した。そして、残留しているレジスト膜を剥離液に
て剥離することによって、基板上に所定パターンの電極
膜が絶縁膜と同じ膜厚で埋め込まれて、表面が平坦に形
成された電極埋設基板が得られた。
Further, with the resist film left,
By a liquid phase film forming method using precipitation of SiO 2 in a hydrosilicofluoric acid solution, a liquid is deposited on a hydrophilic substrate surface and a side wall of an electrode film in a portion where no resist film exists. Then, an SiO 2 insulating film having a thickness of 300 nm, which is the same as the electrode film, was formed. Then, by removing the remaining resist film with a stripping solution, an electrode film having a predetermined pattern is embedded on the substrate with the same thickness as the insulating film, and an electrode-embedded substrate having a flat surface is obtained. Was done.

【0030】[0030]

【発明の効果】以上に説明したように請求項1及び請求
項2の電極埋設基板及びその製造方法によれば、絶縁基
板上に酸に溶解し難い材料よりなる第1保護膜、低抵抗
材料よりなる電極膜及び酸に溶解し難い材料よりなる第
2保護膜を順次積層成膜し、電極が酸に溶解し難い材料
よりなる2つの保護膜の間に低抵抗材料よりなる金属膜
を膜厚方向に挟んでなる構成としたので、酸を含む溶液
を用いた液相成膜法によって選択的に絶縁膜を形成する
ときに、低抵抗材料よりなる金属膜が溶液に晒されない
ので、耐酸性の低い低抵抗材料を電極材料として用いる
ことができ、低抵抗の電極を容易にかつ低コストで埋設
することが可能になる。
As described above, according to the electrode-embedded substrate and the method of manufacturing the electrode-embedded substrate according to the first and second aspects, the first protective film and the low-resistance material made of a material that is hardly dissolved in an acid are formed on the insulating substrate. An electrode film made of a material that is hardly soluble in acid and a second protective film made of a material that is hardly soluble in acid are sequentially laminated, and a metal film made of a low-resistance material is formed between two protective films made of a material whose electrode is hardly soluble in acid. Since the insulating film is sandwiched in the thickness direction, the metal film made of a low-resistance material is not exposed to the solution when the insulating film is selectively formed by a liquid phase film forming method using a solution containing an acid. A low-resistance material having low resistance can be used as an electrode material, and a low-resistance electrode can be embedded easily and at low cost.

【0031】また請求項3及び請求項4の電極埋設基板
及びその製造方法によれば、基板上に低抵抗材料よりな
る電極膜を成膜した後、この電極膜のパターニングを行
い、次いでパターニング後の電極膜の周囲に酸に溶解し
難い材料よりなる保護膜を成膜し、電極が低抵抗材料よ
りなる金属膜の周囲に酸に溶解し難い材料よりなる保護
膜が設けられている構成としたので、酸を含む溶液を用
いた液相成膜法によって選択的に絶縁膜を形成するとき
に、低抵抗材料よりなる金属膜が溶液に晒されないの
で、耐酸性の低い低抵抗材料を電極材料として用いるこ
とができ、低抵抗の電極を容易にかつ低コストで埋設す
ることが可能になる。
According to the electrode-embedded substrate and the method of manufacturing the same according to the third and fourth aspects, an electrode film made of a low-resistance material is formed on the substrate, and then the electrode film is patterned. A protective film made of a material that is hardly soluble in acid is formed around the electrode film, and a protective film made of a material that is hardly soluble in acid is provided around a metal film whose electrodes are made of a low-resistance material; Therefore, when an insulating film is selectively formed by a liquid-phase film forming method using a solution containing an acid, a metal film made of a low-resistance material is not exposed to the solution, so that a low-resistance material having low acid resistance is used as an electrode. It can be used as a material, and a low-resistance electrode can be embedded easily and at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1及び2に係る電極埋設基板及びその製
造方法を説明する模式図
FIG. 1 is a schematic diagram illustrating an electrode-embedded substrate and a method for manufacturing the same according to claim 1;

【図2】請求項3及び4に係る電極埋設基板及びその製
造方法を説明する模式図
FIG. 2 is a schematic diagram illustrating an electrode-embedded substrate and a method of manufacturing the same according to claims 3 and 4;

【符号の説明】[Explanation of symbols]

1…基板、2…第1保護膜、3…電極膜、4…第2保護
膜、5…積層電極膜、6…レジストパターン、7…絶縁
膜、8…保護膜、9…保護膜付き電極膜。
DESCRIPTION OF SYMBOLS 1 ... board | substrate, 2 ... 1st protective film, 3 ... electrode film, 4 ... 2nd protective film, 5 ... laminated electrode film, 6 ... resist pattern, 7 ... insulating film, 8 ... protective film, 9 ... electrode with a protective film film.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 21/3205 H01L 21/88 R (72)発明者 青木 裕一 大阪府大阪市中央区道修町3丁目5番11 号 日本板硝子株式会社内 (72)発明者 斉藤 英昭 大阪府大阪市中央区道修町3丁目5番11 号 日本板硝子株式会社内 (72)発明者 楠田 幸久 大阪府大阪市中央区道修町3丁目5番11 号 日本板硝子株式会社内 (72)発明者 竹村 和夫 大阪府大阪市中央区道修町3丁目5番11 号 日本板硝子株式会社内 (58)調査した分野(Int.Cl.6,DB名) H05K 1/11,1/09 H05K 3/28 H05K 3/40 ────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 21/3205 H01L 21/88 R (72) Inventor Yuichi Aoki 3-5-1-11 Doshomachi, Chuo-ku, Osaka-shi, Osaka Nippon Sheet Glass (72) Inventor Hideaki Saito 3-5-11, Doshu-cho, Chuo-ku, Osaka-shi, Osaka Nippon Sheet Glass Co., Ltd. (72) Yukihisa Kusuda 3-5-1, Doshu-cho, Chuo-ku, Osaka-shi, Osaka Within Nippon Sheet Glass Co., Ltd. (72) Inventor Kazuo Takemura 3-5-11, Doshumachi, Chuo-ku, Osaka-shi, Osaka Nippon Sheet Glass Co., Ltd. (58) Field surveyed (Int.Cl. 6 , DB name) H05K 1 / 11,1 / 09 H05K 3/28 H05K 3/40

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 絶縁基板上に成膜された絶縁膜に電極が
埋設された電極埋設基板において、前記電極は、酸に溶
解し難い材料よりなる2つの保護膜の間に低抵抗材料よ
りなる金属膜を膜厚方向に挟んで構成したことを特徴と
する電極埋設基板。
In an electrode-embedded substrate in which an electrode is embedded in an insulating film formed on an insulating substrate, the electrode is made of a low-resistance material between two protective films made of a material that is hardly dissolved in acid. An electrode-embedded substrate comprising a metal film sandwiched in a thickness direction.
【請求項2】 絶縁基板上に電極膜をパターニングした
後、このパターニングに用いたレジストを前記電極膜上
に残留させたまま前記基板上の電極膜が除去された部分
に、酸を含む溶液を用いた液相成膜法によって選択的に
絶縁膜を形成することで絶縁膜に電極が埋設された電極
埋設基板を製造する方法において、前記絶縁基板上に酸
に溶解し難い材料よりなる第1保護膜、低抵抗材料より
なる電極膜及び酸に溶解し難い材料よりなる第2保護膜
を順次積層成膜した後、前記パターニング及び絶縁膜の
液相成膜を行い、酸に溶解し難い材料よりなる2つの保
護膜の間に低抵抗材料よりなる電極膜を膜厚方向に挟ん
でなる電極を埋設形成することを特徴とする電極埋設基
板の製造方法。
2. After patterning an electrode film on an insulating substrate, a solution containing an acid is applied to a portion of the substrate from which the electrode film has been removed while the resist used for the patterning remains on the electrode film. In a method of manufacturing an electrode-embedded substrate in which an electrode is embedded in an insulating film by selectively forming an insulating film by a liquid phase film forming method used, a first material made of a material that is difficult to dissolve in an acid is formed on the insulating substrate. After sequentially forming a protective film, an electrode film made of a low-resistance material and a second protective film made of a material that is hardly soluble in acid, the patterning and liquid-phase film formation of the insulating film are performed, and a material that is hardly soluble in acid. A method for manufacturing an electrode-embedded substrate, comprising: burying an electrode formed by sandwiching an electrode film made of a low-resistance material in a thickness direction between two protective films made of the same.
【請求項3】 絶縁基板上に成膜された絶縁膜に電極が
埋設された電極埋設基板において、前記電極は、低抵抗
材料よりなる金属膜の周囲に酸に溶解し難い材料よりな
る保護膜を設けて構成したことを特徴とする電極埋設基
板。
3. An electrode-embedded substrate in which an electrode is embedded in an insulating film formed on an insulating substrate, wherein the electrode is a protective film made of a material that is hardly dissolved in acid around a metal film made of a low-resistance material. An electrode-embedded substrate characterized by comprising:
【請求項4】 絶縁基板上に電極膜をパターニングした
後、このパターニングに用いたレジストを前記電極膜上
に残留させたまま前記基板上の電極膜が除去された部分
に、酸を含む溶液を用いた液相成膜法によって選択的に
絶縁膜を形成することで絶縁膜に電極が埋設された電極
埋設基板を製造する方法において、前記絶縁基板上に低
抵抗材料よりなる電極膜を成膜した後、この電極膜のパ
ターニングを行い、次いでパターニング後の電極膜の周
囲に酸に溶解し難い材料よりなる保護膜を成膜した後、
前記絶縁膜の液相成膜を行って、低抵抗材料よりなる電
極膜の周囲に酸に溶解し難い材料よりなる保護膜が設け
られている電極を埋設形成することを特徴とする電極埋
設基板の製造方法。
4. After patterning an electrode film on an insulating substrate, a solution containing an acid is applied to a portion of the substrate where the electrode film has been removed while the resist used for the patterning remains on the electrode film. In a method for manufacturing an electrode-embedded substrate in which electrodes are embedded in an insulating film by selectively forming an insulating film by a liquid phase film forming method used, an electrode film made of a low-resistance material is formed on the insulating substrate. After that, after patterning this electrode film, then after forming a protective film made of a material that is hardly dissolved in acid around the patterned electrode film,
An electrode-embedded substrate, wherein a liquid-phase film formation of the insulating film is performed, and an electrode provided with a protective film made of a material that is hardly dissolved in acid is provided around an electrode film made of a low-resistance material. Manufacturing method.
JP6216361A 1994-09-09 1994-09-09 Electrode-embedded substrate and method of manufacturing the same Expired - Lifetime JP2907318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6216361A JP2907318B2 (en) 1994-09-09 1994-09-09 Electrode-embedded substrate and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6216361A JP2907318B2 (en) 1994-09-09 1994-09-09 Electrode-embedded substrate and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0883965A JPH0883965A (en) 1996-03-26
JP2907318B2 true JP2907318B2 (en) 1999-06-21

Family

ID=16687367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6216361A Expired - Lifetime JP2907318B2 (en) 1994-09-09 1994-09-09 Electrode-embedded substrate and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2907318B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100479000B1 (en) 1996-05-15 2005-08-01 세이코 엡슨 가부시키가이샤 Manufacturing method of thin film device, liquid crystal panel and electronic device and thin film device
US6514801B1 (en) 1999-03-30 2003-02-04 Seiko Epson Corporation Method for manufacturing thin-film transistor
JP2023045882A (en) 2021-09-22 2023-04-03 キオクシア株式会社 Semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0883965A (en) 1996-03-26

Similar Documents

Publication Publication Date Title
US4859036A (en) Device plate having conductive films selected to prevent pin-holes
US6198051B1 (en) Display substrate electrodes with auxiliary metal layers for enhanced conductivity
JPH055898A (en) Thin-film element forming panel
JP2952075B2 (en) Liquid crystal device manufacturing method
CN109254423B (en) Method for manufacturing thick-film wire electrode of lithium niobate electro-optical device
US4964947A (en) Method of manufacturing double-sided wiring substrate
US6606792B1 (en) Process to manufacturing tight tolerance embedded elements for printed circuit boards
US3314869A (en) Method of manufacturing multilayer microcircuitry including electropolishing to smooth film conductors
JP2907318B2 (en) Electrode-embedded substrate and method of manufacturing the same
JP4011664B2 (en) Wiring board manufacturing method
DE19501693C2 (en) Method for producing electronic components and electronic component produced using this method
JP4502575B2 (en) Wiring formation method for display device
JP2990815B2 (en) Liquid crystal display device and method of manufacturing the same
JPH1062799A (en) Wiring board, production of wiring board, liquid crystal element equipped with that wiring board and production of liquid crystal element
JPH022519A (en) Production of liquid crystal display element
JP3140574B2 (en) Electrodeposited substrate and electrodeposition transfer method
JP2664128B2 (en) Metal plating mask pattern
JP3381977B2 (en) Master for fine pattern formation
JPH0815721A (en) Wiring pattern substrate and thin-film transistor matrix substrate and its production
JP3055289B2 (en) How to prevent deterioration of transparent electrode material
JPH0823166A (en) Manufacture of multi-layer wiring substrate
JP2750059B2 (en) Method of forming transparent electrode
KR101250422B1 (en) High Definition Printing Plate of Liquid Crystal Display and Method for Manufacture using the same
JPH07125469A (en) Original plate for forming fine pattern
JPH09251166A (en) Liquid crystal element and production of this liquid crystal element

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990317